Auton Robot
DOI 10.1007/s10514-017-9665-6

@ CrossMark

Reactive mission and motion planning with deadlock resolution

avoiding dynamic obstacles

Javier Alonso-Moral 4

Daniela Rus? - Hadas Kress-Gazit?

Received: 10 December 2016 / Accepted: 21 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract In the near future mobile robots, such as personal
robots or mobile manipulators, will share the workspace
with other robots and humans. We present a method for
mission and motion planning that applies to small teams
of robots performing a task in an environment with mov-
ing obstacles, such as humans. Given a mission specification
written in linear temporal logic, such as patrolling a set of

Javier Alonso-Mora and Jonathan A. DeCastro have contributed equally
to this work.

This is one of several papers published in Autonomous Robots com-
prising the Special Issue on Online Decision Making in Multi-Robot
Coordination.

This work was supported in part by NSF Expeditions in Computer
Augmented Program Engineering (ExCAPE), pDOT ONR
N00014-12-1-1000, SMARTS N00014-09-1051, the Boeing
Company and TerraSwarm, one of six centers of STARnet, a
Semiconductor Research Corporation Program sponsored by MARCO
and DARPA. We thank their support.

Electronic supplementary material The online version of this
article (doi:10.1007/s10514-017-9665-6) contains supplementary
material, which is available to authorized users.

B Javier Alonso-Mora
j-alonsomora@tudelft.nl

Jonathan A. DeCastro
jad455@cornell.edu

Vasumathi Raman
vasumathi.raman @ gmail.com

Daniela Rus
rus @csail.mit.edu

Hadas Kress-Gazit
hadaskg @cornell.edu

1 Delft University of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands

Published online: 12 August 2017

. Jonathan A. DeCastro? - Vasumathi Raman

3 .

rooms, we synthesize an automaton from which the robots
can extract valid strategies. This centralized automaton is
executed by the robots in the team at runtime, and in con-
junction with a distributed motion planner that guarantees
avoidance of moving obstacles. Our contribution is a correct-
by-construction synthesis approach to multi-robot mission
planning that guarantees collision avoidance with respect
to moving obstacles, guarantees satisfaction of the mission
specification and resolves encountered deadlocks, where a
moving obstacle blocks the robot temporally. Our method
provides conditions under which deadlock will be avoided by
identifying environment behaviors that, when encountered
at runtime, may prevent the robot team from achieving its
goals. In particular, (1) it identifies deadlock conditions; (2)
it is able to check whether they can be resolved; and (3) the
robots implement the deadlock resolution policy locally in
a distributed manner. The approach is capable of synthesiz-
ing and executing plans even with a high density of dynamic
obstacles. In contrast to many existing approaches to mis-
sion and motion planning, it is scalable with the number of
moving obstacles. We demonstrate the approach in physical
experiments with walking humanoids moving in 2D envi-
ronments and in simulation with aerial vehicles (quadrotors)
navigating in 2D and 3D environments.

Keywords Multi-robot systems - Formal methods - Mission
specification - Motion planning - Deadlock resolution -
Dynamic environments

2 Cornell University, Ithaca, NY, USA
3 Zoox, Inc., Menlo Park, CA, USA
4 Massachusetts Institute of Technology, Cambridge, MA, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-017-9665-6&domain=pdf
http://orcid.org/0000-0003-0058-570X
http://dx.doi.org/10.1007/s10514-017-9665-6

Auton Robot

1 Introduction

Mobile robots, such as package delivery robots, personal
assistants, surveillance robots, cleaning robots, mobile mani-
pulators or autonomous cars, execute possibly complex
tasks and must share their workspace with other robots and
humans. For example, consider the case shown in Fig. 1 in
which two mobile robots are tasked with patrolling and clean-
ing the rooms of a museum. What makes this task challenging
is that the environment in which the robots operate could be
filled with static obstacles, as well as dynamic obstacles, such
as people or doors, that could lead to collisions or block the
robot. To guarantee the task of continuously monitoring all
the rooms, each robot must react to the environment at run-
time in a way that does not prevent making progress toward
fulfilling the overall mission. In particular, we describe an
approach for navigation in dynamic environments that is able
to satisfy a mission by resolving deadlocks, i.e. situations
where a robot is temporally blocked by a dynamic obstacle
and can not make progress towards achieving its mission, at
runtime.

Planning for multi-agent systems has been explored exten-
sively in the past. Many have focused on approaches for
local motion planning (van den Berg et al. 2009; Alonso-
Mora et al. 2010) that offer collision avoidance in cluttered,
dynamic environments. While these approaches are effec-
tive for point-to-point navigation, the planning is myopic

Deadlock
resolution

Local
collision
avoidance

Fig. 1 Surveillance/cleaning scenario. Two robots are tasked with
actively monitoring the rooms of a museum. The robots must avoid
collisions with static and moving obstacles and resolve deadlocks in
order to achieve their goals

@ Springer

and could fail when applied to complex tasks in complex
workspaces. On the other hand, it has been demonstrated
that correct-by-construction synthesis from linear temporal
logic (LTL) specifications has utility for composing basic
(atomic) actions to guarantee the task in response to sensor
events (Kress-Gazit et al. 2009; Ehlers et al. 2015; Liu et al.
2013; Wongpiromsarn etal. 2012). Such approaches are natu-
rally conducive to mission specifications written in structured
English (Kress-Gazit et al. 2008), which are translatable into
LTL formulas over variables representing the atomic actions
and sensor events associated with the task.

In the surveillance-cleaning scenario of Fig. 1, the motion
(moving between rooms), atomic actions (e.g., “remove
garbage”, “identify a subject”), and binary sensors (e.g.
“intruder sensing”, “garbage sensing”) are assumed to be
perfect: they are treated as black boxes that always return the
correct result and hence admit a discrete abstraction that is
appropriate for the task and workspace. A major challenge
underpinning this approach is in creating atomic elements
holding guarantees for correct execution of the discrete
abstraction. To guarantee motion fulfillment, researchers
have explored combining LTL-based planners with grid plan-
ners (Bhatia et al. 2010), sampling-based planners (Karaman
and Frazzoli 2009), or planners for multiple robots predicated
on motion primitives (Saha et al. 2016). Such approaches are
able to guarantee motion in cluttered environments but do not
readily extend these guarantees to cases where the environ-
ment is dynamic in nature. Solutions have been sought that, in
acomputationally expensive manner, partition the workspace
finely (Livingston et al. 2013; Wongpiromsarn et al. 2012) or
re-compute the motion plan (Bhatia et al. 2010), or else apply
conservative constraints forbidding the robot to occupy the
same region as an adversarial agent (Kress-Gazit et al. 2008).

1.1 Approach

In the approach introduced in this paper, we alleviate such dif-
ficulties by considering an integration of a high-level mission
planner with a local planner that guarantees collision-free
motion in three dimensional workspaces when faced with
both static and dynamic obstacles, under the assumption
that the dynamic obstacles are not intentionally adversar-
ial. In this context, “intentionally adversarial” means that the
dynamic obstacles may behave in a way that may temporar-
ily prevent the robot from achieving a goal, but cannot move
in a way that actively always prevents the robot from achiev-
ing its goals, for instance by blocking the robot forever. Our
integration involves two components: an offline algorithm
for plan synthesis adopting the benefit of an LTL formalism,
and an online local planning algorithm for executing the plan.
Our approach is centralized for the robots in the team, which
execute the high-level specification, and decentralized with
respect to moving obstacles, i.e. we do not control the moving

Auton Robot

obstacles yet perform decentralized avoidance and deadlock
resolution strategies. While the robots are able to measure the
position and velocity of moving obstacles, they only need to
do so within a local range of the robot—the key assumption
in this paper is that the robots are not required to have global
knowledge of their environment.

The basis of the offline synthesis is a novel discrete
abstraction of the problem that applies simple rules to resolve
physical deadlocks, between two or more robots in a team
or between a robot and a dynamic obstacle. This abstrac-
tion is composed with a specification of a multi-agent task
to synthesize a strategy automaton encoding the mission
plan. In contrast to approaches that would require on-the-fly
re-planning upon encountering a physical deadlock (Bhatia
et al. 2010; Maly et al. 2013; Karaman and Frazzoli 2009),
the approach we propose automatically generates alternative
plans within the synthesized automaton. As with any reac-
tive task, there may exist no mission plan that guarantees
the task, due to the conservative requirement that a mission
plan must execute under all possible environment behaviors.
To address this conservatism, our approach automatically
identifies for which environment behaviors the mission is
guaranteed to hold. These additional assumptions are trans-
formed succinctly into a certificate of task infeasibility that
is explained to the user.

The online execution component is based on a local plan-
ner that can optimally avoid dynamic obstacles in two- or
three-dimensions, executed as a service called during exe-
cution of the strategy automaton. Given a dynamic model of
the robots and a coarse description of the moving agents (e.g.
their maximum velocities) our local planner computes a plan
that guarantees collision-free motion between the robot and
static and dynamic obstacles. The collision-avoidance feature
obviates the need for collision avoidance to be taken care of
by the discrete abstraction. It furthermore allows our local
planner to preserve the behaviors of the strategy automa-
ton, by preventing a robot from entering unintended regions
as it carries out its task. To the authors’ knowledge, this is
the first end-to-end system that has been devised to guaran-
tee multi-agent mission-level tasks in dynamic environments
using optimization-based local planners.

The proposed deadlock resolution approach is motivated
by works in event-driven planning (e.g. Dimarogonas et al.
2012), but yields a strategy that scales well with the num-
ber of dynamic obstacles without incurring conservatism that
would prevent mission plans from being synthesized. In par-
ticular,

— Our approach establishes proof for task success with-
out requiring a costly re-planning step or fine workspace
discretization, as long as the environment that causes
deadlocks behaves according to the generated assump-
tions.

— Our approach comes with proof that admissible dead-
locks are always resolved and livelocks (the situation
where a robot is free to move but unable to reach a goal)
never occur.

— The fully automated nature of our approach has practical
utility, since the user does not need to intervene to debug
specifications. In fact, our approach explains, in an intel-
ligible way, any additional environment assumptions it
has added.

— Another practical feature of our approach is that, unlike
related planners (Livingston et al. 2013; Kress-Gazit et al.
2008), we do not require global knowledge of the obsta-
cles. As we show, this allows our approach to scale to
an arbitrary number of dynamic obstacles, as long as the
aggregate behavior of the obstacles adhere to all specified
assumptions.

Our approach is well-suited for any dynamic environment,
but we emphasize its particular value to human environ-
ments. Specifically, our automatically-generated environ-
ment assumptions are transformed into human-readable
certificates such as:

The synthesized controller is certified for this task,
if any encountered deadlock between the robot and a
dynamic obstacle in the hallway resolves eventually.

The certificates provide, at synthesis time, a set of rules
defining situations which could make it impossible for the
robot to achieve its goals, with the purpose of creating a
layer of cooperation between the user (i.e. the human that
performs the controller synthesis and deploys the system)
and the robots. This frees a user from having to come up
with assumptions that characterize the environment’s behav-
ior, adifficult proposition in practice. If these assumptions are
broken at runtime, then this signifies that the task is no longer
strictly guaranteed. Our approach also aims to reduce situa-
tions where members of the robot team become deadlocked
with one another, by adopting a coordination strategy in the
specification preventing actions that may induce deadlocks.

A more detailed overview of the approach is given in
Sect. 4, right after formalizing the problem in Sect. 3.

1.2 Contribution

This paper presents two main contributions toward reactive
mission and motion planing with deadlock resolution among
dynamic obstacles.

— A holistic synthesis approach to provably achieve collisi-
on-free behaviors in dynamic environments with an
arbitrary number of moving obstacles that does not
require mutual exclusion. The approach leverages (a)
reactive mission planning to globally resolve deadlocks

@ Springer

Auton Robot

and achieve the specified task, and (b) online local motion
planning to guarantee collision free motion and respect
the robot kinodynamics.

— An automatic means for encoding tasks that resolve
deadlock based on automatically-generated revisions to
a specification. Our approach automatically generates
human-comprehensible assumptions in LTL that, if satis-
fied by the controlled robots and the dynamic obstacles,
would ensure correct behavior. We show that our revision
approach is sufficient in making the original specification
realizable.

We also contribute an optimization-based method for local
motion planning that guarantees real-time collision avoid-
ance with static and dynamic obstacles in 3D environments
while remaining faithful to the robot’s dynamics. The method
extends (Alonso-Mora et al. 2015) by efficiently comput-
ing the robot’s local free-space in cluttered environments.
Yet, the reader may opt for a different local planner and
maintain the synthesis approach, as long as the local plan-
ner provides avoidance guarantees. The method is evaluated
in experiments with ground robots and in simulations with
aerial vehicles.

In a preliminary version of this work (DeCastro et al.
2015), a strategy was developed for synthesizing con-
trollers for guaranteed collision-free motion of a robot
team. In this paper, we extend those results by present-
ing a complete description of the proposed abstraction
method and offline controller synthesis procedure, solid-
ify details on the mathematical derivation for the con-
straints of the local motion planner, and provide in-depth
evaluation of our proposed synthesis techniques aided by
both simulation and physical experiments. Additionally, we
enhance the approach in two ways. First, our approach rea-
sons about the geometry of workspace regions in order
to avoid preventable deadlock. For instance, if a corridor
is only wide enough for one robot, we offer an approach
that coordinates the actions of two robots so that they
do not head in opposite directions in the corridor. Sec-
ond, we present a general approach that allows a richer
set of deadlock resolution rules to be chosen at synthesis
time.

