
Optimal Reciprocal Collision Avoidance
for Multiple Non-Holonomic Robots

Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli,
Paul Beardsley, and Roland Siegwart

Abstract. In this paper an optimal method for distributed collision avoidance among
multiple non-holonomic robots is presented in theory and experiments. Non-holo-
nomic optimal reciprocal collision avoidance (NH-ORCA) builds on the concepts
introduced in [2], but further guarantees smooth and collision-free motions under
non-holonomic constraints. Optimal control inputs and constraints in velocity space
are formally derived for the non-holonomic robots. The theoretical results are va-
lidated in several collision avoidance experiments with up to fourteen e-puck robots
set on collision course. Even in scenarios with very crowded situations, NH-ORCA
showed to be collision-free for all times.

1 Introduction

Multi-robot systems are designed to achieve tasks by collaboration. A key require-
ment for their efficient operation is good coordination and reciprocal collision avoi-
dance. Moving a vehicle on a collision-free path is a well-studied problem in robot
navigation. The work in [4], [6] and [8] presents representative examples of colli-
sion avoidance methods for single mobile robots. Basically, similar approaches as
in the single robot cases can be applied in the context of collision avoidance for
multiple robots. However, the increase in robot density and collaborative interaction
needs methods that scale well with the number of robots. The collision avoidance
approaches are extended in [11] among others for multiple robots by decoupling
path planning and coordination. Other work investigated potential fields [5] and
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cooperative control laws [14] to direct a group of robots to their objectives while
avoiding collisions. Decentralized control helps lowering computational cost and
introduces additional robustness and flexibility to the multi-robot system.

In this paper, we develop and formally analyze a new collision avoidance strategy
for a group of non-holonomic robots. Mobile robots we see being deployed nowa-
days in research or industry are mostly non-holonomic. Therefore installations with
multiple robots in real world scenarios, such as multiple vacuum cleaners or colla-
borative monitoring and maintenance vehicles, require collision avoidance methods
that take the non-holonomic constraints of the robots into account.

Our approach builds on Optimal Reciprocal Collision Avoidance (ORCA) [2]
and extends it toward non-holonomic reciprocal collision avoidance. The robots are
controlled to stay within a maximum tracking error E of an ideal holonomic trajec-
tory. Control inputs for optimal tracking are derived from mapping holonomic onto
non-holonomic velocities. We focus on differential-drive robots in the following
work, even though our approach applies more generally for the class of feedback-
linearizable vehicles with non-holonomic kinematics, such as car-like robots or
differentially-driven robots with trailer.

Reciprocal Collision Avoidance (RVO) [3], a collaborative collision avoidance
method based on velocity obstacles, was reformulated as ORCA [2] and shown to
be solved efficiently through a low-dimensional linear program, which results in
completeness and a speed-up of the algorithm. Each robot makes a similar collision
avoidance reasoning and collision-free motion is guaranteed all time, but holonomic
robots are assumed and oscillations in the form of reciprocal dances can occur. The
extension in [12] combines both the concepts of basic velocity obstacles and RVO
to reduce the amount of oscillations. In addition, robot kinematics and sensor un-
certainty are included by enlarging the velocity cones, even though a formal proof
of collision-free motion is not given. The work in [15] generalizes RVO for robots
with non-holonomic constraints by testing sampled controls for their optimality.
As the method requires extensive numeric computation and relies on probabilistic
sampling, it may fail to find an existing feasible solution. The latest extension [13]
introduces a solution for differential-drive robots by applying ORCA on the robot’s
virtual center. This is in contrast to our approach of extending the robot’s radius,
which allows to decrease its extension to zero in crowded scenarios. [13] also relies
on the mapping between desired holonomic and non-holonomic velocities, but is
different from ours in how it is derived; moreover it further constrains the motion
of the robots. Another reactive collision avoidance method for unicycles based on
velocity obstacles was presented in [9], where inputs are obtained by a weighted
combination of the closest collision in normal and tangential directions.

