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Fig. 1. We propose a method to jointly optimize 3D trajectories and control inputs for automated drone videography in dynamic scenes. Taking user specified
high-level plans and screen-space framing objectives as input(a), our method generates trajectories that respect the physical limits of the quadrotor and
constraints imposed by the environment while fulfilling the high-level plan and aesthetic objectives as well as possible (b). The method automates single-shot
recording of complex multi-view scenes in clu�ered and dynamic environments (d+c).

We propose a method for automated aerial videography in dynamic and clut-
tered environments. An online receding horizon optimization formulation
facilitates the planning process for novices and experts alike. �e algorithm
takes high-level plans as input, which we dub virtual rails, alongside in-
teractively de�ned aesthetic framing objectives and jointly solves for 3D
quadcopter motion plans and associated velocities. �e method generates
control inputs subject to constraints of a non-linear quadrotor model and
dynamic constraints imposed by actors moving in an a priori unknown
way. �e output plans are physically feasible, for the horizon length, and
we apply the resulting control inputs directly at each time-step, without
requiring a separate trajectory tracking algorithm. �e online nature of the
method enables incorporation of feedback into the planning and control loop,
makes the algorithm robust to disturbances. Furthermore, we extend the
method to include coordination between multiple drones to enable dynamic
multi-view shots, typical for action sequences and live TV coverage. �e
algorithm runs in real-time on standard hardware and computes motion
plans for several drones in the order of milliseconds. Finally, we evaluate
the approach qualitatively with a number of challenging shots, involving
multiple drones and actors and qualitatively characterize the computational
performance experimentally.
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1 INTRODUCTION
Accessible quadrotor hardware now allows for end-user creation of
aerial videography which previously resided �rmly in the realm of
high-end �lm studios. However, designing trajectories that ful�ll
aesthetic objectives and respect the physical limits of real robots
remains a challenging task both for non-experts and professionals.
Especially when �lming in dynamic environments with moving
subjects, the operator has to consider and trade o� many degrees of
freedom relating to subjects’ motions, aesthetic considerations and
the physical limits of the robot simultaneously, rendering manual
approaches infeasible.

Existing methods for planning of quadcopter trajectories [Geb-
hardt et al. 2016; Joubert et al. 2015; Roberts and Hanrahan 2016]
allow users to specify shots in 3D virtual environments and to gen-
erate �ight plans automatically. Typically, this is formulated as
an o�ine optimization problem which generates a timed reference
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trajectory and control input parameters from user-speci�ed 3D posi-
tions and camera look-at directions, subject to a model of the robot
dynamics. �e resulting plan is then tracked online using a feedback
controller. Due to this feedforward, open-loop nature for trajec-
tory planning and tracking, such algorithms are not well suited
to handle drastic environmental disturbances [Chen et al. 1992],
typical for clu�ered environments with moving subjects. �erefore
they are restricted to �lming of mostly static scenes. In contrast,
dynamic scenes require continuous re-planning in real-time to guar-
antee collision-free trajectories and record the intended footage, for
example to keep a moving actor properly framed.

In this paper, we propose a general method for planning of aerial
videography in clu�ered and dynamic environments. �e method
jointly optimizes 3D motion paths, the associated velocities and
control inputs for a �ying camera in an online fashion. Our method
takes user speci�ed, high-level plans alongside image-based framing
objectives as input (Fig. 1, a+b). �e input paths do not need to be
physically feasible in the sense of [Roberts and Hanrahan 2016],
since our method only uses them for guidance. Furthermore, the
inputs can be updated interactively at every time-step by the user.
�e algorithm adapts the high-level plans in real-time to produce
dynamically feasible trajectories for the drones. It takes the motion
of the �lmed subjects into consideration and inherently accounts
for the dynamic constraints due to the actuation limits of the drone,
which is crucial to generate collision-free paths.

�ese multiple objectives and constraints are expressed math-
ematically in a non-linear model predictive contouring control
(MPCC) formulation, solving for quadrotor states and control in-
puts online and simultaneously in a receding horizon fashion: �e
�rst control move of the plan is applied to the quadrotors, and
the entire trajectory is re-computed at the next sampling instance.
Solving non-linear MPCC problems numerically at the sampling
rates required by fast mechanical systems, i.e. on the order of a few
milliseconds, is a computationally demanding task and solving such
problems in real-time has only recently become feasible thanks to
specialized solvers [Domahidi and Jerez 2016].

