
Supplementary material for “A message-passing algorithm for
multi-agent trajectory planning”

This document gives details on the message-passing algorithm we use and how to implement all
minimizers described in the paper. It also includes some more comments on our numerical results
and related literature. A short movie clip showing the behaviour of our algorithm can be found at
http://youtu.be/yuGCkVT8Bew

A Comment on related literature

A⇤-search based methods and sampling-based methods require exploring a continuous domain us-
ing discrete graph structures. For problems with many degrees of freedom or complex kinematic
and dynamic constraints, as when dealing with multiple agents or manipulators, fixed-grid search
methods are impractical. Alternatively, exploration can be done using sampling algorithms with
proved asymptotic convergence to the optimal solution [15]. However, as the dimensionality of the
configuration space increases, the convergence rate degrades and the local planners required by the
exploration loop become harder to implement. In addition, as pointed out in [9], sampling algo-
rithms cannot easily produce solutions where multiple agents move in tight spaces, like in CONF1
with obstacles. Some of the disadvantages of using discrete random search structures are even vis-
ible in extremely simple scenarios. For example, for a single holonomic agent that needs to move
as quickly as possible between two points in free-space, [15] require around 10000 samples on their
RRT* method to find something close to the shortest-path solution. For our algorithm this is a trivial
scenario: it outputs the optimal straight-line solution in 200 iterations and 37 msecs. in our Java
implementation.

B Full description of the improved three-weight message-passing algorithm
of [13]

First we give a self-contained (complete) description of the three-weight algorithm TWA from [13].
Their method is an improvement of the alternating direction method of multipliers (ADMM) 3.
Assume we want to solve

min

x2Rd

l

X

b=1

f

b

(x

@b

), (14)

where the set x
@b

= {x
j

: j 2 @b} is a vector obtained by considering the subset of entries of x
with index in @b ✓ [d]. The functions f

b

do not need to be convex or smooth for the algorithm
to be well-defined. However, the algorithm is only guaranteed to find the global minimum under
convexity [22].

Start by forming the following bipartite graph consisting of minimizer-nodes and equality-nodes.
Create one minimizer-node, labeled “g”, per function f

b

and one equality-node, labeled “=”, per
variable x

j

. There are l minimizer-nodes and d equality-nodes in total. If function f

b

depends on
variable x

j

, create an edge (b, j) connecting b and j (see Figure B for a general representation).

The algorithm in [13] works by repetitively updating seven kind of variables. These can be listed as
follows. Every equality-node j has a corresponding variable z

j

. Every edge (b, j) from minimizer-
node b to equality-node j has a corresponding variable x

b,j

, variable u

b,j

, message n

b,j

, message
m

b,j

, weight �!⇢
b,j

and weight �⇢
b,j

.

To start the method, one specifies the initial values {z0
j

}, {u0
b,j

} and { �⇢ 0
b,j

}. Then, at every iteration
k, repeat the following.

3ADMM is a decomposition procedure for solving optimization problems. It coordinates the solutions to
small local sub-problems to solve a large global problem. Hence, it is useful to derive parallel algorithms.
It was introduced in [16] and [17] but is closely related to previous work as the dual decomposition method
introduced by [18] and the method of multipliers introduced by [19, 20] and [21]. For a good review on ADMM
see [22], where you can also find a self-contained proof of its convergence for convex problems.
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Figure 4: Bipartite graph used by the message-passing algorithm to solve (14). The algorithm works
by updating seven kind of variables, also shown in picture.
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Figure 5: Left: Special update-rules for variables u. Right: Update rule for variables �⇢ .

1. Construct the n-message for every edge (b, j) as nk

b,j

= z

k

j

� u

k

b,j

.