The paper is organized as follows. We start with the problem formulation in Sec-
tion 2 and review the main concepts of ORCA. Then the proposed algorithm for
collision avoidance in a group of non-holonomic robots is presented in Section 3.
In Section 4, we give a formal analysis of the non-holonomic controls that lead to
optimal tracking of holonomic velocities and prove collision-free motion. Section 5
demonstrates the method in experiments with up to fourteen robots and shows suc-
cessful collision avoidance and smooth trajectories.
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Fig. 1 Non-holonomic tracking error. The holonomic trajectory is tracked by the differential-
drive robot moving along the non-holonomic trajectory within tracking error εH .

2 Problem Formulation

2.1 Kinematic Model of Differential-Drive Robot

First the kinematic model for the differential-drive robot is introduced. The basic
trajectories of the non-holonomic robots considered in this work are defined by
two sections, an arc of circumference covered with constant speed v, followed by
a straight line path with constant speed v1, as illustrated in Fig. 1. The basic non-
holonomic controls (v(t),ω(t)) consist of the linear and angular velocities

v(t) =
{

v = ω R , for 0 ≤ t ≤ t1
v1 , for t > t1

, ω(t) =
{

ω , for 0 ≤ t ≤ t1
0 , for t > t1

. (1)

Note that in our formulation the robots have no constraints in acceleration, neverthe-
less, these could be easily included by adding to the complexity of the formulation.
Although the planned trajectory is a circular sector followed by a straight line seg-
ment, the robots perform only a part of the circular segment and then recompute,
which results in final trajectories that are much more complex.

The kinematic constraints are given by |v(t)| ≤ vmax,ω = vmax−|ω(t)| lw
2 , |ω(t)| ≤

ωmax = 2vmax
s

lwKvs
and vmax = vmax

s
Kvs

, where the wheel speed is bounded by −vmax
s ≤ vs(t) =(

v(t)± lw
2 ω(t)

)
Kvs ≤ vmax

s , with vs(t) the angular velocity of the right and the left

wheel respectively, lw is the distance between the wheels and Kvs a conversion
factor. The system parameters that are relevant for the locomotion of the e-puck
robot (refer to Section 5) are given by: lw = 0.0525 m, vmax

s = 1000 steps/s, Kvs =
7674.6 steps/m, vmax = 0.13 m/s and ωmax = 4.96 rad/s.

The set of non-holonomic controls SNHC = {(v(t),ω(t)) |Eq. (1) and kinematic
constraints} is defined as the feasible subset of the controls (v(t),ω(t)) given by
Eq. (1), i.e. the controls satisfying the kinematic constraints.
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2.2 Set of Allowed Holonomic Velocities

The underlying idea of the approach here presented is that a particular non-holo-
nomic robot is able to track a certain set of holonomic motions within a given ma-
ximum tracking error E . Therefore, increasing the radius of each robot by its fixed
value E guarantees collision-free trajectories, even in the case of non-holonomic
robots. The tracking error εH is quantified by consideration of the robot’s kinema-
tics and can be bounded by a certain value E through limiting the set of holonomic
trajectories to be tracked.

In Fig. 1 the trajectories for both holonomic and non-holonomic robots are pre-
sented. If the velocity v1 of the non-holonomic robot in Eq. (1) is fixed to the speed
of the holonomic robot VH , the maximum error in tracking a holonomic trajectory
at constant velocity vH = VH(cos(θH),sin(θH)) is given at time t1, and represented
by εH . Note that the tracking error might as well be decreased with a more com-
plex control scheme. However, it never increases under the non-holonomic controls
according to Eq. (1). Let us fix v1 = VH in the following.

Thus, for a given holonomic velocity vHi = vH and control inputs (v,ω) at time
t = kΔ t, where k ∈ N is the iteration index and Δ t the time step, the value of the
tracking error εH is given by simple geometry

ε2
H(v,w,VH ,θH) = (VHt1 −Rsin(θH))2 +(R(1− cos(θH)))2

= V 2
Ht2

1 −
2VHt1 sin(θH)

ω
v +

2(1− cos(θH))
ω2 v2. (2)

For non-holonomic robots and fixed a maximum tracking error E , the set of allowed
holonomic velocities SAHV is given by the velocities vH for which there exists a con-
trol input within the set of non-holonomic controls SNHC that guarantees a tracking
error lower or equal than the given maximum tracking error E at all times. The set
of allowed holonomic velocities is defined as

SAHV = {vH ∈ R
2 | ∃(v(τ),ω(τ)) ∈ SNHC , ||p+ τ ·vH − p̂k(τ)|| ≤ E ∀τ ≥ 0},

(3)
where p̂k(τ) is the expected robot position at time kΔ t + τ if controls (v(τ), ω(τ))
are applied at time kΔ t.