1.3 Related work
1.3.1 Reactive synthesis for mission planning

A number of approaches are suited to automatic synthesis
of correct-by-construction controllers from mission speci-
fications written as temporal logic formulas (Bhatia et al.
2010; Karaman and Frazzoli 2009; Loizou and Kyriakopou-
los 2004). Reactive synthesis (Kress-Gazit et al. 2009;
Wongpiromsarn et al. 2012) extends these capabilities to

@ Springer

tasks in which the desired outcome depends on uncon-
trolled events in the environment and changing sensor inputs,
and is especially compelling given the complex nature of
multi-agent scenarios. For instance, Ulusoy et al. (2013)
synthesized control and communication for producing opti-
mal multi-robot trajectories, Chen et al. (2012) distributed
a specification among a robot team, and Raman and Kress-
Gazit (2014), Raman (2014) synthesized centralized reactive
controllers based on analytically constructed multi-robot
motion controllers. Distributed and decomposition-based
planning approaches tackle the complexity problem when
scaling to a large number of robots. For instance, Tumova
and Dimarogonas (2015) construct distributed controllers
from a specifications already separated into coordinating
and non-coordinating tasks, while Schillinger et al. (2016)
automatically decompose a specification into independent,
distributed task specifications. In most approaches, mov-
ing obstacles are modeled in a discrete manner as part of
the abstraction, leading to over-conservative restrictions like
requiring robots to be at least one region apart. In contrast,
our method only requires local awareness of the robot’s sur-
roundings, and guarantees collision-avoidance via a local
planner.

Reactive synthesis in dynamically-changing environments
presents a crucial dilemma: explicitly modeling the state
of all other agents can be computationally prohibitive, but
incomplete models of the environment destroy task satis-
faction guarantees. To address the state-explosion problem
while tracking the state of uncontrollable agents, Wong-
piromsarn et al. (2013) formulated an incremental synthesis
procedure that started with a set number of agents assumed
observable, and added more agents to this set depending
on available computational resources; however, unlike our
approach, they still required global knowledge of the external
agents. The authors in Livingston et al. (2013), on the other
hand, made local modifications to the synthesized strategy
when new elements of the environment were discovered that
violated the original assumptions. While we also update our
specification, we differ from Livingston et al. (2013) in that
no re-synthesis step is needed at runtime, thereby preserving
guarantees before runtime.

Our goal is different in that we assume a centralized high-
level controller that guarantees the specification through
deadlock resolution by choosing environment assumptions
to avoid both deadlock and livelock.

1.3.2 Specification revisions

Recent efforts in reactive synthesis have focused on automat-
ically identifying certain environment assumptions that may
prevent the existence of a controller that satisfies the task.
Approaches to assumption-mining have provided techniques
that enable automatic specification debugging for specifi-

Auton Robot

cations of any structure (Alur et al. 2013; Li et al. 2011).
While providing the ability to automate the debugging pro-
cess, they still requires input from the user, for instance
the variables the user desires and a final selection of can-
didate assumptions generated by the algorithm, which has
drawbacks for realizing a fully-automated robotic mission
planner. An assumption-mining approach to certify the nec-
essary environment assumptions for a given task and robot
dynamics was introduced in DeCastro et al. (2016), however,
the dynamics-based abstraction do not extend naturally to
multi-agent scenarios. This proposed approach obviates the
need for the user to intervene during the planning process.

We propose a novel approach in which assumptions on
the environment are generated to identify likely deadlock
situations. These added assumptions may be interpreted as
restricting the mobility of the uncontrolled agents and are
relaxed, when possible, by identifying when they may be
violated, if only on a temporary basis. In this regard, our
approach is inspired by works on error resilience (Ehlers and
Topcu 2014) and recovery (Wong et al. 2014) in reactive
synthesis.

1.3.3 Motion planning in dynamic environments

Collision-free (and deadlock-free) motion planning for multi-
robot teams has been successfully demonstrated via non-
convex optimization, as proposed in Bento et al. (2013) and
Mellinger et al. (2012), but these approaches did not account
for dynamic obstacles, nor could be computed in real-time.
On the other hand, convex optimization approaches for
collision avoidance, such as van den Berg et al. (2009)
and Alonso-Mora et al. (2010), are online and account for
dynamic obstacles, but cannot reason globally to resolve
deadlocks. In this work, we extend these works to enforce
collision avoidance and motion constraints over a short time
horizon, where the global execution is given by a discrete
controller synthesized from a mission specification.

Also relevant to our efforts are the works in dead-
lock resolution. The authors of Knepper and Rus (2012)
applied pedestrian-avoidance principles to deadlock resolu-
tion in narrow passageways. While our approach is similarly
reactive to the environment, we additionally reason about
situations that cannot be locally resolved (e.g. a blocked cor-
ridor). Along similar lines, Cirillo et al. (2014) described
a centralized graph search technique for motion planning,
but did not consider dynamic obstacles, and required a rich
underlying graph to represent multi-robot motions with kine-
matic constraints. In contrast, our proposed local planning
approach presents a more concise discrete abstraction and
also applies to 3D environments. Traditional motion plan-
ning approaches such as RRT (LaValle and Kuffner 2001),
PRM (Hsu et al. 2007) and lattice based planners (Pivtoraiko
et al. 2009) can also be applied to compute collision—and

deadlock—free motions for a single robot. But, in contrast
to our synthesis approach, they do not typically reason about
the mission strategy of multiple robots, nor encode logical
constraints representing mission specifications.

1.4 Organization

The remainder of this paper is structured as follows. The
required concepts for offline synthesis and online motion
planning are described in Sect. 2. We formalize the prob-
lem in Sect. 3 and give an overview of the method in Sect. 4.
In Sect. 5, we introduce a strategy for mission planning for
resolving deadlock at runtime, while, in Sect. 6, we introduce
an automated approach for generating runtime certificates
and a coordination scheme for mission planning. In Sect. 7,
we describe the online motion planner. We provide theoreti-
cal guarantees of the integrated approach in Sect. 8. In Sect. 9,
we present extensive simulation and experimental results.
Conclusions and future work are provided in Sect. 10.

2 Preliminaries

Throughout this paper scalars are denoted in italics, x, and
vectors in bold, x € R”, with n denoting the dimension of the
workspace. The robot’s current position is denoted by p € R”
and its current velocity by v = p. A map of the workspace
W C R" is considered, and formed by a set of static obsta-
cles, given by a list of polytopes, O C R”". For mission
synthesis the map is abstracted by a set of discrete regions
R ={Ri, ..., Ry}, and their topological connections, cov-
ering the obstacle-free workspace F = R"\O, where the
open sets R, € W.

We consider robots moving in R* and approximate them
by their smallest enclosing cylinder of radius r and height
2h, denoted by V. Its e-additive dilation of radius 7 =r + ¢
and height 1 = h + ¢ is denoted by V. For aset X C R" we
denote the collision setby X+V = {p € R" | XNV(p) # ¥},
with V(p) a volume V at position p. Throughout, the notation
|| - |l is used to denote the Euclidean norm.

We consider a set of dynamic obstacles DO and denote
the volume occupied by a dynamic obstacle i € DO, at
position p;, by V;(p;). To be able to prove safety in dynamic
environments, we assume that all moving obstacles either
maintain a constant velocity during the planning horizon (a
couple of seconds), or that they employ an identical algorithm
for collision avoidance as our robots, as introduced in the
Reciprocal Velocity Obstacles literature (Alonso-Mora et al.
2015). In this work we do not treat the case where moving
obstacles seek collisions and are capable of overtaking the
robots. Instead, we assume a fair environment—one where it
is always possible for the robots to avoid collisions—such as

@ Springer

Auton Robot

the case when operating with humans or other risk-adverse
agents.

2.1 Linear temporal logic

LTL formulas are defined over the set AP of atomic (Boolean)
propositions by the recursive grammar ¢ ::=mw € AP |
o1 A2 | = | Q@ | 1 U ¢2. From the Boolean operators
A “conjunction” and — “negation”, and the temporal oper-
ators O “next” and U “until”, the following operators are
derived: “disjunction” Vv, “implication” =, “equivalence”
&, “always” [, and “eventually” . We refer the reader
to Vardi (1996) for a description of the semantics of LTL.
Let AP represent the set of atomic propositions, consisting of
environment propositions (X') corresponding to thresholded
sensor values, and system propositions ())) corresponding
to the robot’s actions and location with respect to a parti-
tioning of the workspace. The value of eachw € X' U YV is
the abstracted binary state of a low-level component. These
might correspond to, for instance, thresholded sensor values,
discrete actions that a robot can take, or a discrete region (e.g.
room in a house).

Definition 1 (Reactive mission specification) A reactive
mission specification is a LTL formula of the form ¢ =
of N @f A P, = o} A QA @g> With s and e standing
for ‘system’ and ‘environment’, such that

— ¢f, ¢; are formulas for the initial conditions free of tem-
poral operators.

— ¢f, @] are the safety conditions (transitions) to be sat-
isfied always, and are of the form [, where ¥ is
a Boolean formula constructed from subformulas in
APUQAP.

— ¢g. @, are the liveness conditions (goals) to be satisfied
infinitely often, with each taking the form [O, with
¥ a Boolean formula constructed from subformulas in
APUQAP.

A strategy automaton that realizes a reactive mission spec-
ification ¢ is a deterministic strategy that, given a finite
sequence of truth assignments to the variables in X and),
and the next truth assignment to variables in X, provides a
truth assignment to variables in) such that the resulting infi-
nite sequence satisfies ¢. If such a strategy can be found, ¢ is
realizable. Otherwise, it is unrealizable. Using a fragment of
LTL known as generalized reactivity(l), a strategy automata
for ¢ of the form above can be efficiently synthesized (Bloem
et al. 2012), and converted into hybrid controllers for robotic
systems by invoking atomic controllers (Kress-Gazit et al.
2009). These controllers are reactive: they respond to sensor
events at runtime.

@ Springer

2.2 LTL encoding for multi-robot tasks

We adopt a LTL encoding of a centralized multi-robot
mission that is robust to the inherent variability in the
duration of inter-region robot motion in continuous environ-
ments (Raman et al. 2013). Let APr = {n‘i | Ry € R} be
the set of Boolean propositions representing the workspace
regions, such that 7/, € APg is True when robot i is phys-
ically in R, for o € [1,..., p]. We call né inAPp C X
a completion proposition, signaling when robot i is phys-
ically inside R,. We also define the set AP%’ C Y that
captures robot commands that initiate movement between
regions. We call rrécm in APJ' an activation variable for
moving to R, (but has not necessarily completed motion to
Ry). Non-motion actions are handled similarly. Observe that
nl and tl;ct, - may be true at the same time if robot i is in Ry
and is moving toward R,/, where R, and R, are adjacent
regions. Also note that this is sufficient for the special case
m}, and 7}, , (the robot stays put). We assume reasonably
that non-motion actions are independent of motion, so that
actions themselves do not involve moving within any partic-
ular region and, if it is possible to execute a particular action
within a region, it can be performed anywhere within that
region.

We now solidify the semantics of the LTL formulas in the
context of robot mission and motion planning. Let 7 denote
a particular fixed time step at which the strategy automaton
is updated with sensory information and supplies a new input
to the local planner (as described in Sect. 4.3). A proposition
m e APisTrueattimet > 0iff O € O AP is True at
t+T.

Definition 2 [LTL encoding of motion (Raman et al. 2013)]
A task encoding that admits arbitrary controller execution
durations is

o\

nleAPR,
i€[1,n0po1s]

TSI AN

nleAPR,
Rﬁ EAdj(Rm)y
i€[1.nrobots]

e. i i i
Pg- oo /\ ((nact,a A O(T[oz Vv ﬂnact,o))
et EAP%’,
i€[l,ny0pors]

V(e A OV T)

OlOoxi= \/ Oyl

RpeAdj(Ry)

D(né /\ﬂéct’ﬂ = Oné \/QJT;;),

where Adj: R — 2™ is an adjacency relation on regions
in R and n,pess 1s the number of robots. The ¢;-formula
is a system safety condition describing which actions can

occur (O njct ﬁ) given the observed completion variables

Auton Robot

(O nl). Formula ¢¢ captures the allowed transitions (O n/"g)
given past completion (n‘i) and activation (7t ; t, ﬂ) variables.
Formula ¢g enforces that every motion and every action
eventually completes (first disjunct) as long as the activa-
tion variable is held fixed (second disjunct). Specifically, the
second disjunct in this formula allows the system to change
its mind for a given action, absolving the environment from
having to complete motion for that action. Both ¢ and ¢
are included as conjuncts to the antecedent of ¢.

Take, for example, two regions R1 and R2, arranged as
shown in Fig. 2, with a robot positioned in R1 and heading
toward R2. The system can only take a subset of actions; in
this case, it is free to stay in R1 or move to R2:

U (O Rt = O Tact,R1 V OjTact,RZ) .