2. Update the x-variables for every edge (b, j). All x-variables associated to edges incident on
the same minimizer-node b, i.e. {xk

b,j

}
j2@b, are updated simultaneously by the minimizer

g

b

associated to the function f

b

,

{xk+1
b,j

}
j

= g

b

�

{nk

b,j

}
j

, { �⇢ k

b,j

}
j

�

⌘ arg min

{x̃k
b,j}j

f

b

({x̃k

b,j

}
j

) +

1

2

X

j

 �
⇢

k

b,j

(x̃

k

b,j

� n

k

b,j

)

2
.

In the expression above we write {}
j

and
P

j

for {}
j2@b and

P

j2@b respectively. If the
argmin returns a set with more than one element, choose a value uniformly at random
from this set.

3. Compute the outgoing weights for all edges (b, j). All weights associated to edges leaving
the same minimizer-node b, i.e. {�!⇢ k

b,j

}
j2@b, are updated simultaneously according to a

user-defined logic that should depend on the problem defined by equation (14). This logic
can assign three possible values for the weights: �!⇢ k

b,j

= 0, �!⇢ k

b,j

= ⇢0 or �!⇢ k

b,j

= 1,
where ⇢0 > 0 is some pre-specified constant. The idea is to use these three values to inform
the equality-nodes of how certain the minimizer-node b is that the current variable x

k

b,j

is
the optimal value for variable x

j

in equation (14). A weight of 1 is used to signal total
certainty, 0 for no certainty at all and ⇢0 for all the other scenarios. Later, equality-nodes
average the information coming from the minimizer-nodes by these weights to update the
consensus variables z.

4. Construct the m-messages for every edge (b, j) as mk

b,j

= x

k+1
b,j

+ u

k

b,j

.

5. Update the z-variable for every equality-node j as

z

k+1
j

=

P

b2@j
�!
⇢

k

b,j

m

k

b,j

P

b2@j
�!
⇢

k

b,j

.
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The set @j contains all the minimizer-nodes that connect to equality-node j. If all weights
{�!⇢ k

b,j

}
b2@j are zero in the previous expression, treat them as 1.

6. Compute the updated weights  �⇢ k+1. Weights leaving the same equality-node j,
i.e.{ �⇢ k+1

b,j

}
b2@j , are computed simultaneously. The update logic is described in Figure

5-right. According to which of the three distinct scenarios �!⇢ k falls,  �⇢ k+1 is uniquely
determined. This logic again assigns three possible values for the weights {0, ⇢0,1}.

7. Update the u-variables for all edges. If edge (b, j) has �!⇢ k

b,j

= ⇢0 and  �⇢ k+1
b,j

= ⇢0 then
u

k+1
b,j

= u

k

b,j

+ (↵/⇢0)(x
k+1
b,j

� z

k+1
j

), where ↵ is a pre-specified constant. Otherwise,
choose u

k+1
b,j

according to the three scenarios described in Figure 5-left, depending on the
weights �!⇢ and �⇢ .

In short, given ⇢0, ↵, the initial values {z0
j

}, {u0
b,j

} and { �⇢ 0
b,j

}, all the minimizers {g
b

}, with
corresponding update logic for �!⇢ , and the bipartite graph, the method is completely specified. If
all weights, �!⇢ and �⇢ , are set to ⇢0 across all iterations, the described method reduces to classical
ADMM , interpreted as a message-passing algorithm. Finally, notice that at each time step k, all
the variables associated with each edge can be updated in parallel. In particular, the update of the
x-variables, usually the most expensive operation, can be parallelized.

C Agent-agent collision minimizer

Here we give the details of how to write the agent-agent collision minimizer, gcoll using the agent-
obstacle minimizer gwall of equation (10).