In order to obtain smooth trajectories, the time t1 to achieve the correct orientation
θH can be fixed to a minimum value T . Note that this value must be at least equal to
the time step Δ t of the controller. t1 is kept fixed for the following sections.

In Section 4 the closed form of SAHV and the mapping between the sets SAHV and
SNHC, as well as the proof of collision-free motion, are derived.

2.3 Optimal Reciprocal Collision Avoidance

ORCA [2] is a velocity-based approach to collision avoidance that provides a suf-
ficient condition for guaranteeing collision-free motion among multiple holonomic



Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots 207

Fig. 2 Left: configuration with two non-holonomic robots. Center: VOτ
i| j and ORCAτ

i| j for

a holonomic robot at pi with ri + ε and vcurrent
Hi

, generated by a holonomic robot at p j with
r j + ε and vcurrent

Hj
. Right: constraints in velocity generated by ORCAτ

i| j from multiple robots,
together with the set PAHVi taking into account the kinematics of the robot. The region of
collision-free velocities ORCAτ

i is highlighted and v∗Hi
is displayed.

robots. Given a group of n disk-shaped robots with radius ri and velocity vi ∈ R
2

at position pi in the plane R
2, each robot tries to reach an assigned goal point gi by

selecting a preferred velocity vpre f
i ∈ R

2. The objective is to choose an optimal vi,

which lies as close as possible to vpre f
i , such that collisions among the robots are

avoided for at least a time horizon τ .
In the case of holonomic robots with velocities vH ∈ R

2, the velocity obstacle for
robot i ∈ [1,n] ⊂ N with ri at pi induced by any robot j ∈ [1,n], j 	= i, with r j at p j
is defined as the set of relative velocities v̄ = vHi −vHj between robots i and j

VOτ
i| j =

{
v̄ |∃t ∈ [0,τ] , t · v̄ ∈ D(p j −pi, ri + r j)

}
, (4)

with D(p,r) = {q |‖q−p‖ < r} the open ball of radius r. The set of collision-free
velocities ORCAτ

i| j for robot i with respect to robot j can geometrically be cons-
tructed from VOτ

i| j (see Fig. 2 left and center). First, the minimum change

u = (argmin
v̄∈∂VOτ

i| j
‖v̄− (vopt

i −vopt
j )‖)− (vopt

i −vopt
j ) , (5)

which needs to be added to v̄ to avoid a collision, is computed. vopt
i is the opti-

mization velocity, set to the current velocity vcurrent
Hi

of the robot. This gives good

results as shown in [2]. Then ORCAτ
i| j = {vHi |(vHi − (vopt

i + cu)) · n ≥ 0} follows
as described in [2]. n denotes the outward normal of the boundary of VOτ

i| j at

(vopt
i −vopt

j )+u, and c defines how much each robot gets involved in avoiding a col-

lision. c = 1
2 means both robots i and j help to equal amounts to avoid colliding with

each other; c = 1 means robot i fully avoids collisions with a dynamic obstacle j.
Likewise, the velocity obstacle can be computed for static obstacles following [2].
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The set of collision-free velocities for robot i, ORCAτ
i , is given by

ORCAτ
i = SAHVi ∩

⋂
j 	=i

ORCAτ
i| j , (6)

with SAHVi the set of allowed holonomic velocities under the kinematic constraints
of robot i. For holonomic robots, SAHVi = D(0,V max

Hi
). Fig. 2 on the right shows the

set ORCAτ
i for a configuration with multiple robots, where SAHVi is approximated

by the convex polygon PAHVi for a differential-drive robot.
The optimal holonomic velocity for robot i is to be found as

v∗Hi
= argmin

vHi∈ORCAτ
i

‖vHi −vpre f
i ‖. (7)