Upon taking an action, for instance move to R2 (activate
Tact,R2), the system is allowed to be in either of the two
regions

O (7r1 A Tact, k2 => O 7r1 V O 7R2)

and the environment must eventually allow the system to
either arrive at this region or change course

O ((ace,r2 A O (TR2 V —Taer, r2))
Vv (ﬂﬂact,Rz NG (_'JTRz Vv JTacz,Rz))) .

To complete the motion encoding, mutual exclusion is also
enforced to express the fact that the robot can only be in one
region at a time and must decide on one motion at a time.
That is, (g1 V wg2) and O(wacr, R1 V Tacr, R2)-

We note that it is shown in Ehlers (2013) that complexity
of synthesis under the generalized reactivity(1) fragment is
polynomial in the size of the state space of the game struc-
ture that is, in turn, at most exponential in the total number of
propositions. Considering motion alone, the formulas effec-
tively impose restrictions to the allowed state transitions to

Fig. 2 Example of two connected regions

only consider those that are physically adjacent, effectively
reducing the size of the synthesis problem.

3 Problem formulation

This work combines global planning with local motion plan-
ning to produce a correct-by-construction synthesis method
that avoids collisions locally yet is able to resolve deadlocks.
Synthesis is carried out in a fully-automated way; when mod-
ifications to the original specification are necessary, these are
explained to the user in an intelligible manner. We provide
an example to motivate our correct-by-construction synthesis
method.

Example 1 Consider the workspace in Fig. 3b, where two
robots are tasked with visiting regions Goall and Goal2
infinitely often; that is,

(pf = /\ D<>(7Téoall) A D<>(7Téoa12)'

ie{l,2}

Figure 3 illustrates two approaches for solving this task.
Figure 3a, b show the result of applying a local motion plan-
ning scheme to locally avoid collisions with other robots
or dynamic obstacles. In certain instances, such as the case
shown in Fig. 3b, deadlocks can lead to the execution failing
to satisfy the task.

Our approach, shown in Fig. 3c, relies on a local motion
planner to allow several agents per region and avoid dynamic
obstacles, as in Fig. 3a. Furthermore, it is able to resolve
encountered deadlocks that may arise. In this example, when
one of the robots encounters deadlock, it reverses its motion
to allow the other one to pass into Goal 1, ultimately taking
another route to Goal 2.

Definition 3 (Collision) A robot at position p is in collision
with a static obstacle if V(p)NO # @. The robot is in collision
with a dynamic obstacle i at position p; and of volume V; (p;)
if V(p) N Vi(p;) # 9.

Denote by p(#) the position of arobot at time ¢ and by p; (¢)
the position of adynamic obstacle i attime . The trajectory of
the dynamic obstacles is estimated between the current time
tr and a time horizon 7. In our model we consider constant
velocity.

Definition 4 (Collision free local motion) A trajectory is
said to be collision free if for all times between f; and the
time horizon there is no collision between the robot and any
static or dynamic obstacle,

V(p()N ((9 e, Vi(Pi(t))) =0 Vielg n+rl (1)
ieDO

@ Springer

Auton Robot

(a)

Fig. 3 Examples of integrated mission and motion planning. The blue
robot starts in the region Goal 1 (fop) and is tasked to visit Goal 2 (bot-
tom right) and return to Goal 1. The red robot is placed in the region
Goal 2 and is tasked to visit Goal 1 and return. The shortest path for
both robots, given by solving a specification ¢ is to go through the
corridor on the right. In (a), an execution of a specification ¢ using a
local planner that locally avoids the collision between both robots and

Which is equivalent to

V(p(t)) C F and
Vip®)) NVi(p;(t)) =0 Vt € ltx,tx + 1], Vi € DO. (2)

Definition 5 (Deadlock) In this work we consider motion
related deadlocks. A robot at position p is said to be in a
deadlock ifitis notin a collision, it has not achieved the target
given by the automaton and it can not make progress towards
the goal, i.e. it is not moving, for a prespecified amount of
time.

The goal of this work is to solve a set of problems as
follows.

Problem 1 (Local collision avoidance) Given the dynamics
for each robot in the team, construct an online local planner
that guarantees collision avoidance with static and dynamic
(moving) obstacles.

Problem 2 (Synthesis of strategy automaton with deadlock
resolution) Given a topological map, a local motion planner
that solves Problem 1 and a realizable mission specification
@ that ignores collisions, automatically construct a specifica-
tion ¢’ that includes both ¢ and a model of deadlock between
robots and unmodeled dynamic obstacles. Use ¢’ to synthe-
size a controller that satisfies ¢’.

This synthesized controller will re-route the robots to
resolve deadlocks (should they occur), while satisfying the
reactive mission specification and remaining livelock free.
For mission specifications that consider the presence of pos-
sible deadlocks, there may be no satisfying controller. We

@ Springer

(b) (c)

succeeds in executing the mission, b employs the same specification
as (a), but the workspace is shrunk, resulting in a deadlock at location
*, ¢ shows an execution of a controller synthesized from the modified
specification ¢” using the deadlock resolution strategy and local plan-
ner developed in this work. With our approach, dynamic obstacles can
be avoided locally, as in (a), and deadlocks can also be resolved (Color
figure online)

therefore synthesize environment assumption revisions as
additional LTL formulas to identify cases where dynamic
obstacles may trigger deadlock and trap the system from
achieving its goals. These formulas are significant because
they offer certificates explaining the required behaviors of the
environment that, if followed, guarantee that the robot team
will carry out the task. Such certificates must be conveyed
to the user in a clear, understandable manner. An example of
such a condition is: “the environment will never cause dead-
lock if robot 1 is in the kitchen and moving to the door”. This
leads to the following Problem.

Problem 3 (Revising environment assumptions) Given an
unrealizable reactive mission specification ¢’, synthesize
environment assumption revisions [¢f] such that the spec-
ification ¢” formed by replacing ¢f with [¢f]®" is realizable,
and provide the user with a human-readable description of
these revisions as certificates for guaranteeing the task.

4 Approach

This work solves Problems 1, 2 and 3 via a combined
offline and online approach, which (a) synthesizes a strategy
automaton that realizes the mission and (b) computes a local
motion planner that executes the automaton in a collision-free
manner. Figure 4 highlights the offline and online compo-
nents and their interconnections, which we now introduce.

4.1 Offline

The inputs for the offline part of the method are: (a) a user
given mission specification, (b) a discrete topological map

Auton Robot

Off-line On-line
Structured Synthesis of revisions Finite state machine
English ~<) A A
specification ,l LTL parser |—>| Deadlock resolution | / Tocal : H ol Map
Topological map + { motion ¢ 11+ # motion NEigth;ring
R K : H I’ agents
User feedback Revision & recovery H Reactive synthesis | planner | : planner (p, v, size)

Robot dy”amics'_>| Motion constraints (per agent) |—

/

Position and deadlock state sensor

Fig. 4 Structure of the proposed mission and motion planner, with
offline and online parts. The mission planning is offline and is described
in Sect. 5 and in Sect. 6. The motion planner, Sect. 7, is computed at

of the workspace (which ignores dynamic obstacles) and (c)
the dynamic model and controller of the robots in the team.
The offline part of the method consists of two independent
parts.

4.1.1 Mission planning

In this step we synthesize a centralized controller, or finite
state machine, that will guide the robots in the team through
the topological map. This controller considers possible phys-
ical deadlocks between robots in the team as well as with
moving obstacles. Since the position of the moving obsta-
cles is not known at synthesis time, environment assumptions
are iteratively revised as necessary. The resulting strategy
automaton with the revisions included accommodate dead-
locks wherever they may occur at runtime, and fulfillment
of the specification is guaranteed as long as the environment
behaves according to the assumptions explained to the user
in the revisions generation step. We also adopt a recovery
scheme (Wong et al. 2014) that synthesizes a strategy that
allows violations of environment safety assumptions to be
tolerated, retaining satisfaction guarantees as long as the vio-
lation is transient.

The mission planning part of the offline synthesis approach
is described in detail in Sects. 5 and 6.

4.1.2 Motion planning

The automaton is agnostic to the robot’s dynamics, which
are instead accounted for by the local planner. For a given
robot model and controller a set of motion constraints, or
tracking errors, are precomputed at synthesis time. This part
is described in Sect. 7.2.

During execution, the local planner is fed, at runtime, a
set of constraints that are then solved for in an efficient man-
ner. These constraints include region boundaries, static and
dynamic obstacles and kinodynamic model of the robot.

runtime and utilizes the strategy automaton (finite-state machine) syn-
thesized offline by the mission planner

4.2 Online

At each time step of the execution, the synthesized strategy
automaton provides a desired goal for each controlled robot
in the team. Then, each robot independently computes a local
trajectory that achieves its goal while avoiding other agents.

If a physical deadlock is sensed, an alternative goal is
extracted for the robot from the synthesized strategy automa-
ton. The existence of such an alternative in the automaton
is guaranteed by construction if the environment assump-
tions are satisfied. The local planner builds on Alonso-Mora
et al. (2015) by adopting a convex optimization approach as
described in Sect. 7.

4.3 Integration of mission and motion planning

The proposed method consist of two interconnected parts, the
mission planner and the motion planner. Figure 4 highlights
the components and their interconnections.

The mission planner is computed offline, prior to execu-
tion. It requires a topological map of the environment given
by a description of the regions, such as rooms, and their
connections. It creates a finite state machine or automaton
that achieve the high-level specification and from which the
robots in the team can extract a strategy at runtime. Note that
we do not optimize the mission planner in this work, but our
framework allows us to readily adopt techniques for optimal
execution such as Jing et al. (2013) to extract an optimal
strategy automaton.

At each time instance in the execution, a target motion is
extracted from the automaton. The motion planner computes
a collision-free motion to make progress towards the target.
If a physical deadlock is sensed, an alternative strategy is
extracted from the automaton.

The motion planner requires a local map of the envi-
ronment W, containing all the static and moving obstacles.
The regions in the free space F of the local map—used at

@ Springer

Auton Robot

run-time—must be labeled to match the regions R of the
topological map—used for offline synthesis.

If the automaton commands a robot to transition between
two connected regions, a path is computed from the current
position of the robot to the border of the destination region
and then is followed by the local planner. If the automaton
commands a robot to remain in a region, the local planner
moves the robot towards the middle point of the region.

5 Offline synthesis: resolving deadlock

In this section, we discuss how to synthesize a strategy
automaton given a mission specification and a topological
map of the environment, provided that, at runtime, a low-
level control strategy is applied that guarantees collision-free
motion. We assume that the task specification ¢ ignores col-
lisions, but we allow the possibility that deadlocks can occur
at any time during the robot’s execution. Deadlocks can trap
the robot from achieving its goals, rendering the specifi-
cation unrealizable. The crux of this work is an approach
that systematically modifies the specification with additional
behaviors that redirect the robot team in order to resolve dead-
locks, whenever possible. If a satisfying mission plan does
not exist, the approach iteratively adds assumptions on the
deadlock behavior to the specification until a satisfying strat-
egy can be found for the robot team. By focusing on deadlock
rather than the positioning of dynamic obstacles, it allows our
approach to be valid for any number of dynamic obstacles,
as long as they fulfill the stated assumptions returned by our
synthesis approach. It also removes the need to globally track
the positions of every obstacle at runtime.

An outline of the general approach is shown in Fig. 5.
Such a strategy was chosen to disable any blocked routes to
the goal and thereby enable the strategy automaton to seek
alternate routes once deadlock has been encountered. In this
section, we detail the steps involved to implement the overall
approach.

5.1 Deadlock resolution

We declare a robot to be physically in deadlock with another
agent if it has not reached its goal but cannot move. This can
happen when an agent becomes blocked either by another
agent or by a dynamic obstacle. To keep track of which robot
is in deadlock, we introduce Boolean input signals x¥/ &
X, where i = 1,...,00p0ts and j = 0, ..., Bypors (the
index j = O representing a dynamic obstacle). Without loss
of generality, we consider only deadlock between pairs of
agents at a time. For the case where a robot is in deadlock
while in proximity to a dynamic obstacle, we let j = 0
and refer to this case as singleton deadlock. Otherwise, the
robot is in deadlock with another robot on its team, j # O,

@ Springer

R8

TF-=----
@

Fig. 5 Diagram illustrating the deadlock resolution strategy for a sin-
gle robot tasked with visiting R1 and R8. Starting in region R1 (marked
‘1”), the robot encounters deadlock (2) in region R6, while heading to
R7. The R6-to-R7 transition is prevented (red line), and the robot must
move a discrete radius m away from the deadlock event to resolve dead-
lock. If m = 1, then deadlock is resolved once the robot crosses the
green line, leaving R6 (3a). From there, it may reach R8 (4a) if no other
deadlocks are encountered. On the other hand, when m = 3, deadlock
is resolved only when crossing the cyan line (3b); an alternate path to
the goal may result (4b) (Color figure online)

and is considered to be in a state of pairwise deadlock. The
proposition x* is True iff robot i is in singleton deadlock
and x'/ is True iff robots i and j are in pairwise deadlock.
We defer detailing our approach for detecting deadlock at
runtime to Sect. 7.