First recall that f coll
r,r

0(x, x, x
0
, x

0
) = f

wall
0,0,r+r

0(x
0 � x, x

0 � x). Then, rewrite (9) as,

g

coll
(n, n, n

0
, n

0
,

 �
⇢ ,

 �
⇢ ,

 �
⇢

0
,

 �
⇢

0
, r, r

0
) = arg min

{x,x,x0
,x

0}



f

wall
0,0,r+r

0(x
0 � x, x

0 � x)

+

 �
⇢

2

kx� nk2 +
 �
⇢

2

kx� nk2 +
 �
⇢

0

2

kx0 � n

0k2 +
 �
⇢

0

2

kx0 � n

0k2
�

. (15)

Now introduce the following variables v = x

0 � x, u = x

0
+ x, v = x

0 � x and u = x

0
+ x. The

function being minimized in (15) can be written as

f

wall
0,0,r+r

0(v, v) +

 �
⇢

2

�

�

�

u� v

2

� n

�

�

�

2
+

 �
⇢

2

�

�

�

u� v

2

� n

�

�

�

2

+

 �
⇢

0

2

�

�

�

u+ v

2

� n

0
�

�

�

2
+

 �
⇢

0

2

�

�

�

u+ v

2

� n

0
�

�

�

2
. (16)

Now notice that we can write,
 �
⇢

2

�

�

�

u� v

2

� n

�

�

�

2
+

 �
⇢

0

2

�

�

�

u+ v

2

� n

0
�

�

�

2
=

 �
⇢

8

ku� v � 2nk2 +
 �
⇢

0

8

ku+ v � 2n

0k2

=

 �
⇢

8

(kuk2 + kv + 2nk2 � 2hu, v + 2ni) +
 �
⇢

0

8

(kuk2 + kv � 2n

0k2 + 2hu, v � 2n

0i)

=

 �
⇢ +

 �
⇢

0

8

kuk2 + 2

D

u,

 �
⇢

0 � �⇢
8

v �
 �
⇢ n+

 �
⇢

0
n

0

4

E

+

 �
⇢

8

kv + 2nk2 +
 �
⇢

0

8

kv � 2n

0k2

=

 �
⇢ +

 �
⇢

0

8

�

�

�

u�
✓ �

⇢ � �⇢ 0
 �
⇢ +

 �
⇢

0 v +
2(

 �
⇢ n+

 �
⇢

0
n

0
)

 �
⇢ +

 �
⇢

0

◆

�

�

�

2
+

 �
⇢ +

 �
⇢

0

8

�

�

�

v �
2(

 �
⇢

0
n

0 � �⇢ n)

 �
⇢ +

 �
⇢

0

�

�

�

2

+ C(n,

 �
⇢ , n

0
,

 �
⇢

0
),

where C(n,

 �
⇢ , n

0
,

 �
⇢

0
) is a constant that depends on the variables {n, �⇢ , n

0
,

 �
⇢

0}. A similar ma-

nipulation can be done to
 �
⇢

2

�

�

�

u�v
2 � n

�

�

�

2
+

 �
⇢

0

2

�

�

�

u+v

2 � n

0
�

�

�

2
. Therefore, the expression (16) can be
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rewritten as

f

wall
0,0,r+r

0(v, v) +

 �
⇢ +

 �
⇢

0

8

�

�

�

v �
2(

 �
⇢

0
n

0 � �⇢ n)

 �
⇢ +

 �
⇢

0

�

�

�

2
+

 �
⇢ +

 �
⇢

0

8

�

�

�

v � 2(

 �
⇢

0
n

0 � �⇢ n)

 �
⇢ +

 �
⇢

0

�

�

�

2

+

 �
⇢ +

 �
⇢

0

8

�

�

�

u�
✓ �

⇢ � �⇢ 0
 �
⇢ +

 �
⇢

0 v +
2(

 �
⇢ n+

 �
⇢

0
n

0
)

 �
⇢ +

 �
⇢

0

◆

�

�

�

2

+

 �
⇢ +

 �
⇢

0

8

�

�

�

u�
  �

⇢ � �⇢ 0
 �
⇢ +

 �
⇢

0
v +

2(

 �
⇢ n+

 �
⇢

0
n

0
)

 �
⇢ +

 �
⇢

0

!