3 NH-ORCA: Optimal Reciprocal Collision Avoidance under
Non-Holonomic Constraints

In each time-step NH-ORCA consists of the following three main steps: first, VOτ
i| j

and ORCAτ
i| j are computed for holonomic robots of radius ri + Ei, r j + E j at pi,

p j with velocity vcurrent
Hi

, vcurrent
Hj

. Second, SAHVi is computed for fixed Ei and Ti

and approximated by a convex polygon PAHVi . Moreover, ORCAτ
i is generated with

respect to the neighboring robots and an optimal holonomic velocity is selected
from the set of collision-free velocities defined by Eq. (6); thereby, the preferred
velocities of the robots are taken into account. This is represented in Fig. 2 where
E = Ei = E j. Finally, the selected holonomic velocity is mapped to the correspond-
ing non-holonomic control inputs, which guarantee collision-free motion. A detailed
description of the algorithm is provided in Algorithm 1.

The closed-form expression from Eq. (13) (in Section 4) is evaluated to compute
the maximum allowed holonomic velocities, this is the set SAHVi . In general, SAHVi

is not convex for a given Ti. In our implementation of NH-ORCA, the area of SAHVi

is approximated by a convex polygon PAHVi that lies inside SAHVi . This simplifies
the optimization problem. Note that PAHVi can be precomputed due to rotational in-
variance and at each iteration be aligned with the current orientation of the robot.
As ORCAτ

i is a convex region formed by linear constraints, a quadratic optimization
problem with linear constraints is formulated. Eq. (7), where SAHVi is substituted
by PAHVi , can efficiently be solved by methods from computational geometry. The
optimization velocity vopt

i that is used in the optimization is set to the current holo-
nomic velocity vcurrent

Hi
of the agent, but other choices are possible. The mapping to

non-holonomic optimal control inputs follows from Eq. (9) (in Section 4).
NH-ORCA can be applied to heterogeneous groups of robots with different kine-

matic constraints, sizes, maximum tracking errors Ei and lower bounds Ti.
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Algorithm 1. Non-Holonomic Reciprocal Collision Avoidance.
Require: Fixed Ei and Ti. Group of differential-drive robots i ∈ [1,n] provided with:

- internal parameters: pi, vcurrent
Hi

, θi, vpre f
i , ri, Ei, Ti.

- external parameters (obtained from sensing or communication): p j, vcurrent
Hj

, r j +E j with
j 	= i.

1: Compute PAHVi,0 from closed-form expression of SAHVi,0 and zero orientation, Eq. (13).
2: loop
3: for i ∈ {1, ...,n} do
4: Compute PAHVi by rotating PAHVi,0 to match orientation θi.
5: for j ∈ {1, ...,n}, j 	= i do
6: Compute VOτ

i| j for holonomic robots of radius ri +Ei and r j +E j at pi and p j

with vcurrent
Hi

and vcurrent
Hj

.

7: Compute ORCAτ
i| j.

8: end for
9: Construct ORCAτ

i = PAHVi ∩
⋂

i	= j ORCAτ
i| j.

10: Compute optimal collision-free holonomic velocity v∗Hi
following Eq. (7).

11: Map v∗Hi
to (vi,ωi) following Eq. (9).

12: Apply controls.
13: end for
14: end loop

4 Formal Analysis

In our analysis the symmetry of the tracking with respect to both axis and its rota-
tional invariance is exploited. Therefore, the considerations are limited to the case
of tracking holonomic velocities in R

2
+ and zero orientation of the agent. It is clear

that the analysis extends likewise to entire R
2 and general orientation of the robot.

4.1 Selection of Non-Holonomic Controls

In this section, the control inputs (v,ω) for optimal tracking of a given holonomic
velocity vH are found. The controls for the non-holonomic robot are chosen as those
that minimize the tracking error εH , while achieving the correct orientation in the
fixed given time T . If this is impossible due to the robot’s constraints, the robot
performs a turn in place by rotating at maximum speed until the correct orientation

is reached, i.e. ω = min
(

θH
T , ωmax

)
. In general, t1, θH and ω are related by ω = θH

t1
.