To simplify the notation in what follows, we introduce the
following shorthand:

ij_ . ij ij rising edge—pairwise deadlock
QP X AOx between robots i and j
rising edge-singleton deadlock
for robot i

i i i i incomplete transition (¢ # B);
wﬂfﬁ =7y A O A Tact,f remain in region (@ = B)

93 =—x0 A Ox®

The definition for singleton deadlock is abstract enough to
capture the case where deadlock occurs between the robot
and any number of dynamic obstacles—singleton deadlock
will be set if the robot stops moving when encountering one
or more dynamic obstacles blocking its path. On the other
hand, since the members of the team are controlled by the
same mission planner, pairwise deadlock can be resolved
separately. For instance, if three robots on a team converge
on the same point, then three pairwise deadlock propositions
will be set.

Resolving deadlock by redirecting the robot’s motion
based on the instantaneous value of x”/ alone may result
in livelock, where the robot may be trapped from achiev-
ing its goals as a result of repeated deadlock status changes.
For this reason, our scheme automatically introduces addi-
tional memory propositions that are set when deadlock is
sensed, and reset once the robot moves a predefined discrete

Auton Robot

radius, denoted m, defining the a deadlock resolution hori-
zon (i.e. it traverses m regions away from the region where
deadlock occurred in order for the deadlock to be considered
“resolved”).

Definition 6 (Discrete radius) Let ném(ki) € APgr and

”fl;ct,curr(k,«—l) € AP’ be, respectively, the configuration
and action taken by robot i, where k; = 1,2, ... repre-
sents an event that is incremented when robot i enters a
new region, i.e. k; is incremented at the time instant when
curr(ki — 1) < curr(k;). The current region index curr(-) €
[1, p] is defined recursively, initialized such that néwr(l)
is the robot’s completion when deadlock was recorded and
Vg [’1 ct.curr(0) is the robot’s action when deadlock was recorded.
Then, the discrete radius m is the number of successive steps
k; € [1, m] for which we impose the restriction nb’;ct’cm(ki) €
AP%t\{néctﬁcwr(ki_l)} on the robot’s actions. This ensures
that the robot makes a move that does not re-enter the region

just visited.

The concept behind the proposed deadlock resolution
approach is to force the robot to actively alter its strategy
to overcome a deadlock by imposing a small number of
constraints without directly prescribing the path the robot is
required to take. The path is derived once a strategy automa-
ton is synthesized from the specification augmented with
these revisions. For instance, as illustrated in Fig. 5, for the
case m = 1 (resp. m = 3), if a deadlock is sensed at point
(2), the revisions forbid the robot from crossing the red line
until it reaches the green line (resp. cyan line). As a result,
different choices of m will lead to the synthesis of strategies
that give rise to different subsequent paths to goal region R8
and decisions whether or not to revisit the location where
deadlock had occurred.

We first introduce an approach where resolution occurs
when the robot leaves its current region, then generalize this
approach to allow the user to choose any number of discrete
steps, m > 0, to be taken by the robot before deadlock is
declared as resolved. In this work, we assume m to be chosen
ahead of time.

5.2 Resolving deadlock when m = 0

Our deadlock resolution approach for the case m = 0
amounts to the situation where robot i is forced to move
in another direction whenever x¥/ becomes True for j =
0, ..., Rroboss- As long as x'J remains True when robot i is
in region R, we disallow motion to Rg as follows:

] /\ (O XA ”é = O (_'ﬂzict,a A _'”ict,ﬁ)) -3
nleAPR,
RpeAdj(Ry)

It is easily observed that, as soon as the robot’s motion is
nonzero when it begins to move in a direction opposite to its
previous motion, x/ becomes False again and the robot is
free to resume its motion to Rg. This can lead to unwanted
behaviors, such as chattering. To avoid chattering behaviors,
we enrich the deadlock resolution approach to allow for any
choice of m > 0.

5.3 Resolving deadlock when m = 1

For each robot, we introduce into) the system propositions
{ ylig | Rg € R} C Yrepresenting the deadlock flag occurring
when activating a transition from a given region R, to region
Rg. When the flag is set, the following formula restricts the
robot’s motion:

O A (yl’s Arl = O (—lnéa’a A ﬁnéctﬁ)) . @
H&GAP'R,
RpeAdj(Ry)

The role of yfs is to disallow the current transition (from Ry
to Rp), as well as the self-transition from R, to R. The self-
transition is disallowed to force the robot to leave the region
where the deadlock occurred (Ry,), instead of waiting for it
toresolve; Rg is disallowed since the robot cannot make that
transition.

Next, we encode conditions for detecting singleton dead-
lock at runtime, and storing these as propositions y/iB that
memorize that singleton deadlock had occurred:

O A (b= ((f5avis)=0%). ©
nleAPR,
RpeAdj(Ry)

9 A (b= ((rom)e0x). ©
nleAPR,
RpeAdj(Ry)

The first formula sets the deadlock flag yé if the robot is acti-
vating transition from R, to Rg. The second formula keeps
the flag set until a transition has been made out of R, (to a
region different from Rg). Notice that, in our construction,
singleton deadlock considers deadlock between one robot
and any number of dynamic obstacles, alleviating the need
to globally track or identify obstacles at runtime. While this
construction could introduce cycling, we prefer it over an
approach that stores the entire path because we can limit the
number of propositions added to) in order to manage com-
plexity. For instance, if we are aware that deadlock does not
occur when the robot is trying to reach a given region R., we
can eliminate the variable y’

For pairwise deadlock, we add the following formulas
encoding the conditions for declaring that pairwise deadlock
has been detected. Note that the disjunction in the formula

@ Springer

Auton Robot

allows the synthesis tool to decide which one of the two
robots should react to the deadlock:

oley =V A (—-yjé/\wf,ﬁ> = Oy
telijtnleAPr,
RgeAdj(Ry)

(N

We also add the following to ensure that the memory proposi-
tions are only set when the rising edge of deadlock (singleton
or pairwise) is sensed.

O A\ —ygA=os A\ -0 | = O-vyp
i€[1,nr0bots] JElLnyobors]
Rpe J#E
)

In practice, we do not need a proposition y/"3 for every
Rg € R, but only d = maxg,eR (|Adj(Ry)|) such proposi-
tions for each robot in order to remember all of the deadlocks
around each region of the workspace. Here | - | denotes the
set cardinality. The number of conjuncts required for con-

dition (7) is (2mbm , but, since the number of formulas

contributes at worst linear complexity (due to parsing of each
formula), the conjuncts contribute only a small amount to the
overall complexity. Note that the complexity of the synthesis
algorithm is a function of the number of propositions and not
the size of the specification.

Conjuncting the conditions (4)—(8) with ¢; yields a mod-
ified formula [¢;]" over the set AP, and the new abstracted
specification g = ¢ Agf A @ = (9] Algf] A gl
The initial conditions are modified by setting the additional
propositions x*/, yl’;t to False.

5.4 Resolving deadlock when m > 1

In some cases, having a deadlock resolution strategy in which
multiple discrete steps must be made away from any encoun-
tered deadlock may result in different behavior than a strategy
in which deadlock is resolved when moving away just one
step. Considering Fig. 5, the case m = 3 results in greater
exploration of the workspace, whereas the case m = 1 results
in confinement to a smaller portion of the workspace.

We generalize the strategy presented in Sect. 5.3 by con-
sidering the case where deadlock is resolved once m > 1
discrete moves have been taken away from the last encoun-
tered deadlock. In what follows, the same formulas as in
Sect. 5.3 apply; here, we only describe modifications to this
setup. To ensure each robot moves away from deadlock a
discrete radius, we require m — 1 propositions (for robot

@ Springer

i, y(’;u,’l, R y(")m’mfl) that are set and reset in a chain in
order to memorize the robot’s position from the encountered
deadlock. y(i)m’ ¢ are initially False for all i, k.

In order to set the first such memory proposition in the
chain, the terms O yfg in (5) and O yé in (7) are replaced

with nys A O Vb and Oyg A O Yo 1» Tespectively,
and the abstracted specification ¢“?*"" is constructed based
on these formulas. For each subsequent discrete step away
from deadlock, we require the remaining propositions to be
set when the one with next lowest index has been reset. This
behavior occurs through the formula:

D/\(_'y;mt,ki((y(l)ut,kfl ~NO _'y(lmt,k71>:>o y(l)ut,k»
k=2,...,
m—1

(€))

Additionally, for each k = 1,...,m — 1, we require that
each y, . be reset only when the robot has left the current
region; specifically,

5 A (s = (50 O) Osfns))- €0

Finally, as long as some y(’;m ¢ 18 set, we also set the deadlock

flag memory proposition y;, corresponding to the region R,
that the robot had immediately departed. That is,

Your | = OYL | an

| /\ n(i/\ \/

i eAPR k=1,...

This prevents the robot from re-entering the region from
which it just departed.

The safety revisions restrict the system’s moves in the exe-
cution sequence be ones that actively take it m away from the
location where the deadlock flag was raised. Since waiting in
aregion is disabled in (4), and reentering a region is disabled
in (11), these safety revisions will cause the system to move
m steps away from deadlock in finite time.

In general, setting m large, could lead to behavior that
“explores” more of the workspace, but also could result in
unrealizability. Consider again the scenario in Fig. 5, but
with R2 always blocked. In this case, m = 3 would result in
an unrealizable specification because the robot cannot make
three discrete steps away from R6 without entering R2. Such
design tradeoffs therefore depend on the workspace and its
partitioning. Automatic selection of m for a given specifica-
tion and collection of regions is the subject of future work,
as is the use of 0 <> liveness formulas to resolve livelock in
a more direct manner similarly to DeCastro et al. (2016) and

Auton Robot

Alur et al. (2013) while remaining scalable to the number of
robots on the team.

6 Offline synthesis: environment assumptions and
coordination

If the specification ¢ is synthesizable, then Problem 2 has
been solved and no further modifications to the abstracted
specification are necessary. But, the possible presence of
humans or other uncontrollable agents in some parts of the
environment may cause the abstracted specification to be
unrealizable. Then, it becomes necessary to solve Problem 3
to find a minimal set of environment assumptions that restores
the guarantees.

We automatically generate assumptions on the environ-
ment’s behavior in cases where the modified specification
is unrealizable. To prevent any unreasonable assumptions
(assumptions that the robot can overcome deadlock when it
is impossible to do so), we provide a means for coordinating
robot actions to prevent such assumptions from being given
to the user. Combining the encoding and revisions approach,
we formally show that the synthesized automaton is guaran-
teed to fulfill the task under these assumptions, showing that
our approach also removes the possibility of deadlock and
livelock from occurring.

6.1 Runtime certificates for the environment

We note that the dynamic obstacles are uncontrollable agents,
and lacking behavioral information, so altering environment
assumptions does nothing to characterize their behavior.
Rather, we may still provide the user with a certificate under
which the environment’s behavior will guarantee that the
team can achieve all its goals without being trapped perma-
nently in a state of deadlock or livelock. Such assumptions
can be given to the user to allow him/her to be mindful of any
condemning situations when co-inhabiting the robots’ envi-
ronment. As such, we call these added assumptions runtime
certificates.

When a specification is unrealizable, there exist environ-
ment behaviors (called environment counterstrategies) that
prevent the system from achieving its goals safely. Here we
build upon the work of Alur et al. (2013), DeCastro et al.
(2016) and Li et al. (2011), processing synthesized counter-
strategies to mine the necessary assumptions. Rather than
synthesize assumptions from the counterstrategy as in Alur
et al. (2013), which requires specification revision templates
to be specified by hand, we automate the counterstrategy
search by searching for all deadlock occurrences, then store
the corresponding conditions as assumptions.

We denote Cassir as an automaton representing the coun-
terstrategy for ¢ Specifically, a counterstrategy is the
tuple C(pabstr = (Q, Qu, X,)V, 8, yx, yy), where Q is the
set of counterstrategy states; Qp € Q is the set of initial
counterstrategy states; X',) are sets of propositions in AP;
§: 9 x 2Y — 29 s a transition relation returning the set of
possible successor states given the current state and valua-
tions of robot commands in ; yy: Q — 2% is a labelling
function mapping states to the set of environment proposi-
tions that are True for incoming transitions to that state;
and yy: Q — 2V is a labelling function mapping states to
the set of system propositions that are True in that state. We
compute Cyassr using the s1ugs synthesis tool (Ehlers and
Raman 2016).

To find the graph cuts in the counterstrategy graph that
prevent the environment from impeding the system, we first
define the following propositional representation of state g €

Qas ¥(q) = Yx(g) A v¥y(g), where

Yylg) = /\ngyy(q)n A /\ney\yy(q)_ﬂ’
valg) =\

T A -7
weyx(q) /\neX\Vx (q)

Next, letting 8y (p) = {g € Q|FIn € V:q € 8(p, m)}, the
set of cut transitions Scy:s is computed as S = {(p, q) €
Q> | g € sy v (P AV @) E Vit Q0%
Scuts collects those transitions on which the environment has
intervened (by setting deadlock) to prevent the system from
reaching its goals.