Furthermore, the algorithm allows for planning of multi-angle
shots and for the positioning of several quadrotors to �lm one or
more dynamic subjects simultaneously. �is is a common approach
in �lms and TV broadcasts when depicting moving subjects, such
as in action and sports sequences. In such se�ings, it is desirable
to provide di�erent views of the subjects, which have to be �lmed
in a single take, since humans struggle in precisely reproducing
their motions from the recorded footage. To enable such shots, we
extend our method to produce collision-free paths between multiple
drones and subjects simultaneously. �e formulation also minimize
mutual visibility of multiple cameras so that the recorded shots are
unobstructed and do not contain the other �ying cameras.

We demonstrate our method via several challenging, and in some
cases previously impossible shots, involving multiple, moving sub-
jects and using several �ying cameras simultaneously. Furthermore,
we report initial feedback elicited from an expert camera operator.
Finally, we characterize the computational cost of our method in
controlled experiments and show that it is capable of generating
feasible trajectories in the order of milliseconds, even for multiple
subjects and multiple drones.

2 RELATED WORK
Aerial videography design tools: Various tools support the task of

planning quadrotor-based video shots. Commercially available ap-
plications are o�en limited to placing waypoints on a 2D map [apm
2015; dji 2015; lit 2015] and some consumer-grade drones allow
to interactively control the quadrotor’s camera as it tracks a pre-
determined path (e.g., [3dr 2015]). �ese tools generally do not
provide means to ensure feasibility of the resulting plans. In conse-
quence, several algorithms for the planning of physically feasible
quadcopter trajectories have been proposed. Such tools allow for
planning of aerial shots in 3D virtual environments [Gebhardt et al.
2016; Joubert et al. 2015; Roberts and Hanrahan 2016] and employ
o�ine optimization methods to ensure that both aesthetic objec-
tives and robot modelling constraints are considered. Joubert et
al.’s method [2015] computes control inputs along a pre-de�ned
path and detects violations of the robot model constraints. However
correcting these violations is o�oaded to the user. Gebhardt et al.
[2016] generates feasible trajectories subject to a linearized quadro-
tor model and hence requires conservative limits on the control
inputs. �e method proposed in [Roberts and Hanrahan 2016] takes
physically infeasible trajectories and computes the closest possible
feasible trajectory by re-timing the user-de�ned velocities subject
to a non-linear quadrotor model.

While [Joubert et al. 2015] allows to adjust the velocity along the
planned trajectory at execution time, all of the above methods are
o�ine and convert the user’s desired path into a time-dependent
reference trajectory which is then tracked by a separate feedback
controller at �ight-time. Furthermore, generating control inputs
over the length of the entire trajectory is computationally expensive
and existing methods are not capable of re-planning a suitable trajec-
tory online, for example to avoid collisions with dynamic obstacles
or to �lm targets that move in unpredictable ways.

�e dimensionality of the problem can be reduced by planning
in the torus-subspace [Lino and Christie 2015] to a�ain real-time
performance [Galvane et al. 2016; Joubert et al. 2016], albeit at the
cost of loosing generality in the types of plans that can be generated.
Very recently a model predictive control (MPC) formulation to opti-
mize cinematographic constraints, such as visibility and position
on the screen, subject to robot constraints in real-time has been
proposed [Nägeli et al. 2017]. However, the method is limited to
a single drone and, more importantly, only computes local trajec-
tories and can not handle user-de�ned paths as input. In contrast,
our method integrates high-level input paths for guidance of an
online trajectory planner, applies to multiple drones and optimizes
for inter-drone collision-freedom and suppresses mutual visibility.

Camera control in virtual environments: Our problem is similar to
that of automatic camera placement in virtual environments (VE),
which has been studied extensively in computer graphics. We refer
to the comprehensive review in [Christie et al. 2008], with the ma-
jority of methods using discrete optimization formulations. Many of
these methods de�ne viewing constraints in screen-space for single
subjects [Drucker and Zeltzer 1994; Gleicher and Witkin 1992; Lino
et al. 2011] and two actors shot simultaneously [Lino and Christie
2015], citing be�er usability as main motivation. Our approach is
related to these approaches in that it minimizes projection error
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of subjects in screen-space to produce desired framing e�ects. Fi-
nally, we take inspiration in Christie et al. [2002] in that we take
geometric primitives as input paths and ‘warp’ these in real-time to
adhere to model, environment and aesthetic constraints. However,
virtual environments are not limited by real-world physics and ro-
bot constraints and hence can produce arbitrary camera trajectories,
velocities and viewpoints.