With everything else fixed, the linear velocity that minimizes Eq. (2) is given by

v∗ =
VHt1 sin(θH)ω
2(1− cos(θH))

= VH
θH sin(θH)

2(1− cos(θH))
. (8)

The optimal linear velocity might not be feasible due to the limits on the linear and
angular velocities. Therefore, the optimal controls are
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RA1 : ω =
θH

T
≤ ωmax and v = v∗ ≤ vmax,ω

RA2 : ω =
θH

T
≤ ωmax and v = vmax,ω

RB : ω = ωmax and v = 0. (9)

If the optimal controls are chosen, the maximum tracking error ε2
H(vH) committed

in each of the regions are derived from Eq. (2) and Eq. (8) and given by

RA1 : ε2
H =

(
2(1− cos(θH))− sin2(θH)

2(1− cos(θH)

)
T 2V 2

H (10)

RA2 : ε2
H = V 2

HT 2 − 2VHT 2 sin(θH)
θH

vmax,ω +
2T 2(1− cos(θH))

θ 2
H

v2
max,ω (11)

RB : εH = VHt1 = VH
θH

ωmax
. (12)

4.2 Construction of SAHV

The closed form of the set of allowed holonomic velocities SAHV is derived for fixed
E and T in this section. For a given orientation θH of the holonomic velocity, the
maximum holonomic speed VH that can be successfully tracked with εH ≤ E is
computed (see Fig. 3). Note that for feasibility, the maximum holonomic speed is
limited by the robot’s maximum linear velocity VH ≤ vmax. Otherwise the tracking
error would increase after time t1.

Theorem 1. Both the optimal linear velocity v(VH) and the tracking error εH(VH)
are monotonically increasing with respect to the holonomic speed VH for fixed θH.

Proof. From Eq. (8)-(9) it directly follows that, with everything else fixed, the op-
timal linear velocity v is monotonically increasing with respect to the holonomic
speed VH . The monotonicity of εH(VH) is derived from Eq. (10)-(12). Due to li-
mited space, the proof is omitted. �

Theorem 2. The maximum holonomic speed V max

H that can be tracked with εH ≤ E
for a fixed θH is given by

V max
H =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min

(
E
T

√
2(1−cos(θH))

2(1−cos(θH))−sin2(θH )
, vmax

)
if

{ θH
T ≤ ωmax

v∗E ≤ vmax,ω

min

(
−β+

√
β 2−4αγ

2γ , vmax

)
if

{ θH
T ≤ ωmax

v∗E ≥ vmax,ω

min
(

E ωmax
θH

, vmax

)
if θH

T ≥ ωmax,

(13)
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where v∗E , α, β , γ are given by

v∗E =
E

T
θH sin(θH)

2(1− cos(θH))

√
2(1− cos(θH))

2(1− cos(θH))− sin2(θH)
, (14)

α = T 2 , β = −2T 2 sin(θH)
θH

vmax,ω , γ =
2T 2(1− cos(θH))

θ 2
H

v2
max,ω −E 2. (15)

Proof. Denote vvmax
H

and ωvmax
H

the linear and angular velocities for optimal tracking
of the maximum holonomic velocity vmax

H , given by V max
H and θH .

The proof is divided for regions RA1, RA2 and RB. Recall from Theorem 1 that,
v(VH) and εH(VH) are monotonically increasing with respect to VH . This is impli-
citly used in the proof. In all cases the value of the maximum holonomic speed V max

H
must be limited to vmax following VH ≤ vmax.

- Region RA1: Assume ωvmax
H

= θH
T < ωmax. Consider the case where vvmax

H
< vmax,ω .

The holonomic speed which gives a tracking error equal to the maximum εH = E
is found by solving Eq. (10), which gives the top value V max

H of Eq. (13). The li-
near velocity for optimal tracking of vmax

H is then given by Eq. (14), obtained by
substituting V max

H into Eq. (8), which is feasible if v∗E ≤ vmax,ω = vmax − θH lW
2T . If

this holds, vvmax
H

= v∗E . Otherwise, the solution is found in region RA2.