�

�

�

2
+ C(n, n

0
, n, n

0
,

 �
⇢ ,

 �
⇢

0
,

 �
⇢ ,

 �
⇢

0
), (17)

where C(n, n

0
, n, n

0
,

 �
⇢ ,

 �
⇢

0
,

 �
⇢ ,

 �
⇢

0
) is a constant that depends on the variables n, n0, n, n0, �⇢ , �⇢ 0,

 �
⇢ and �⇢ 0.
Let {v⇤, v⇤, u⇤, u⇤} be a set of values that minimizes equation (17). We have,

{v⇤, v⇤} 2 g

wall

 

2(

 �
⇢

0
n

0 � �⇢ n)

 �
⇢ +

 �
⇢

0 ,

2(

 �
⇢

0
n

0 � �⇢ n)

 �
⇢ +

 �
⇢

0
, r + r

0
, 0, 0,

 �
⇢ +

 �
⇢

0

4

,

 �
⇢ +

 �
⇢

0

4

!

, (18)

{u⇤, u⇤} =

n

 �
⇢ � �⇢ 0
 �
⇢ +

 �
⇢

0 v
⇤
+

2(

 �
⇢ n+

 �
⇢

0
n

0
)

 �
⇢ +

 �
⇢

0 ,

 �
⇢ � �⇢ 0
 �
⇢ +

 �
⇢

0
v

⇤
+

2(

 �
⇢ n+

 �
⇢

0
n

0
)

 �
⇢ +

 �
⇢

0

o

. (19)

We can now produce a set of values that satisfy

{x⇤, x⇤, x0⇤, x0⇤} 2 g

coll
(n, n, n

0
, n

0
,

 �
⇢ ,

 �
⇢ ,

 �
⇢

0
,

 �
⇢

0
, r, r

0
)

using the following relation,

{x⇤, x⇤, x0⇤, x0⇤} =

n

u

⇤ � v

⇤

2

,

u

⇤ � v

⇤

2

,

v

⇤
+ u

⇤

2

,

u

⇤
+ v

⇤

2

o

.

In fact, all values {x⇤, x⇤, x0⇤, x0⇤} 2 g

coll
(n, n, n

0
, n

0
,

 �
⇢ ,

 �
⇢ ,

 �
⇢

0
,

 �
⇢

0
, r, r

0
) can be obtained from

some {v⇤, v⇤, u⇤, u⇤} that minimizes equation (17). In other words, the minimizer g

coll can be
expressed in terms of the minimizer gwall by means of a linear transformation.

Minimizers can receive zero-weight messages �⇢ from their neighboring equality nodes. In (18) and
(19), this can lead to indeterminacies. We address this as follows. If �⇢ and �⇢ 0 are simultaneously
zero then we compute (18) and (19) in the limit when  �⇢ =

 �
⇢

0 ! 0

+. When implementing this
on software, we simply replace them by small equal values. The fact that  �⇢ =

 �
⇢

0 resolves the
indeterminacies in the fractions and taking the limit to zero from above guarantees that the wall
minimizer gwall, that is solved using a mechanical analogy involving springs, is well behaved (See
Section I). If �⇢ and �⇢ 0 are simultaneously zero, we perform a similar operation.

D Agent-obstacle collision minimizer

In Section C we expressed the agent-agent collision minimizer by applying a linear transformation
to the agent-obstacle collision minimizer. Now we show how the agent-obstacle minimizer can be
posed as a classical mechanical problem involving a system of springs. Although the relationship in
Section C holds in general, the transformation presented in this section holds only when the agents
move in the plane, i.e. x

i

(s) 2 R2 8s, i. Similar transformations should hold in higher dimensions.