Finally, the following safety assumptions are found:

oo =0 N Wy Avx(p) = —=Ovx(Q)
(P:q)€Scurs
(12)

If any of the conjuncts in (12) falsify the antecedent of ¢
(the environment assumptions), they are discarded. Then, set
[ef 1 = @7 A @y, and construct the final revised specifica-
tion ™ = ¢f Al@f 1" A gy = [¢]1 A1 A ;.

Algorithm 1 expresses our proposed approach for resolv-
ing deadlock. The automatically generated assumptions act
to restrict the behavior of the dynamic obstacles. Each revi-
sion of the high-level specification excludes at least one
environment move in a given state. Letting | - | denote set
cardinality, with 2!*! environment actions and 21! states,
at most 2(VIH1¥D jterations occur, though in our experience
far fewer are needed. The generated assumptions are mini-
mally restrictive—omitting even one allows the environment
to cause deadlock, resulting in unrealizability. Note that the
parsing step in line 8 creates statements that are displayed to
the user. The user display step is explained in detail in the
implementation in Sect. 9.

@ Springer

Auton Robot

Algorithm 1 Find realizable ¢V fulfilling task ¢ and resolv-
ing deadlock.

L™ < of Agf npg = [9]1 AlglT Ay

2 (g1 < of

309" < @] A@iT" Ao = [0]1 AT A g

4: while ¢V is unrealizable do

5: Extract Cyrev from "¢V

6: ¢, < Eq.(12)

7: for each kth conjunct of ¢f,, s.t. g5, [K] A [@/ 17" #False do

8: Parse ¢y, [k] into human-readable statements and display to
user.

9: 2 Rl (7 N A 19|

10: end for

1 @™ —of Alpf1" A g = [9]1 AlpiT A gy

12: end while

In practice, many of the added environment safety state-
ments can be violated by dynamic obstacles at runtime
without consequence, if these violations can be assumed to be
temporary. For this reason, we introduce a recovery scheme
that synthesizes a strategy that allows environment safety
assumption violations to be tolerated. We refer the reader
to Wong et al. (2014) for these technical details of the details
of this strategy. Note that we modify the approach to attempt
a recovery only for violations of the newly added assump-
tion ¢¢,,, rather than for the entire formula [¢f]’, since our
goal is to only make assertions on the environment’s behav-
ior with respect to deadlock and not all behaviors in general.
The requirement for temporary deadlock is less restrictive
than the requirement that deadlocks should never occur, but
it nonetheless places additional requirements on the envi-
ronment’s behaviors, i.e. that the dynamic obstacles cannot
infinitely often cause deadlock. Hence such conditions are
displayed to the user in an easily-interpretable form.

Runtime certificates are displayed to the user in a format
such as: The task is guaranteed as long as
for robot 1 any singleton deadlock in
the kitchen while heading to the door is
eventually resolved on its own. In this spe-
cific case, dynamic obstacles may enter deadlock with robot
1, but the obstacles are obligated to eventually resolve dead-
lock. If the dynamic obstacle is a person, the certificate may
have no impact on the true behavior of the environment, as
social norms deem it natural for people to resolve deadlocks
on their own. If the dynamic obstacle is a door, then the cer-
tificate could alert that the door should eventually be opened
to allow the robot to pass through. On the other hand, if the
door never opens, then the certificate could help to explain
that the door being closed as the reason the task remains
unfulfilled.

It is possible that many such certificates are required,
which may overwhelm the user. We address this in two ways.
First, we project the found certificates onto the set of propo-
sitions relating to motion only, eliminating any propositions

@ Springer

that do not relate to motion. Second, we use a graphical visu-
alization of the certificates overlaid on a map of the physical
workspace. In addition to the above provisions, the work
in DeCastro et al. (2016) offers an approach that can be
adopted to further reduce the number of revisions fed to the
user. There, a method is introduced for grouping regions that
share the same properties for the revisions, and convey to
the user metric information that is necessary for fulfilling the
added revisions. Such an integration is left for future work.
We refer the reader to Sect. 9 for implementation details.

We point out that (12) gives revisions that are possibly
conservative. The formula is created from a counterstrat-
egy that is extracted from a game structure capturing the
environment’s behaviors for every possible behavior of the
system (DeCastro et al. 2016). In the current implementa-
tion, the counterstrategy is computed without regard to the
number of revisions that could be generated. Future iterations
of the approach could make use of an optimality criterion to
extract a counterstrategy with a minimal number of revisions.
Another cause for conservatism is due to the fact that the
approach abstracts away the actual behavior of the dynamic
obstacles, neglecting the physical behavior of the dynamic
obstacles. This can be improved by enhancing the existing
approach with LTL formulas that impose physical constraints
on the environment, for instance mutual exclusion conditions
on deadlocks.

6.2 Coordination between robots

Since the strategy for the robots’ motion is completely deter-
mined at synthesis time, the controllers we synthesize should
not lead to deadlocks if they can be safely avoided. For
instance, two robots on the team should not enter a narrow
doorway from opposite ends, only to become deadlocked
there. This motivates the creation of a method for auto-
matically inserting dimension-related information into the
specification based on the workspace geometry and the vol-
ume of the robot so that the robots can pre-coordinate,
at synthesis time, to avoid unneeded deadlock. This pre-
coordination serves two purposes: (1) it allows to eliminate
any environment assumptions between two robots in a region
where there is high likelihood of deadlock if both are occupy-
ing that region, and (2) it changes the behavior of the agents
to actively avoid potential deadlock in such high-risk regions,
such as one-way corridors.

The modification considers the restrictions on what robots
are allowed to do in certain regions, based on the dimen-
sion of the region and the size of the robot. We introduce an
encoding of LTL formulas that eliminate the actions of robots
that would result in deadlock. Specifically, we consider two
cases: (1) a robot will not enter a region if the move will
exceed the region’s capacity and, (2) it will be prevented that
two or more robots enter through opposite sides a one-way

Auton Robot

narrow region. We then create a new specification @s-coord

with pre-coordination of robots, and apply Algorithm 1 on
@abstr.coord 1oy swapping out " in line 1.

To create the LTL encoding, we introduce Algorithm 2
to enforce pairwise coordination amongst robots in the con-
trolled team. If the region is too small to contain a pair of
robots, any robot outside of the region is prevented from
entering (line 6). If the boundary between two regions R,
and Rg is too small for two robots to pass through at once,
and one robot is approaching the boundary from R, (resp.
Rg), then no other robot may approach that boundary if in Rg
(resp. Ry). This requirement is encoded in lines 11-12. Note
that Algorithm 2 is general to any workspace with convex
regions.

Algorithm 2 Augmenting a specification with agent coordi-
nation with respect to region geometry.

1: D < max dimension of the enclosing hull of the robots on the team
2: for each R, € R do
3: A < areaof region R,

4 if 4 < 1then

5: /I Region capacity is too small .

6 ¢} <@ AT = ~Omly) NOTd = ~Oml)
7: endif

8: for each Rg € Adj(Ry) do

9: if ||[Ry N Rg|l < 2D then

10: // Boundary between R, and Rg is too narrow
g <o AN (Wip AOT) = Ola)
122 g g AN (Whe A O = Ol)
13: end if

14: end for

15: end for

7 Online local motion planning

In this section we describe the local planner that links the mis-
sion plan with the physical robot (recall Fig. 4). The offline
synthesis and generated state machine are agnostic to the
local planner, which can be substituted as long as avoidance
of unmodeled moving obstacles is guaranteed. Our online
local planner does account for the robot dynamics, which
were abstracted for high-level synthesis.

Ateach step of the online execution, the synthesized strat-
egy automaton provides a desired goal position for each robot
and a preferred velocity u € R” towards it. An overview
of the algorithm is given in Algorithm 3 and each step is
described in detail in the following sections. We note that the
reader may choose any other method for online planning as
long as it preserves the avoidance guarantees with the kine-
matic model of the robots.

Algorithm 3 Execution of the local planner using the syn-
thesized strategy automaton.

1: Input: Current state of the robot, a local map, position and velocity
of neighbors and a synthesized strategy automaton (FSM).

: At each time instance (~ 10 Hz) do the following:

. if the robot is in deadlock with any other agent then

Send a deadlock flag to the FSM.

: end if

: Obtain command from the FSM (e.g. ”’stay in the current room” or
”move to the next room”), based on current state and deadlock flag.

7: Convert command into a goal position and preferred velocity u.

8: Compute constraints to satisfy the dynamic model of the robot.

9: for each neighboring agent do

10: Compute pairwise collision avoidance constraint.

11: end for

12: Compute largest obstacle-free convex region wrt static obstacles.

13: Solve constrained optimization to obtain collision-free motion

14: Output: A collision-free motion for the robot and the time horizon

7.1 Overview

We build on the work on distributed Reciprocal Velocity
Obstacles with motion constraints (Alonso-Moraet al. 2014),
and its recent extension to aerial vehicles (Alonso-Mora et al.
2015).

As described by Alonso-Mora et al. (2014), the method
follows two ideas. (a) The radius of the robot is enlarged by
a pre-defined and typically fixed value ¢ > 0 for collision
avoidance. This value depends on the kinodynamic model
of the robot and can be reduced in real time without having
to recompute the stored maximum tracking errors. And, (b)
in run time, the local trajectories are limited to those with a
tracking error below ¢ with respect to their reference trajec-
tory. Recall that the tracking errors were precomputed in the
offline process.

Ateach time-step an optimal reference velocity u* € R" is
obtained by solving a convex optimization in reference veloc-
ity space. The associated local trajectory is guaranteed to be
collision-free, satisfies the motion constraints and minimizes
a cost function. The cost function minimizes the deviation to
a preferred velocity u, corrected by a small repulsive veloc-
ity @ inversely proportional to the distance to the neighboring
obstacles when in close proximity. As described by Alonso-
Mora et al. (2015) this additional term introduces a desired
separation between robots and obstacles. Note that the avoid-
ance guarantees arise from the constrained optimization and
not from the repulsive velocity.

7.2 Robot dynamics

Letting ¢ € Ry denote time and #; the current time instant,
we define the relative time f = ¢t — #, € [0, ..., 00) and
the time horizon of the local planner 7 > 0, greater than
the required time to stop if moving at maximum speed. Note
that different robots may present different dynamic models.

@ Springer

Auton Robot

We denote the state of a robot by z = [p, P, P, . . . |, which
includes its position and velocity and may include additional
terms such as acceleration and orientation. Given a control
input v(z) the dynamical model is Z = g(z, v).

In our local planner, we consider a set of candidate
local trajectories, each defined by a straight-line reference
Pref(f) = p + ut of constant velocity u € R”" and starting
at the current position p of the robot. Each motion primitive
is then given by an appropriate trajectory tracking controller
p’?P (f) = f(z,u, 1) that is continuous in the initial state z
of the robot, respects its dynamical model and converges to
the straight-line reference trajectory. Local trajectories are
now parametrized by u, see Fig. 6 for an example. Suit-
able controllers defining the function f(z, u, 7) include LQR
control and second order exponential curves, for ground
robots (Alonso-Mora et al. 2014) and quadrotors (Alonso-
Mora et al. 2015).

For fixed robotic platform, controller, initial state z and
reference velocity u, the maximum deviation (initial posi-
tion independent) between the reference and the simulated
trajectory is given by

y(z,U)=1}1a(;(||(p+fu)—f(z,u,f)llz. (13)

In an offline procedure, we precompute the maximal
tracking errors y(z, u) via forward simulation of the robot
dynamics and controller f(z,u;, f) for a discretization of
reference velocities u and initial states z—we only discretize
in initial velocity since the error is independent of the ini-
tial position of the robot. They are stored for online use in a
look-up table.

7.3 Constraints

To define the motion and inter-agent avoidance constraints
we build on the approach in Alonso-Mora et al. (2015). We
additionally introduce constraints for avoiding static obsta-
cles. For completeness, we give an overview of each of the
constraints.

Local trajectory

Fig. 6 Schema local and reference trajectories for an aerial vehicle,
generated from the reference velocity u. The tracking error is limited
by ¢ and the robot volume dilated by ¢

@ Springer

7.3.1 Robot dynamics

Recalling Eq. (13) the motion constraint is given by the ref-
erence velocities for which the tracking error is below ¢,

R(z,&) ={u|y(z,u) <e¢}. (14)

approximated by the largestinscribed convex polytope/ellips-
oid R(z, &) C R(z, ¢).

7.3.2 Avoidance of other agents

Denote by p s Vi 7; and h j the position, velocity, dilated
radius and height of a neighboring agent j. Assume that
it keeps its velocity constant for f < 7. Reciprocity (i.e.
the other agent follows the same algorithm) can as well be
assumed and is discussed in Alonso-Mora et al. (2015). For
every neighboring agent j, the constraint is given by the ref-
erence velocities u for which the agents’ enveloping shape
do not intersect within the time horizon. For cylindrically-
shaped agents moving in 3D the velocity obstacle of colliding
velocities is a truncated cone

vo; = lulai e (0. el p —pf + @ —vi)il < 7+ 7

and|pV—p}/+(uV—u}/)t~| §ﬁ+}_zj},

where p = [p, pV1, with p/ e R? its projection onto
the horizontal plane and p¥ e R its vertical component.
The constraint is linearized to A;(p, &) = {u| an.u < bj},
where n; € R3 and b; € R maximize nJT — b; subject to
Aj(p,e)N VO} =40.