- Region RA2: Assume ωvmax
H

= θH
T < ωmax. Consider the case where vvmax

H
= vmax,ω .

The tracking error is given by Eq. (11) and from Theorem 1, the maximum
holonomic speed V max

H satisfies εH = E . The solution is given by solving,

0 = α(V max
H )2 +βV max

H +γ , where from Eq. (11), α = T 2, β =− 2T2 sin(θH)
θH

vmax,ω

and γ = 2T 2(1−cos(θH))
θ 2

H
v2

max,ω −E 2. From Theorem 1, the maximum holonomic

speed is given by the solution of largest value, hence the middle value V max
H

of Eq. (13). The associated linear velocity for optimal tracking is given by
vvmax

H
= vmax,ω = vmax− θH lW

2T . Finally, the value of the maximum holonomic speed
V max

H must be limited to vmax following VH ≤ vmax.

- Region RB: Assume ωvmax
H

= ωmax. In this case, a rotation in place is performed.
Therefore vvmax

H
= 0. Recalling Eq. (12) and Theorem 1, the maximum holonomic

speed V max
H from Eq. (13) bottom is obtained. �


Similar results are derived for the case where the angular velocity ω is limited by
ω̂ < ωmax. This leads to smoother trajectories and, independently of the chosen T ,
in place rotations are avoided.

Theorem 3. Consider ω ≤ ω̂ < ωmax. The maximum holonomic speed V max
H that

can be tracked with εH ≤ E for a fixed θH is given by
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V max
H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
E
T

√
2(1−cos(θH ))

2(1−cos(θH ))−sin2(θH)
, vmax

)
if

{ θH
T ≤ ω̂

v∗E ≤ vmax,ω

min

(
−β+

√
β 2−4αγ

2γ , vmax

)
if

{ θH
T ≤ ω̂

v∗E ≥ vmax,ω

min

(
E ω̂
θH

√
2(1−cos(θH ))

2(1−cos(θH ))−sin2(θH)
, vmax

)
if

{ θH
T ≥ ω̂

v∗E ≤ vmax,ω

min

(
−β̂+

√
β̂ 2−4α̂γ̂

2γ̂ , vmax

)
if

{ θH
T ≥ ω̂

v∗E ≥ vmax,ω

(16)

where v∗E , α, β , γ are given by Eq. (14) and (15). α̂, β̂ , γ̂ are given by

α̂ =
θ 2

H

ω̂2 , β̂ = −2θH sin(θH)
ω̂2 vmax,ω , γ̂ =

2(1− cos(θH))
ω̂2 v2

max,ω −E 2. (17)

Proof. The proof is analogous to that of Theorem 2, where the optimal controls are
given by ω = min( θH

T , ω̂) and v = min(v∗, vmax,ω). �

Remark 1 Maximal SAHV . The maximal set of allowed holonomic velocities Smax

AHV
is given by a maximization of the maximal holonomic speed V max

H over T for a fixed
orientation θH , Smax

AHV =
⋃

T∈[Δ t,∞) SAHV . In this case the time T is not constant, but
varies as a function of the orientation θH .

Remark 2 Polygonal approximation PAHV . Due to the particular non-convex shape
of the SAHV two options are described. First, the best approximation is obtained by
dividing SAHV in two complementary regions, one for forward and one for back-
ward driving. Then, the problem is solved for one region (the one pointing towards
the desired goal) and if unfeasible, for the opposite region in a second step. This
region is represented by PAHV,A in Fig. 3. Alternatively, a faster but more restrictive
implementation is obtained by using the biggest rectangle contained inside SAHV .
This region is represented by PAHV,B in Fig. 3 on the right.

Remark 3 Behavior in the limits. Two limit cases might be considered:

- Limit T → 0. For θH = 0 trajectories are straight lines; in fact, ω = 0 holds
independent of T and therefore perfect tracking is achieved for VH ≤ vmax.
For θH ∈ (0, π

2 ] and fixed θH , θH
T → ∞ is obtained; therefore, rotation in place

with ω = ωmax and v = 0 is always the chosen trajectory. This reduces to time
optimal trajectories, each composed of straight line segments alternating with
turns in place as seen in [1].