When the obstacle is a line-segment [x
L

, x

R

], the agent-obstacle minimizer (10) solves the following
non-convex optimization problem,

minimize
{x,x}

 �
⇢

2

kx� nk2 +
 �
⇢

2

kx� nk2
�

(20)

s.t. k(↵x+ (1� ↵)x)� (�x

R

+ (1� �)x

L

)k � r for all ↵,� 2 [0, 1]. (21)

Observe that the term
 �
⇢

2 kx � nk2 equals the energy of a spring with zero rest-length and elastic
coefficient  �⇢ whose end points are at positions x and n. The same interpretation applies for the
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second term in (20). With this interpretation in mind, the non-convex constraint (21) means that
the line from x to x cannot cross the region swept out by a circle of radius r that moves from x

L

to x

R

. We call this region R. Figure 6-left shows a feasible solution and an unfeasible solution
under this interpretation. When the line from n to n does not cross R, the solution of (20)-(21) is

Slab
Spring

Region R

x

x

x

 �
⇢

 �
⇢

n, x

n

Region R

Feasible Unfeasible

xL

r

xR

x

x x

x

Figure 6: Left: Feasible solution (blue) and unfeasible solution (red). Right: Two different feasible
configurations of the springs-slab system. Each represented in different color.

x = n and x = n. In general however, x and x adopt the minimum energy configuration of a system
with two zero rest-length springs, with end points (n, x) and (n, x) and elastic coefficients �⇢ and
 �
⇢ , and with a hard extensible slab, connecting x to x, that cannot go over region R. The slab can
be extended without spending any energy. Figure 6-right shows two feasible configurations of the
system of springs and slab when x = n and x = n cannot be a feasible solution.

It is possible that this minimizer receives two zero-weight messages from its neighboring equality
nodes, i.e.,  �⇢ =

 �
⇢ = 0. This would correspond to not having any spring connecting point n to

x and n to x. The mechanic system would then be indeterminate. When this is the case, we solve
the mechanic system in the limit when �⇢ =

 �
⇢ ! 0

+. In terms of software implementation, this is
achieved by replacing �⇢ and �⇢ by small equal values.

In Section I we explain how to compute the minimum energy configuration of this system quickly.
In other words, we show that the minimizer gwall can be implemented efficiently.

E Energy minimizer

The energy minimizer solves the quadratic optimization problem

min

{x,x}



Ckx� xk2 + (

 �
⇢ /2)kx� nk2 + (

 �
⇢ /2)kx� nk2

�

.

From the first order optimality conditions we get 2C(x � x) +

 �
⇢ (x � n) = 0 and 2C(x � x) +

 �
⇢ (x� n) = 0. Solving for x and x we obtain,

x =

 �
⇢

 �
⇢ n+ 2C(

 �
⇢ n+

 �
⇢ n)

2C(

 �
⇢ +

 �
⇢ ) +

 �
⇢

 �
⇢

, x =

 �
⇢

 �
⇢ n+ 2C(

 �
⇢ n+

 �
⇢ n)

2C(

 �
⇢ +

 �
⇢ ) +

 �
⇢

 �
⇢

. (22)

If the energy minimizer receives �⇢ =

 �
⇢ = 0, we resolve the indeterminacy in computing (22) by

letting �⇢ =

 �
⇢ ! 0

+.

F Maximum velocity minimizer

This minimizer solves the convex problem minimize{x,x}



(

 �
⇢ /2)kx � nk2 + (

 �
⇢ /2)kx � nk2

�

subject to kx�xk  C. If kn�nk  C then x = n and x = n. Otherwise, the constraint is active,
and, using the KKT conditions, we have  �⇢ (x � n) = ��(x � x) and  �⇢ (x � n) = ��(x � x)

where � 6= 0 is such that kx� xk = C. Solving for x and x we get,

x =

 �
⇢ (

 �
⇢ + �)n+ �

 �
⇢ n

 �
⇢

 �
⇢ + �(

 �
⇢ +

 �
⇢ )

, x =

 �
⇢ (

 �
⇢ + �)n+ �

 �
⇢ n

 �
⇢

 �
⇢ + �(

 �
⇢ +

 �
⇢ )