7.3.3 Avoidance of static obstacles

We extend a recent fast iterative method to compute the
largest convex polytope in free space (Deits and Tedrake
2014), by directing the growth of the region in the preferred
direction of motion and enforcing that both the current posi-
tion of the robot and a look ahead point in the preferred
direction of motion are within the region. The convex poly-
tope is computed in position space (R3 for aerial vehicles)
and then converted to an equivalent region in reference veloc-
ity space. See Algorithm 4, where directedEllipsoid (p, q) is
the ellipsoid with one axis given by the segment p — q and
the remaining axis infinitesimally small, and K the number
of steps in the linear search, typically between 2 and 4.

7.3.4 Avoiding incorrect region transitions
The local planner prevents incorrect region transitions (for

instance, avoiding entering another region if the robot’s local
goal is within the current one) by introducing “virtual” doors

Auton Robot

Algorithm 4 Largest collision-free directed convex polytope.

I: L« p+ufr, &1 K20 0} P:=0;

2: q < L[O]; L::KL\q; :

3: while L # Jandp,q ¢ P do

4: E < directedEllipsoid(p, q)
5: //Largest polytope seeded in E computed as in Deits and Tedrake

(2014)

6 while not converged do

7 P <« separating planes of E and dilated O (QP)
8: such that P C R" \ (O + V)

9: If p.q ¢ Pthen { q < L[0]; L:=L\q; break; }
10: E < ellipsoid E C P of maximal volume (SDP)

11: end while
12: end while
13: F(p,):=(P — p)/t // Converts to ref. velocity, u, space

at borders between workspace regions. These virtual doors
may be closed or opened depending on the desired transition.
A closed door is introduced as an obstacle in O.

7.4 Optimization

The optimization cost is given by two parts. As described in
Sect. 7.2, the first one is a regularizing term, weighted by a
design constant @, and the second one is a minimizer with
respect to a preferred velocity.

A convex optimization with quadratic cost and linear and
quadratic constraints is solved

u* ;= arg min (01||u—v||2 + |ju — (ﬁ+ﬁ)||2>,

ueR”
st.u € R(z, &) N F(p, ¢)
uc Aj(p,e) Vjneighbor agent

15)

The solution of this optimization is a collision-free ref-
erence velocity u* which minimizes the deviation towards
the goal specified by the strategy automaton. The associ-
ated trajectory (see Sect. 7.2) is followed by the robot and is
collision-free.

7.5 Deadlock detection

To allow the strategy automaton to resolve deadlock at run-
time, we set the deadlock proposition x'/ (i = 1, ..., Moporss
j = 0,...,00pots; j = 0 implying a dynamic obstacle),
according to the following rule:

X = (uFl < k) A (i | > k2) A (lp; — pjll <k3). (16)

with ki, k2, k3 > 0 being tunable parameters. This states
that a necessary condition for x/ to be set is when the agent
velocity magnitude ||u} || is low, the preferred velocity magni-
tude ||u;|| is high, and the unsigned distance between agents
p; — p;ll is within a prescribed tolerance. In our experi-

ments these values are chosen experimentally to detect all
deadlocks while minimizing false positives. We introduce a
small hysteresis in the flag activation. In particular, we acti-
vate the deadlock flag when the right-hand condition of (16)
has been True for a minimum period of time 7k ;. When
the flag becames active, x'/ is kept in True for a minimum
period of time Tyx—fuise- In our experiments we employ 8s
and 5s respectively. This hysteresis prevents false alarms and
chattering when the velocity is small (e.g. while the robot is
accelerating).

8 Theoretical guarantees

We provide proofs for the guarantees inherent to our syn-
thesized controller. The following three subsections are
sufficient to show that, under the collision-free guarantees
provided by the local planner, the synthesized strategy real-
izes the reactive task specification and resolves deadlocks.

8.1 Correctness with respect to robot dynamics

By construction of the local planner, the controller is guaran-
teed correct with respect to the low-level controller f(z, u, 7),
which is continuous on the initial state of the robot and
respects its dynamics. We do assume that the model of the
robot is accurate and that there are no external disturbances.

8.2 Collision-free motion

Theorem 1 The local planner of Sect. T yields collision-free
motion in dynamic environments, under the constant velocity
assumption.

If (15) is feasible, collision-free motion is guaranteed for
the local trajectory up to time 7 with the assumption that all
interacting agents maintain a constant velocity.

Proof Avoidance of dynamic obstacles was shown in our pre-
vious work (Alonso-Mora et al. 2015). Here we reproduce
it for the case of a dynamic obstacle maintaining a constant
velocity, and it extends to the case where all agents do recip-
rocal collision avoidance.

Recall that 7; represents the current time instant and
f=t—1t €[0,00) the relative time. Let p(¢) denote the
position at time ¢ > t*, and if not specified, variables are
evaluated at €. The idea is that the optimal reference trajec-
tory is collision-free for an agent whose volume is enlarged
by ¢ and the robot stays within ¢ of it. Formally,

@ Springer

Auton Robot

(p+uf)—(p; + v;i) Ve +V;

Avoidance constraint, ueA ; (p,¢)

= p)—p;)=f(z,u,i)—(p;, +Vv;)) ¢ V+V;

ucRr(z,e)

For the case of planar disk robots, this is equivalent to
showing the relative distance is greater than the sum of radii,

lIp@) —p; Ol = [f(z,u,7) — (p; + ;D
> |l(p+ud) —(p; +v;Dll—e
ucR(z,¢e)

> r+et+ri—e=r+rj,
ucA;(p.e) ’

For avoidance of static obstacles, u € F(p,) implies

uc F(p,es) = (p+ud) g O+V, Viel0,1]

Alg. 4, P convex
= fz,u,)g O+V Viel0, 1]

ue]é(z,s)
O

If the assumptions are violated, e.g. the moving obstacles
quickly change their velocity, the constrained optimization of
Eq. (15) can be infeasible. In that case, no collision-free solu-
tion exists that respects all of the constraints and a collision
may arise. In this case the robot decelerates at its maximum
deceleration rate until full stop or a feasible collision-free
trajectory is found. In practice, since this computation is per-
formed at a high frequency, each individual robot is able
to adapt to changing situations, and the resulting motion is
collision-free if the moving obstacles behave fairly (i.e. never
cause collisions).

8.3 Correctness with respect to the task specification

Since the local planner is myopic, it provides guarantees up
to a time horizon 7 and consequently may result in dead-
lock and livelock. However, as we have shown, the planner’s
local guarantees allow a discrete abstraction that the strategy
automaton can use to resolve deadlocks and avoid livelocks.
Here we formally prove the guarantees on the execution pro-
vided by our synergistic online and offline synthesis.

Proposition 1 Given a task specification ¢ that ignores col-
lisions, if the resulting specification ¢°*" defined in Sect. 5 is
realizable, then the corresponding strategy automaton also
realizes .

Proof Assume given ¢ = @i Ag{ Ay = @] A} A @g.
Recall that @ = oi Npf Aoy = o] ALl A
<p§, where [¢!] and [¢]] contain ¢! and ¢; as subformulas,
respectively. Suppose that strategy automaton A e realizes

@S This means that the resulting controller is guaranteed

@ Springer

to fulfill the requirement [¢;]" A [¢f]" A @ as long as the
environment fulfills the assumption ¢; Ay /\(pg. This implies
that A jasr fulfills 7N 7 gog, as long as the environment
fulfills the assumption @f A ¢f A (pz;. O

Proposition 2 Given a task specification ¢ that ignores col-
lisions, if ¢ is realizable but the resulting specification p“>""
is not realizable, then the revision procedure in Sect. 6.1
will find an assumption ¢¢,, to add to 0 that renders
the resulting specification ¢"" realizable and the resulting
strategy Agrev free of deadlock and livelock.

Proof Suppose ¢ is realizable by strategy A, but @b is

not realizable, admitting counterstrategy C(pubm = (Q,..)).
It suffices to show that the set S,s is nonempty. Assume by
way of contradiction that S, is empty. Then the rising edge
of deadlock 05" never occurs for any i, S0 no robot transitions
are ever disabled. Since we assume that deadlock does not
occur in the initial state, this means that x/ is always False
for every i,j. Therefore [¢; 1" A [¢;] A ¢, defined in Sect. 5
reduces to @7 A ¢f A gog,. The lack of deadlock means that
any region transition contained in Ay, is still admissible, and
therefore A, can be used as a strategy to realize @bsT a con-
tradiction. Therefore, there must be deadlock and S, is not
empty. Now, upon addition of the assumptions >, exis-
tence of Ay that satisfies w“bm implies, by construction,
that Agre is livelock-free. |

Note that it may be the case that S,,; is nonempty, but for
every (p, q) € Scuss, the resulting revision

Yy Avx(p) = —=Ovx(@)

contradicts ¢’. This indicates that ¢ is only realizable because
it makes unreasonable assumptions on the environment. Our
approach identifies this fact as a by-product of the revision
process.

8.4 Computational complexity

For a given choice of m, the offline reactive synthesis
algorithm used in this work is exponential in the num-
ber of propositions (Bloem et al. 2012; Ehlers and Raman
2016). Using our encoding, the problem scales linearly with
Nrobots—NO Worse than existing approaches (e.g. Ulusoy et al.
2013). When one or more dynamic obstacles are considered,
the number of propositions does not change. As stated in
Sect. 6, 20YI1+1XD jterations of the main loop in Algorithm 1
are needed in the worst case, yielding a theoretical complex-
ity that is doubly exponential in the number of propositions.

For the online component, a convex program is solved
independently for each robot, with the number of constraints
linear in the number of neighboring robots. The runtime of
the iterative computation of the convex volume in free space

Auton Robot

barely changes with the number of obstacles, up to tens of
thousands (Deits and Tedrake 2014), and a timeout can be
set, with the algorithm returning the best solution found.

9 Experiments and simulations

We present results of our end-to-end approach both in simula-
tion and on hardware. Our evaluation is meant to illustrate the
various parts of the synthesis and execution process, and pro-
vide a statistically-grounded evaluation of the approach when
placed in a difficult environment that does not necessarily
behave according to the automatically-generated environ-
ment assumptions. In this context, our results reveal that
our approach has merit in dealing with such environments
to execute the task successfully. We furthermore show that
our approach is scalable to any number of dynamic obstacles,
and that the local planner applies to 3-D workspaces. Lastly,
we show that our approach may be executed in real time on
actual hardware.

The synthesis procedure described in Sect. 5 was imple-
mented with the slugs synthesis tool (Ehlers and Raman
2016), and executed with the LTLMoP toolkit (Finucane
et al. 2010). The local motion planner (Sect. 7), was imple-
mented with the IRIS toolbox (Deits and Tedrake 2014) and
an off-the-shelf convex optimizer. We assume the dynamic
obstacles are cooperative in avoiding collisions, therefore,
each one is controlled by a local planner. Many of the
experiments presented in this section are available in the
accompanying video.

In what follows, we consider a “garbage collection” sce-
nario, upon which we synthesize a strategy automaton.

Example 2 (Garbage collection) A robot team is required
to patrol the Living Room (Rrg) and Bedroom (Rpg) of the
workspace in Fig. 7. For two robots, the specification is:

oo (nLlR) AOO (n§R> AOO (n£R> AOO (rréR)
and if garbage is observed, pick it up

1 1 2 2
U (]Tgarb == nact,pickup) AU <ngarb == 7Tact,pickup) .

Additionally, the robots must always avoid other moving

agents.
The system propositions are actions to move between
regions (néct’LR, e néct’BR) and to pick up (n;”)pickup).

The environment propositions are sensed garbage (7 é arb)s
region completions (nl’;R, R néR), and pick up completion
(n;)ickup)'

We omit the complete encoding of Definition 2, however,
for illustration we supply the transition formulas for the case
where robot 1 is in Hall:

1 1 1 1 1
O (T[Hall v IR v TBR 4 T Kitchen v T[Door)

(7%
1 s 1 1 1
D(O T[Hall O 7Tact,Hall v O nact,BR 4 O T[act,LR)

1 1 1 1
U (nact,Hall v nact,LR v nact,BR v ﬂact,Kitchenv

1
T[act,Door)

| 1 |
e U <”Hazz A Tact,Hall = O”Halz)

1 1 1 1
. (nHall ATt LR = OnHall Vv OnLR)

1 1 1 1
. (”Hazz AT e pr = O g vV O ”BR)

The initial conditions ¢; and ¢{ are True.

We implement the above example using humanoid robots
(able to rotate in place, move forward and along a curve) and
simulated quadrotor UAVs.

9.1 Synthesis and revisions

Upon synthesizing a controller for single robot, we obtain
16 revisions to the environment assumptions. These are
displayed to the user as runtime certificates. One example
is: Deadlock should not occur when the robot is
in the Hall moving toward the Living Room and
had already been blocked from entering the Bed-
room. Note that, with each robot added to the team, the
number of revisions grows combinatorially. In contrast to
the single-robot case, there are a total of 1306 statements
given to the user in the case of two robots. In these cases,
we display the revisions graphically, by projecting over the
variables of interest: the current region and action for each
robot. Rather than displaying all 1306 statements, we show
the projection consisting of 45 statements projected onto the
set of each robot’s motion and activation propositions. Sat-
isfying these 45 statements implies that we also satisfy the
1306 statements. To further aid the user, we display them
graphically on the workspace as shown in Fig. 7.