Trajectory optimization and tracking control: �e problem of tra-
jectory generation for dynamical systems is well studied in the
computer graphics [Geijtenbeek and Pronost 2012] and robotics lit-
erature (cf., [Be�s 2010]). Traditionally, sequences of input positions
are converted to time-dependent reference trajectories using an ap-
propriate trajectory optimization method and model of the system
dynamics. Approaches encoding the system dynamics as a set of
equality constraints are known as spacetime constraints in graphics
[Rose et al. 1996; Witkin and Kass 1988] and direct collocation in
robotics [Be�s 2010] but this approach can lead to slow convergence
when optimizing over the entire trajectory, in particular for systems
with highly non-linear dynamics such as quadrotors.

Exploiting the di�erential �atness of quadrotors in the output
space, several methods exist for the generation of trajectories for ag-
gressive Micro Aerial Vehicle (MAV) �ight [Bry et al. 2015; Mellinger
and Kumar 2011], for generating collision-free trajectories via con-
vex optimization [Alonso-Mora et al. 2015] or for state interception
with a quadrotor [Mueller and D’Andrea 2013]. �e previously
discussed videography tools extend the method in [Mellinger and
Kumar 2011].

An alternative to optimization-based methods are sampling-based
approaches, which leverage rapidly expanding random trees (RRT)
[Karaman and Frazzoli 2011] or exact algorithms such as the A*

algorithm to �nd an optimal or near-optimal path through clu�ered
environments [MacAllister et al. 2013; Saunders et al. 2005]. Re-
gardless of the trajectory planning algorithm it is necessary to use
feedback controllers to track the reference trajectory accurately.
However, tracking open loop reference trajectories inherently in-
volves the risk of performance deterioration and constraint violation
if disturbances or modeling errors arise [Chen et al. 1992].

Online path planning and contouring control: To avoid issues as-
sociated with tracking based methods and to reduce reliance on
feasibility of the high-level path planner, uni�ed approaches have
been proposed that address path optimization and path following
jointly. Such methods determine the evolution of the path and the
actuator inputs simultaneously using available feedback. It has
been shown that appropriate online path-following can alleviate
performance limitations for both linear and non-linear systems
[Aguiar et al. 2008]. In particular, Model Predictive Control (MPC)
[Faulwasser et al. 2009] approaches have been used successfully for
2D industrial contouring [Lam et al. 2010] and 2D RC racing [Liniger
et al. 2015] applications, in which time-optimal progress along the
path is the main objective. Our work is inspired by this particular
MPCC formulation but to the best of our knowledge we are the �rst
to adapt and extend this framework to aerial videography (in 3D
space). �is is inherently a di�erent problem: instead of solving for
the sole objective of following a trajectory in a time optimal fash-
ion [Lam et al. 2010; Liniger et al. 2015] or tracking a trajectory with

pre-determined timings [Roberts and Hanrahan 2016], we determine
how fast and locally where to the quadrotor should �y based on
the dynamics of the �lmed subjects and the user speci�ed framing
objectives. We then solve for the resulting state-space trajectories
via online MPCC. �e proposed method is particularly well-suited
for dynamic shots and �lming in densely clu�ered environments
because it can �nd, in the least-squares sense, an optimized trade-
o� between high-level user plans and a priori unknown actor and
environmental motion.

3 METHOD
Our real-time method, summarized in Alg. 1, enables the automation
of aerial shots in clu�ered and dynamic environments with one
or more subjects to be �lmed. �e method is general enough to
account for both global guidance provided by the user (e.g., a camera-
man) as well as to account for real-time constraints and aesthetic
requirements imposed by the scene being recorded. In particular,
we account for the following:

• Coarsely follow a 3D guidance path for the �ying cam-
era. We will refer to this path as “virtual rails” in analogy
to physical camera cranes and dollies. �is path may be
adjusted and moved online (cf. Fig. 3).