. (23)

14



To find the solution we just need to determine �. Computing the difference between the above
expressions we get,

x� x =

n� n

1 + (

1 �
⇢

+

1 �
⇢

)�

. (24)

Taking the norm of the right hand side and setting it equal to C we get

� = ± (kn� nk/C)� 1

 �
⇢

�1
+

 �
⇢

�1
. (25)

Now examine equation (24). Starting from an n� n such that kn� nk > C, the fastest way to get
to x � x with kx � xk = C is to increase � > 0. Hence, in (25), we should choose the positive
solution, i.e.

� =

(kn� nk/C)� 1

 �
⇢

�1
+

 �
⇢

�1
. (26)

If the maximum velocity minimizer receives �⇢ =

 �
⇢ = 0, we resolve any indeterminacy by letting

 �
⇢ =

 �
⇢ ! 0

+. In software, this is achieved by setting �⇢ equal to �⇢ equal to some small value.

G Minimum velocity minimizer

This minimizer can be computed in a very similar way to the maximum velocity minimizer. If
kn � nk � C, then x = n and x = n. Otherwise, from the KKT conditions, we again obtain
equation (23). The difference x � x is again the expression (24). Now, however, starting from
n � n such that kn � nk > C, the fastest way to get to x � x with kx � xk = C, is to decrease
� < 0. Hence, in (25), we should choose the negative solution, i.e. (26) holds again. If the minimum
velocity minimizer receives �⇢ =

 �
⇢ = 0, we resolve any indeterminacy by letting �⇢ =

 �
⇢ ! 0

+.
In software, this is achieved by setting �⇢ equal to �⇢ equal to some small value.

H Velocity obstacle minimizers

In this section we explain how to write the minimizers associated to each of the terms in equation
(13) using the minimizers gcoll, gwall and g

cost for global planning.

First however, we briefly describe the bipartite graph that connects all these minimizers together.
The bipartite graph for this problem has a gVO coll minimizer-node connecting every pair of equality-
nodes. There is one equality-node per variable in {x

i

}. Recall that each of these variables describes
the position of an agent at the end of a planning epoch. Each equality-node is also connected to a
separate gVO cost minimizer-node. Finally, for obstacles in 2D, every equality node is also connected
to several gVO wall minimizer-nodes, one per obstacle.

We start by describing the minimizer associated to the terms {f coll
ri,rj

(x

i

(0), x

i

, x

j

(0), x

j

)} in equa-
tion (13). This is given by

g

VO coll
(n, n

0
,

 �
⇢ ,

 �
⇢

0
, x

0
, x

00
, r, r

0
) = arg min

{x,x0}



f

coll
r,r

0(x
0
, x, x

00
, x

0
)+

 �
⇢

2

kx�nk2+
 �
⇢

0

2

kx0�n0k2
�

.

The messages n and n

0, and corresponding certainty weights  �⇢ and  �⇢ 0, come from the equality-
nodes associated to the end position of two agents of radius r and r

0 that, during one time epoch,
move from their initial positions x0 and x

00 to x and x

0 without colliding.

The outgoing weights�!⇢ and
�!
⇢

0 associated to the variables x and x

0 are determined in the following
way. If an agent of radius r moving from x

0 to n does not collide with an agent of radius r0 moving
from x

00 to n

0, the minimizer will not propose a new trajectory for them, i.e., the minimizer will
return x = n and x

0
= n

0. Hence, in this case, we set all outgoing weights equal to 0, signaling to
neighboring equality-nodes that the minimizer wants to have no say when try to reach consensus.
Otherwise, we set all outgoing weights equal to ⇢0.
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For this minimizer, by direct substitution one sees that,

g

VO coll
(n, n

0
,

 �
⇢ ,

 �
⇢

0
, x

0
, x

00
, r, r

0
) = g

coll
(x

0
, n, x

00
, n

0
,+1,

 �
⇢ ,+1,

 �
⇢

0
, r, r

0
). (27)

Above we are using a notation where, given a function f , f(+1) ⌘ lim

x!+1 f(x). In software,
this is implemented by replacing +1 by a very large value.