For instance, a red arrow on the boundary of the Hall indi-
cates that the automaton cannot guarantee the task if the robot
experiences deadlock when it is in the Hall and while activat-
ing a motion to the Living Room. The certificates displayed
in Fig. 7 are projections onto a subset of the complete set
of propositions (i.e. deadlocks, memory propositions, robot
positions, and robot actions for each of the robots in the
team), by abstracting those variables away. That is, if there
exist restrictions on deadlock for any of the propositions that
have been abstracted away, then the revision displayed will
be a conservative overapproximation to the true revision and
the dot will be labeled red.

@ Springer

Auton Robot

Deadlock should never occur
if robot 1 is moving in the
indicated direction.

=)

Only temporary deadlock is
allowed when robot 1 is moving
in the indicated direction.

©4

No restriction on deadlock for
robot 1 when it is moving in the
indicated direction.

© 2

Bedroom

Fig. 7 Workspace showing specification revisions for each region
completion/activation pairs where singleton or pairwise deadlock may
occur. An arrow’s color indicates the type of assumption that has been
made. The number (or pair of numbers) indicates the robot (or robot
pairs) concerned with the assumption. The placement of the arrow indi-
cates the region that the robot is headed (i.e. its action commands AP%S")
when the given assumption holds true true (Color figure online)

9.2 Scalability with respect to dynamic obstacles

Considering Example 2, the specification for the single-robot
case consists of 14 propositions, while that for the two-robot
case consists of 29 propositions. The specification is invariant
to the number of dynamic obstacles in either case.

One could also consider a two-robot team controlled by a
baseline strategy that relies on mutual exclusion (one robot
per region) to be kept with other robots and dynamic obsta-
cles (DO). That strategy required 20 propositions for the case
without DOs. One additional proposition is added for each
region for each DO (producing 25 for one DO, 35 for three
DO, 60 propositions for eight DO, etc.). Because the obsta-
cles are assumed to behave in an adversarial manner, they can

violate mutual exclusion if they enter a neighboring region
of the robot. Hence, the baseline synthesis procedure is not
realizable for one or more dynamic obstacles.

In contrast, our approach is realizable independently of the
number of dynamic obstacles and requires fewer propositions
than the case with two or more DO.

9.3 Performance evaluation

We directly compare the proposed approach with a base-
line approach where the robots execute a local planner, but
there is no deadlock resolution in the strategy. Recall that
there is no guarantee of mission satisfaction in that case.
Figures 8, 9 and 10 display results for various problem sce-
narios. In each experiment, we use the model described
in Alonso-Moraetal. (2015) to model the robots and dynamic
obstacles as quadrotors. The “counter-flow” cases follow a
pre-defined set of waypoints that allow DOs to circulate
within the workspace in one direction (counter to the flow
of the robots), while, in the “random waypoints” cases, DOs
randomly select a neighboring waypoint once a waypoint has
been achieved. To detect deadlock, we use the criteria in (16)
with the choice of parameters k1 = %, ky = 4—1‘, and k3 = 1.5.

Each test case consisted of 133 min of data obtained over
multiple simulation runs lasting 200s each. The simulation
was terminated before 200 s if none of the controlled robots
reached their goal, but none had been moving (their veloc-
ity falls below a threshold) for 100s or longer. Any such
runs were flagged as unresolved deadlock, at which point the
robots are deemed unable to continue their task. The robots
in the team were initialized randomly at different regions in
the workspace.

(a)

Fig. 8 Example of the approach in a scenario with six dynamic obsta-
cles (dark red) and one controlled quadrotor (light green/yellow). The
path of the controlled quadrotor is shown with a dashed green line. a
The original approach without deadlock resolution avoids collisions but
can get into unresolved deadlocks. The path leading to the deadlock is
shown, b the proposed approach successfully resolves deadlocks, like

@ Springer

(b)

the one shown here. The path leading to and resolving the deadlock are
shown, ¢ path of the controlled quadrotor using the proposed approach
during a 10min simulation. The quadrotor successfully avoids colli-
sions and reverts the motion when it encounters a deadlock. a Without
deadlock resolution, b with deadlock resolution, ¢ path with deadlock
resolution (Color figure online)

Auton Robot

Fig. 9 Example of the approach with six dynamic obstacles (dark red)
and two controlled quadrotors (light green). The dynamic obstacles
navigate to randomized locations and the controlled robots execute the
proposed framework. The path of the controlled quadrotors is shown
with a dashed green line for 1 min of the simulation. The quadrotors
successfully avoid collisions, reverse motion when they encounter a
deadlock and explore the top and bottom rooms (Color figure online)

In the “counter-flow” example of Fig. 10, 100% of the
simulation runs without the proposed deadlock resolution
approach eventually enter unresolved deadlock at some point
during the run. In contrast, when the proposed approach is
used, deadlock is able to be resolved, resulting in more goals
being visited. In the single-robot case, only 5% of the runs
lead to unresolved deadlock. In all such runs, the DOs had
violated a runtime certificate (note that the DOs were not
programmed to satisfy any such certificates); in some cases
the DOs surrounded the robot. In the two-robot case, nearly
20% of the runs lead to unresolved deadlock. This number
is higher than in the one-robot case because there is more
than one robot whose motion could be blocked by the DOs,
leading to more encountered deadlocks. Additionally, when

®mw/DR mw/oDR

<
™
<
<

,C

34.85

I 4 1.53
N - . 5 7

I 21.02
I 17.57

®mw/DR mw/oDR

00
0 o
N n
v
nn
=
<
n
n
o~

one robot has already become deadlocked, the objects in the
environment effectively act as static obstacles to the remain-
ing robot, increasing the chance it will become deadlocked
as compared with moving, dynamic obstacles. The combined
effect of these two factors is the reason why there is a four-
fold increase in the number of encountered deadlocks.

The “random waypoints” cases are included to evaluate
the performance of the proposed approach where the DOs
do not all move in the same direction, but instead move
randomly in the workspace. In the case of a single robot,
deadlock resolution allows the robots to find alternate routes
around deadlocks, and thus the robot is able to visit 40% more
goals than the case without deadlock resolution. In the case of
two robots, the team is able to achieve 136% more goals than
without resolution. As may be observed in the supplemen-
tary videos, deadlock resolution gives the robots an ability
to exploit areas of the workspace containing a lower density
of dynamic obstacles to achieve their goals. The cases where
deadlock resolution is included results in greater likelihood
of task achievement over a 200-s interval. As compared with
the counter-flow cases, there are fewer cases of unresolved
deadlock because the random nature of the DOs allows the
robots to move more freely in some cases than in others.

9.4 3D problem domain

We next demonstrate the effectiveness of the approach in a
3D scenario where, in the 5 x 5 x 5m?> two-floor workspace
of Fig. 11, robots move between floors through a vertical
opening at the left corner or the stairs at the right side. The
two robots on the team as well as the dynamic obstacle are
simulated quadrotors. The task is to infinitely often visit the
top and bottom floors while avoiding collisions and resolving
deadlock. The strategy automaton is synthesized as described
in Sect. 5. A local planner for the 3D environment is con-
structed following Sect. 7. A representative experiment is
shown in the snapshots in Fig. 11. The green robot enters

®mw/DR mw/oDR

100
100

I G.04
I 041

I 40.2

-
4 R 4
& I - I > ™
~ ‘Z'» 224)
S s o~
< o
I I o od I 2 |
1Q, CF 2Q, CF 1Q, RW 2Q, RW 1Q, CF 2Q, CF 1Q, RW 2Q, RW 1Q, CF 2Q, CF 1Q, RW 2Q, RW
(a) (b) (0

Fig. 10 Comparison of the results of the “garbage collection” scenario
with DOs exhibiting counter-flow (CF) or random waypoints (RW)
behaviors, with either one quadrotor (1Q) or two quadrotors (2Q). For
each scenario, we evaluate the results for data collected over 40 200-s
runs. Six quadrotors were used for the DOs. Over each run, a, b, and ¢

show, respectively, data for the number of encountered deadlocks, the
number of goals visited, and the number of unresolvable deadlocks.
Standard deviations are indicated as error bars in a and b. a # encoun-
tered deadlocks per 200-s run, b # goals visited per 200-s run, ¢ #
unresolvable deadlocks per 200-s run

@ Springer

Auton Robot

Time: 5 - 15 sec. Time: 16 — 31 seti..

3
z
Yim)

3 z
Xm) Yim)

Fig. 11 Deadlock resolution (green robot) and safe navigation in a 3D
environment. Quadrotors are displayed at the final time and their paths
for the time interval. Each yellow disk represents a quadrotor and the
cylinder its safety volume. The orange robot represents the dynamic
obstacle (Color figure online)

deadlock when moving towards the upwards corridor; how-
ever, deadlock is resolved by taking the alternative route up
the stairs.

9.5 Physical experiments

To demonstrate effectiveness in a physical setting, we employ
two Aldebaran Nao robots to carry out the planar garbage col-
lection scenario, with a teleoperated KUKA youBot serving
as the dynamic obstacle. The model for the Nao robots is one
where the robots are able to rotate in place, move forward,
and move along a curve at a constant velocity. The size of
the field is Sm by 3m, and the sensing range for the local
planner is 1 m. The size is such that only one Nao robot may
fit through the Hall and Door at a time. The positions of each
robot are measured through a motion capture system. The
local planner is implemented on a laptop computer commu-
nicating via a WiFi connection to the robots. In the local
planner, the Nao robots are taken to have a circular footprint
with effective radius of 0.2 m.

(b)

Fig. 12 Planar scenario with two centrally-controlled Nao robots and
a dynamic obstacle (youBot). In each image, three consecutive frames
of the robot’s motion are superimposed. In (a), the local planner enables
the two Naos to avoid collisions with each other. In (b), one of the Naos
reverses direction to resolve the deadlock with the youBot. a Avoidance
maneuver, b deadlock resolution

@ Springer

We carried out experiments using two robots on the team,
using the workspace shown in Fig. 7. The revisions for these
two robots are pictured in the figure for the synthesized
mission plan. As demonstrated in the snapshots in Fig. 12,
the Naos can execute the task, by avoiding collisions and
resolving deadlocks with one another and with the dynamic
obstacle (the KUKA youBot). At the particular deadlock
event shown in Fig. 12b, the youBot must eventually move
away from the Door region, as the assumption pictured in
Fig. 7 states that ‘only temporary deadlock is allowed’ when
either of the robots are trying to enter it from the Kitchen.
The experiments demonstrate that the approach is effective
atdeadlock resolution and at achieving collision free motion,
thereby satisfying the mission specification.

10 Conclusion

We present a framework for synthesizing a strategy automa-
ton and collision-free local planner that guarantees com-
pletion of a task specified in linear temporal logic, where
we consider reactive mission specifications abstracted with
respect to basic locomotion, sensing and actuation capa-
bilities. Our approach is less conservative than current
approaches that impose a separation between agents, and is
computationally cheaper than explicitly modeling all possi-
ble obstacles in the environment. If no controller is found
that satisfies the specification, the approach automatically
generates the needed assumptions on deadlock to render
the specification realizable and communicates these to the
user. The approach generates controllers that accommo-
date deadlock between robots or with dynamic obstacles
independently of the precise number of obstacles present,
and we have shown that the generated controllers are cor-
rect with respect to the original specification. Experiments
with ground and aerial robots demonstrate collision avoid-
ance with other agents and obstacles, satisfaction of a task,
deadlock resolution and livelock-free motion. Future work
includes optimizing the set of revisions and decentralizing
the synthesis.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., & Siegwart,
R. (2010). Optimal reciprocal collision avoidance for multiple non-

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Auton Robot

holonomic robots. In Proceedings of the international symposium
on distributed autonomous robotics systems.

Alonso-Mora, J., Gohl, P., Watson, S., Siegwart, R., & Beardsley, P.
(2014). Shared control of autonomous vehicles based on velocity
space optimization. In /[EEE international conference on robotics
and automation (ICRA).

Alonso-Mora, J., Naegeli, T., Siegwart, R., & Beardsley, P. (2015).
Collision avoidance for aerial vehicles in multi-agent scenarios.
Autonomous Robots, 39(1), 101-121.

Alur, R., Moarref, S., & Topcu, U. (2013). Counter-strategy guided
refinement of GR(1) temporal logic specifications. In Formal meth-
ods in computer-aided design (FMCAD) (pp. 26-33).

Bento, J., Derbinsky, N., Alonso-Mora, J., & Yedidia, J. S. (2013).
A message-passing algorithm for multi-agent trajectory planning.
In Annual conference on neural information processing systems
(NIPS).

Bhatia, A., Kavraki, L., & Vardi, M. (2010). Sampling-based motion
planning with temporal goals. In IEEE international conference
on robotics and automation (ICRA).

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., & Sa’ar, Y. (2012).
Synthesis of reactive (1) designs. Journal of Computer and System
Sciences, 78(3), 911-938.