- Limit E → 0. For θH = 0 trajectories are straight lines; again, ω = 0 holds in-
dependent of T and therefore perfect tracking is achieved for VH ≤ vmax. For
θH ∈ (0, π

2 ], it can be seen from Theorem 2 that trajectories are reduced to turn-

ing in place at angular velocity ω = min
(

θH
T ,ωmax

)
and v = 0.

Remark 4 Variable maximum tracking error E . NH-ORCA guarantees collision-
free trajectories for non-holonomic robots, that is ri + r j ≤ d(pi,p j). To guarantee
feasibility of the computation of the VOτ

i| j, ri + r j + Ei + E j ≤ d(pi,p j) must be
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Fig. 3 Left: SAHV for fixed E and varying T . Tmax(θH) denotes the variable T that results in
the maximal set Smax

AHV . Right: SAHV for fixed T and varying E . Two polygonal approximations
PAHV,A and PAHV,B are shown for E = 0.01 m and T = 0.35 s.

satisfied, i.e. the extended radii of the robots must not be in collision. This might
happen for fixed Ei and ωi 	= 0 but is assuredly avoided by having Ei and E j stepwise
decreasing when robots are close to each other.

4.3 Collision-Free Motion

Finally, the proof that NH-ORCA guarantees collision-free motions among multiple
non-holonomic robots is presented.

Theorem 4. The trajectories of all robots are guaranteed to be collision-free.

Proof. First, planned trajectories for the holonomic robots of radius ri + Ei are
collision-free, if solutions of ORCA exist, as proven in [2]. Otherwise the cons-
traints given by ORCAτ

i| j must be relaxed by decreasing τ until the problem be-
comes feasible, thus becoming a 3D optimization [2]. Second, planned trajectories
for non-holonomic robots stay within distance Ei of the planned trajectories for ex-
tended holonomic robots, if Ti ≥ Δ t. Note that this only guarantees that the distance
between two non-holonomic agents is greater than the sum of their radii. To gua-
rantee feasibility of the velocity obstacles computation, and thus completion of the
method, Remark 4 must hold in addition.

Trajectories planned for the non-holonomic robot are collision-free. Due to the
time-discrete implementation, after each time-step a new collision-free trajectory is
computed. Therefore, the trajectories of all agents, given as concatenation of seg-
ments, are collision-free. �

Remark 5 Deadlocks. NH-ORCA guarantees collision-free trajectories for non-
holonomic robots but convergence to a goal destination is not fully guaranteed.
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While robots are in movement, deadlocks will not appear (as seen in our experi-
ments in Section 5. Nevertheless, when robots reach their goal, their behavior is
close to that of static obstacles. If they are approached by another robot, a deadlock
situation may result as the robot’s velocity that is closest to its preferred velocity
might become zero in order to avoid collisions. This is inherited from the original
method for holonomic agents [2] and can be resolved by waypoint navigation [7].

5 Experimental Results

We have evaluated the proposed collision avoidance method and the theoretical re-
sults by experiments with real robots. A group of fourteen e-puck robots [10] is used
in the experiments. The e-puck is a small disk-shaped differential-drive robot. To en-
able reliable communication and tracking of the e-pucks, the robots were enhanced
with a generic radio receiver and eight infrared LEDs. Red-colored disks were fur-
ther added on top of each robot for better visual appearance. The following parame-
ters for the NH-ORCA computation are selected: E = 0.01 m, T = 0.35 s, τ = 7 s,
V pre f = 0.1 m/s and r = 0.05 m the radius of the modified e-puck.

The test setup consists of a central workstation with radio transmitter and an
overhead camera mounted on a frame above a flat floor plate of 1.2 m x 1.4 m. The
robots’ positions and orientations are detected and read into the workstation, where
the NH-ORCA is computed for each robot in a decentralized way. The resulting
velocities are then broadcasted to the e-pucks in each iteration. The e-puck robots
and the workstation form a closed control loop running at a frequency of 10 Hz.