In a very similar way, the minimizer associated to the terms {fwall
xRk,xLk,ri

(x

i

(0), x

i

)} can be written
using the agent-obstacle minimizer for the global planning problem. Concretely,

g

VO wall
(n, x

L

, x

R

, r,

 �
⇢ ) = g

wall
(x

0
, n, r, x

L

, x

R

,+1,

 �
⇢ ). (28)

For this minimizer, the rule to set the outgoing weights is the following. If an agent of radius r can
move from x

0 to n without colliding with the line segment [x
L

x

R

] then set all outgoing weights to
0. Otherwise set them to ⇢0.

Finally, we turn to the the minimizer associated to the terms {f cost
C

0
i
(x

i

, x

ref
i

)}. This minimizer re-
ceives as input a message n, with corresponding certainty weight �⇢ , from the equality-minimizer
associated to the position of an agent at the end of a time epoch and outputs a local estimate, x, of
its position at the end of the epoch. It also receives as parameter a reference position x

ref and a cost
c of x deviating from it. To be concrete, its output is chosen uniformly at random from following
argmin set,

g

VO cost
(n,

 �
⇢ , x

ref
, c) = argmin

x



f

cost
c

(x, x

ref
) +

 �
⇢

2

kx� nk2
�

(29)

= argmin

x



ckx� x

refk2 +
 �
⇢

2

kx� nk2
�

. (30)

The outgoing weights for this minimizer are always set to ⇢0.

Again by direct substitution we see that,

g

VO cost
(n,

 �
⇢ , x

ref
, c) = g

cost �
x

ref
, n,+1,

 �
⇢ , c

�

, (31)

where in g

cost we are using the energy minimizer for the global planning problem.

I Mechanical analog

In this section we explain how to compute the minimum energy configuration of the springs-slab
system described in Section D. Basically, it reduces to computing the minimum of a one-dimensional
real function over a closed interval.

Given n and n, two main scenarios need to be considered.

1. If n, n /2 R and [nn] \ R = ;, i.e. the segment from n to n does not intersect R, then
x = n and x = n.

2. Otherwise, because there might be multiple local minima, i.e. multiple stable static config-
urations, we need to compare the energy of the following two configurations and return the
one with minimum energy.

(a) The slab is tangent to R, for example as in the blue configuration of Figure 6-right.
(b) One of the springs is fully compressed and exactly one end of the slab is touching the

boundary of R, for example as in the red configuration of Figure 6-right.

Let us compute the energy for Scenario 2a. The slab can be tangent to R in many different ways.
However, the arrangement must always satisfy two properties. First, the point of contact, p, between
the slab and R touches either the boundary of the semi-circle centered at x

L

or the boundary of the
semi-circle centered at x

R

. Second, because extending/compressing the slab costs zero energy, the
slab must be orthogonal to the line segment [nx] and to the line segment [nx].
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The first observation allows us to express p using the map P (✓) : [0, 2⇡] 7! R2 between the direction
of the slab and the point of contact at boundary of the semi-circles,

P (✓) =

⇢

x

R

+ rn̂(✓) hx
R

� x

L

, n̂(✓)i � hx
L

� x

R

, x

R

i
x

L

+ rn̂(✓) otherwise
(32)

where n̂(✓) = {cos(✓), sin(✓)}. Specifically, there is a ✓

0 2 [0, 2⇡] such that p = P (✓

0
). The

second observation tells us that x = n + �n̂(✓

0
) and x = n + �n̂(✓

0
) where � and � can be

determined using the orthogonality conditions,

hx� P (✓

0
), n̂(✓

0
)i = 0) � = hP (✓

0
)� n, n̂(✓

0
)i (33)

hx� P (✓

0
), n̂(✓

0
)i = 0) � = hP (✓

0
)� n, n̂(✓

0
)i. (34)