Chen, Y., Ding, X. C., Stefanescu, A., & Belta, C. (2012). Formal
approach to the deployment of distributed robotic teams. /IEEE
Transactions on Robotics, 28(1), 158-171.

Cirillo, M., Uras, T., & Koenig, S. (2014). A lattice-based approach to
multi-robot motion planning for non-holonomic vehicles. In Pro-
ceedings of the IEEE/RSJ international conference on intelligent
robots and systems (IROS). Chicago.

DeCastro, J., Ehlers, R., Rungger, M., Balkan, A., & Kress-Gazit, H.
(2016). Automated generation of dynamics-based runtime cer-
tificates for high-level control. Discrete Event Dynamic Systems.
doi:10.1007/s10626-016-0232-7.

DeCastro, J. A., Alonso-Mora, J., Raman, V., Rus, D., & Kress-Gazit,
H. (2015). Collision-free reactive mission and motion planning for
multi-robot systems. In Proceedings of the international sympo-
sium on robotics research (ISRR).

Deits, R., & Tedrake, R. (2014). Computing large convex regions of
obstacle-free space through semidefinite programming. In Work-
shop on the algorithmic fundamentals of robotics.

Dimarogonas, D. V., Frazzoli, E., & Johansson, K. (2012). Distributed
event-triggered control for multi-agent systems. /EEE Transac-
tions on Automatic Control, 57(5), 1291-1297.

Ehlers, R. (2013). Symmetric and efficient synthesis, Ph.D. thesis. Saar-
land University.

Ehlers, R., Knighofer, R., & Bloem, R. (2015). Synthesizing cooperative
reactive mission plans. In Intelligent robots and systems (IROS),
2015 IEEE/RSJ international conference on.

Ehlers, R., & Raman, V. (2016). Slugs: Extensible GR(1) synthesis. In
Computer aided verification—28th international conference, CAV
2016, Toronto, ON. Proceedings, Part Il (pp. 333-339). doi:10.
1007/978-3-319-41540-6_18.

Ehlers, R., & Topcu, U. (2014). Resilience to intermittent assumption
violations in reactive synthesis. In Proceedings of the international
conference on Hybrid systems: Computation and control.

Finucane, C., Jing, G., & Kress-Gazit, H. (2010). LTLMoP: Exper-
imenting with language, temporal logic and robot control. In
Proceedings of the IEEE/RSJ international conference on intel-
ligent robots and systems.

Hsu, D., Latombe, J. C., & Kurniawati, H. (2007). On the probabilistic
foundations of probabilistic roadmap planning. The International
Journal of Robotics Research, 25(7), 627-643.

Jing, G., Ehlers, R., & Kress-Gazit, H. (2013). Shortcut through an evil
door: Optimality of correct-by-construction controllers in adver-
sarial environments. In 2013 IEEE/RSJ international conference

on intelligent robots and systems (pp. 4796—4802). doi:10.1109/
IROS.2013.6697048.

Karaman, S., & Frazzoli, E. (2009). Sampling-based motion planning
with deterministic p-calculus specifications. In IEEE conference
on decision and control (CDC).

Knepper, R. A., & Rus, D. (2012). Pedestrian-inspired sampling-based
multi-robot collision avoidance. In RO-MAN (pp. 94-100). IEEE.

Kress-Gazit, H., Conner, D. C., Choset, H., Rizzi, A. A., & Pappas, G.
J. (2008a). Courteous cars. I[EEE Robotics Automation Magazine,
15(1), 30-38.

Kress-Gazit, H., Fainekos, G. E., & Pappas, G. J. (2008b). Translating
structured english to robot controllers. Advanced Robotics, 22(12),
1343-1359.

Kress-Gazit, H., Fainekos, G. E., & Pappas, G. J. (2009). Temporal logic
based reactive mission and motion planning. /[EEE Transactions
on Robotics, 25(6), 1370-1381.

LaValle, S. M., & Kauffner, J. J. (2001). Randomized kinodynamic
planning. The International Journal of Robotics Research, 20(5),
378-400.

Li, W., Dworkin, L., & Seshia, S. A. (2011). Mining assumptions for
synthesis. In IEEE/ACM international conference on formal meth-
ods and models for codesign.

Liu, J., Ozay, N., Topcu, U., & Murray, R. M. (2013). Synthesis of
reactive switching protocols from temporal logic specifications.
IEEE Transactions on Automatic Control, 58(7), 1771-1785.

Livingston, S. C., Prabhakar, P, Jose, A. B., & Murray, R. M. (2013).
Patching task-level robot controllers based on a local p-calculus
formula. In Proceedings of the IEEE international conference on
robotics and automation (ICRA). Karlsruhe.

Loizou, S. G., & Kyriakopoulos, K. J. (2004). Automatic synthesis of
multiagent motion tasks based on LTL specifications. In Proceed-
ings of IEEE conference on decision and control (CDC).

Maly, M., Lahijanian, M., Kavraki, L. E., Kress-Gazit, H., & Vardi, M.
Y. (2013). Iterative temporal motion planning for hybrid systems in
partially unknown environments. In Proceedings of the ACM inter-
national conference on hybrid systems: Computation and control
(HSCC) (pp. 353-362). Philadelphia, PA: ACM.

Mellinger, D., Kushleyev, A., & Kumar, V. (2012). Mixed-integer
quadratic program trajectory generation for heterogeneous quadro-
tor teams. In IEEE international conference on robotics and
automation.

Pivtoraiko, M., Knepper, R. A., & Kelly, A. (2009). Difterentially con-
strained mobile robot motion planning in state lattices. Journal of
Field Robotics, 26(3), 308-333.

Raman, V. (2014). Reactive switching protocols for multi-robot high-
level tasks. In IEEE/RSJ international conference on intelligent
robots and systems.

Raman, V., & Kress-Gazit, H. (2014). Synthesis for multi-robot con-
trollers with interleaved motion. In /EEE international conference
on robotics and automation.

Raman, V., Piterman, N., & Kress-Gazit, H. (2013). Provably correct
continuous control for high-level robot behaviors with actions of
arbitrary execution durations. In /EEE international conference on
robotics and automation.

Saha, I., Ramaithitima, R., Kumar, V., Pappas, G. J., & Seshia, S. A.
(2016). Implan: Scalable incremental motion planning for multi-
robot systems. In Proceedings of the 7th international conference
on cyber-physical systems (ICCPS).

Schillinger, P., Biirger, M., & Dimarogonas, D. V. (2016). Decompo-
sition of finite LTL specifications for efficient multi-agent plan-
ning. In /3th international symposium on distributed autonomous
robotic systems. Springer Tracts in Advanced Robotics.

Tumova, J., & Dimarogonas, D. V. (2015). Decomposition of multi-
agent planning under distributed motion and task LTL specifica-
tions. In 54th IEEE conference on decision and control, CDC 2015.
Osaka: IEEE (pp. 7448-7453). doi:10.1109/CDC.2015.7403396,

@ Springer

http://dx.doi.org/10.1007/s10626-016-0232-7
http://dx.doi.org/10.1007/978-3-319-41540-6_18
http://dx.doi.org/10.1007/978-3-319-41540-6_18
http://dx.doi.org/10.1109/IROS.2013.6697048
http://dx.doi.org/10.1109/IROS.2013.6697048
http://dx.doi.org/10.1109/CDC.2015.7403396

Auton Robot

Ulusoy, A., Smith, S. L., Ding, X. C., Belta, C., & Rus, D. (2013). Opti-
mality and robustness in multi-robot path planning with temporal
logic constraints. The International Journal of Robotics Research,
32(8), 889-911.

van den Berg, J., Guy, S. J., Lin, M., & Manocha, D. (2009). Recip-
rocal n-body collision avoidance. In International symposium on
robotics research (ISRR).

Vardi, M. Y. (1996). An automata-theoretic approach to linear temporal
logic. In Logics for concurrency (pp. 238-266). Berlin: Springer.

Wong, K. W., Ehlers, R., & Kress-Gazit, H. (2014). Correct high-level
robot behavior in environments with unexpected events. In Pro-
ceedings of robotics science and systems.

Wongpiromsarn, T., Topcu, U., & Murray, R. (2012). Receding horizon
temporal logic planning. [EEE Transactions on Automatic Control,
57(11), 2817-2830.

Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., & Rus, D.
(2013). Incremental synthesis of control policies for heterogeneous
multi-agent systems with linear temporal logic specifications.
In [EEE international conference on robotics and automation
(ICRA).

Javier Alonso-Mora is an assis-
tant professor at the Delft Techni-
cal University, Netherlands. Pre-
viously he was a Postdoctoral
Associate at the Computer Sci-
ence and Artificial Intelligence
Laboratory (CSAIL) of MIT,
USA. He received the M.Sc.
and Ph.D. degrees in Robotics
from ETH Zurich, Switzerland
in 2010 and 2014 respectively.
Since 2009 he is also affiliated
with Disney Research Zurich.
His main research interest is in
motion planning and control of
autonomous multi-robot systems. Towards the smart cities of the future,
he develops constrained optimization algorithms that span across mul-
tiple applications, such as self-driving cars, automated factories, aerial
vehicles and intelligent transportation systems.

Jonathan A. DeCastro received
the B.S. and M.S. degrees in
mechanical engineering from
Virginia Polytechnic Institute
and State University, Blacksburg,
VA, USA. He is currently work-
ing toward the Ph.D. degree in
mechanical and aerospace engi-
neering at Cornell University,
Ithaca, NY, USA. After receiv-
ingthe B.S. and ML.S. degrees and
prior to Cornell University, he
spent several years in the indus-
try as an Aerospace Engineer
with the National Aeronautics
and Space Administration and Impact Technologies (now Sikorsky).
His current research focuses on synthesis of provably correct controllers
for complex robotics.

@ Springer

Vasumathi Raman is a post-
doctoral scholar in the Depart-
ment of Computing and Math-
ematical Sciences at the Cali-
fornia Institute of Technology.
Her research explores algorith-
mic methods for designing and
controlling autonomous systems,
guaranteeing correctness with
respect to user-defined specifi-
cations. She earned a Ph.D. in
Computer Science from Cornell
University and a B.A. in Com-
puter Science and Mathematics
from Wellesley College.

Daniela Rus is the Andrew
(1956) and Erna Viterbi Pro-
fessor of Electrical Engineer-
ing and Computer Science and
Director of the Computer Sci-
ence and Artificial Intelligence
Laboratory (CSAIL) at MIT. Her
research interests are in robotics,
mobile computing, and big data.
The key focus of her research
is to develop the science of net-
worked/distributed/collaborative
robotics, by asking: how can
many machines collaborate to
achieve a common goal? She is
a Class of 2002 MacArthur Fellow, a fellow of ACM, AAAI and IEEE,
and a member of the National Academy of Engineering. She earned
her Ph.D. in Computer Science from Cornell University. Prior to join-
ing MIT, she was a professor in the Computer Science Department at
Dartmouth College.

Hadas Kress-Gazit received her
Ph.D. in Electrical and Systems
Engineering from the University
of Pennsylvania in 2008. She
is currently an Assistant Pro-
fessor at the Sibley School of
Mechanical and Aerospace Engi-
neering at Cornell University.
Her research focuses on creating
verifiable robot controllers for
complex high-level tasks using
logic, verification methods, syn-
thesis, hybrid systems theory and
computational linguistics. She is
a recipient of the NSF CAREER
award (2010) and the DARPA Young Faculty Award (2012).

	Reactive mission and motion planning with deadlock resolution avoiding dynamic obstacles
	Abstract
	1 Introduction
	1.1 Approach
	1.2 Contribution
	1.3 Related work
	1.3.1 Reactive synthesis for mission planning
	1.3.2 Specification revisions
	1.3.3 Motion planning in dynamic environments

	1.4 Organization

	2 Preliminaries
	2.1 Linear temporal logic
	2.2 LTL encoding for multi-robot tasks

	3 Problem formulation
	4 Approach
	4.1 Offline
	4.1.1 Mission planning
	4.1.2 Motion planning

	4.2 Online
	4.3 Integration of mission and motion planning

	5 Offline synthesis: resolving deadlock
	5.1 Deadlock resolution
	5.2 Resolving deadlock when m = 0
	5.3 Resolving deadlock when m = 1
	5.4 Resolving deadlock when m > 1

	6 Offline synthesis: environment assumptions and coordination
	6.1 Runtime certificates for the environment
	6.2 Coordination between robots

	7 Online local motion planning
	7.1 Overview
	7.2 Robot dynamics
	7.3 Constraints
	7.3.1 Robot dynamics
	7.3.2 Avoidance of other agents
	7.3.3 Avoidance of static obstacles
	7.3.4 Avoiding incorrect region transitions

	7.4 Optimization
	7.5 Deadlock detection

	8 Theoretical guarantees
	8.1 Correctness with respect to robot dynamics
	8.2 Collision-free motion
	8.3 Correctness with respect to the task specification
	8.4 Computational complexity

	9 Experiments and simulations
	9.1 Synthesis and revisions
	9.2 Scalability with respect to dynamic obstacles
	9.3 Performance evaluation
	9.4 3D problem domain
	9.5 Physical experiments

	10 Conclusion
	References