The results of two experiments are presented, which confirm the theoretical fin-
dings from Section 4. In the first experiment four e-puck robots are placed in square
shape and consecutively exchange positions with each other. Fig. 4 on the left il-
lustrates a subsequence of the robots exchanging positions in diagonal directions.
On the right, the trajectories for two out of the four robots are shown when moving
along the square’s vertical edge to swap positions. As can be seen from the trajec-
tories of the first experiment, not only collision-free but also smooth and visually
appealing motions are obtained for the differential-drive robots with the NH-ORCA
algorithm.

In cases of symmetry and in order to avoid reciprocal dances [12], the closest
point on the velocity obstacle VOτ

i| j is selected clockwise for Eq. (5). This gives
preference to right-side avoidance in cases of full symmetry.

In the second experiment, fourteen e-pucks are lined up on a circle and move
all together to their antipodal positions on the circle’s boundary. This experiment
demonstrates that the distributed NH-ORCA algorithm scales with the number of
robots, and that it can moreover be applied without any change in the set of param-
eters for scenarios with many robots (the same parameters as in the first experiment
with only four robots are used). The robots successfully solve a very crowded sce-
nario while avoiding collisions at all times. In such scenarios with many robots, a
slow-down of the robots can be noticed in areas of increased robot density. This
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Fig. 4 Experiment 1 with four e-puck robots. Left: e-pucks exchanging positions in diagonal
direction. Right: e-pucks exchanging positions vertically. Both sequences and trajectories are
smooth and collision-free.

Fig. 5 Experiment 2 with fourteen e-puck robots. The sequence shows collision-free transi-
tion of the e-pucks through the circle center to the antipodal position on the circle’s boundary.

results from the stronger constraints on the feasible set of velocities, and is in
correspondence with Theorem 2 and Remarks 3 and 4 (tendency of increasingly
turning in place).

In cases where the optimization becomes unfeasible, zero inputs can be selected
for the robots. Alternatively, implementation of Remark 4 and of the 3D optimiza-
tion guarantee feasibility while leading to a decrease in the time of collision τ . As a
result, faster motions are achieved for the robots in Experiment 2. The robots can get
infinitely close from the fact that no safety area is added, but collisions are avoided.
Further experiments studied different scenarios, including scenarios with dynamic
obstacles. A video showing the conducted experiments in full length accompanies
the paper.

6 Conclusion and Outlook

In this work, a fast and distributed method for local collision avoidance among
non-holonomic robots, so-called NH-ORCA, is presented on the basis of multiple
differential-drive robots. Formal proofs of collision-free motion (valid both for con-
tinuous and discrete control) are derived and several experiments are performed
verifying the results. NH-ORCA achieves smooth and visually appealing trajecto-
ries for non-holonomic robots, as demonstrated in the first experiment. Furthermore,
the method successfully deals with very crowded situations, as shown in the second
experiment with a larger group of fourteen robots.
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In future work, it would be interesting to extend the method here presented to
other non-holonomic vehicle dynamics. We believe this can be achieved by modi-
fying the set of allowed holonomic velocities SAHV . In accordance with [2], another
line of research is to combine NH-ORCA with global path planning and to look
closer at the avoidance of deadlock situations. For less controlled environments, or
full integration of sensing and actuation, the method should be extended to com-
pensate for uncertainties. Eventually, the method could be generalized for higher
dimension and applied to underwater or aerial robots in R

3.
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Control for Multiagent Systems. ASME J. Dyn. Sys. Meas. Control 129(5), 699–707
(2007)

15. Wilkie, D., van den Berg, J., Manocha, D.: Generalized velocity obstacles. In: Proc. IEEE
Int. Conf. Intell. Rob. Syst., pp. 5573–5578 (2009)


	Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots
	Introduction
	Problem Formulation
	Kinematic Model of Differential-Drive Robot
	Set of Allowed Holonomic Velocities
	Optimal Reciprocal Collision Avoidance

	NH-ORCA: Optimal Reciprocal Collision Avoidance under Non-Holonomic Constraints
	Formal Analysis
	Selection of Non-Holonomic Controls
	Construction of SAHV
	Collision-Free Motion

	Experimental Results
	Conclusion and Outlook
	References