Therefore, the minimum energy configuration over all tangent configurations, which is fully deter-
mined by ✓

0, must satisfy

✓

0 2 arg min

✓2[0,2⇡]
Etangent(✓) where, (35)

Etangent(✓) =

 �
⇢

2

(hP (✓)� n, n̂(✓)i)2 +
 �
⇢

2

(hP (✓)� n, n̂(✓)i)2. (36)

Problem (35) involves minimizing the one-dimensional function (36). Figure 7-left shows the typ-
ical behavior of Etangent(✓). It is non-differentiable in at most 2 points. When the agent-obstacle
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Figure 7: Typical behavior of Etangent(✓) for the agent-obstacle minimizer (left) and for the agent-
agent minimizer (righ).

minimizer is used to solve the agent-agent minimizer, the function becomes smooth and has second
derivative throughout all its domain, see Figure 7-right. In the numerical results of Section 4, our
implementation of the agent-agent minimizer uses Newton’s method to solve (35). To find the global
minimum, we apply Newton’s method starting from four equally-space points in [0, 2⇡]. To produce
the video accompanying this appendix, our implementation of the agent-obstacle minimizer solves
(35) by scanning points in [0, 2⇡] with a step size of 2⇡/1000. In this case, it is obvious there is
room for improvement in speed and accuracy by choosing smarter ways in which to solve (35).

To compute the energy for Scenario 2b, we need to determine which of the springs is fully contracted,
or which side of the slab is touching R. If n 2 R and n /2 R then x = n and x is the point in the
boundary of R closest to n such that [xx] does not intersect R. Since the boundary of R is formed
by parts of the boundary of two circles and of two lines, this closest point can be computed in closed
form. If n 2 R and n /2 R the situation is the opposite. If n, n 2 R, then we know we cannot be in
Scenario 2b. Finally, if n, n /2 R, we compute the energy assuming that x = n and then assuming
that x = n and take the configuration with smallest energy between them.

J Comment on our algorithm

Note that our algorithm does not possess anytime guarantees and, if stopped earlier, the trajectories
might have collisions. However, if stopped early, a suboptimal set of non-colliding trajectories can
be found at very low computational cost by using our algorithm to solve the feasibility problem in (2)
starting from the state of the algorithm at stop time. In addition, although dynamic/static obstacles
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can be seamlessly integrated into our framework, a solution must be recomputed (as is the case with
A⇤ or RRT⇤) if their trajectories/positions change unexpectedly. This being said, in our algorithm,
if a new piece of information is received, the previous solution can be used as the initial guess,
potentially decreasing convergence time. Note that in some scenarios, a low-cost local-planning
approach, such as the one presented in Section 5, can be beneficial.

K Comment on the scaling of convergence time with p

Based on [13], we think that in non-adversarial configurations, in contrast to CONF1 where dead-
locks are likely, the scaling of convergence time with p is not exponential. Our reasoning is based
on a connection between trajectory planning and disk packing. For example, minimum-energy tra-
jectory planning using piece-wise linear trajectories is related to, although not the same as, packing
disks in multiple 2D layers, where the two matched disks between consecutive layers generate a
larger cost when far away from each other. The numerical results in [13] report that, for disk pack-
ing, the runtime of ADMM and TWA is no more than polynomial in the number of disks and we
believe the runtime for trajectory planning for non-adversarial configurations has a similar com-
plexity. We interpret the seemingly exponential curve of convergence time versus p for n = 8 in
Figure2-left as an atypical, adversarial scenario. By comparison, in Figure 3-left, which assumes
randomly chosen initial and final points and also minimization of energy, the dashed-blue curve of
runtime versus p for n = 8 does not appear to exhibit exponential growth.
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