• Satisfy cinematographic objectives, again speci�ed interac-
tively, such as the framing or size of the object on screen.

• Respect the dynamic model and environmental constraints
to ensure feasibility of the resulting plan.

From these objectives, we formulate a receding horizon non-linear
optimization problem under constraints that can be solved with
state-of-the-art so�ware. �e proposed method computes and adapts
in real-time a feasible and collision-free trajectory to record a dy-
namic scene as close as possible to the user-provided input speci�-
cation.

Algorithm 1 Compute drone state
1: x0 ←initialize horizon(nr. subjects)
2: loop
3: retrieve measurements and predict states: . Sec. 3.1
4: x←KalmanFilter(zquad)
5: [ps , Ûps ] ←KalmanFilter(zsub)
6: retrieve dynamic inputs from user:
7: Ss ←framing setpoints from UI . Sec. 3.2
8: Sc ←input trajectories from UI . Sec. 3.4
9: solve for path and quadrotor con�guration:

10: s(θ ) ←compute virtual rail(ps , Ûps , Ss , Sc ) . Sec. 3.4
11: update cost & constraints, solve MPCC Eq. (8) . Sec. 3.5
12: apply inputs(u0)
13: end loop

3.1 Dynamical models
We introduce the models used in our formulation. We do not include
a full notation section and refer to Appendix A for completeness.

Subjects to be filmed: Let ps ∈ R3 denote the position of a subject
to be �lmed and Ûps ∈ R3 its velocity. �e full state of the subject is
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then denoted by ξ = (ps , Ûps ) ∈ R6, with simple linear dynamics
Ûξ = (Ûps , 0),

A standard Kalman �lter is used to estimate this state and to update
it with measured position data. Further details can be found in
[Nägeli et al. 2017].

Flying camera: Our method is agnostic to the particular quadrotor
or drone hardware employed. It is based on a mathematical model
in form of a di�erentiable function f : Rnx×nu → Rnx , denoting a
discrete-time state update equation of the �ying camera,

xk+1 = f (xk , uk ) ,

where nx are the dimensions of the states x ∈ Rnx and nu is the
dimensionality of inputs u ∈ Rnu and k denotes the discrete time
instant. Typically, the state x of the �ying camera includes at least
the position of the camera pc ∈ R3, its velocity Ûpc ∈ R2 and its
orientation, i.e. roll, pitch and yaw, as well as the gimbal pitch θд
and yawψд angle. We use an unmodi�ed Parrot Bebop2 and include
dynamics of the (so�ware) gimbal with resulting dimensionalities
nx = 10 and nu = 6 (see Appendix B).

We denote by X and U the set of admissible states and inputs.
�ese can be derived from physical limits of the environment and by
the internal constraints of the �ying camera hardware, e.g. bounds
on vertical and horizontal velocities as well as on roll and pitch
angles. We obtained the limits from the documentation of the Parrot
SDK [Par 2015]. While each quadrotor model has di�erent values of
these bounds, in general such bounds exist and can be assumed to
be known for a particular model. �e trajectory generation method
should ensure xk ∈ X and uk ∈ U for all k .

3.2 Actor-driven framing objectives
When planning aerial shots, one has to consider both the camera
motion and how objects appear in the image. We control this fram-
ing directly in the 2D image space via several cost terms similar to
[Nägeli et al. 2017] and inspired by Arijon’s ‘grammar’ of �lm [1976].
Here, we only provide a brief intuition and give detailed derivations
for completeness in Appendix C. We allow the user to interactively
specify the desired 2D position of the actor in the screen and to
specify the relative distance of the subject to the camera via the
projected screen size. �ese two metrics already provide control
over the most important framing objectives and can be adjusted
in real-time via a GUI. Incorporating further framing objectives is
straightforward [Nägeli et al. 2017].

Image space locations are controlled via a quadratic error measure
ci : Rnx+6 → R+ on the residual ϵm between the actual and desired
viewing directions of the camera:

ci(x, ξ ) = ‖ϵm ‖Qm with ϵm =
rccs
‖rccs ‖

−
rcd
‖rcd ‖

, (1)

where rccs is the ray from the camera to the target and rcd = (m, 1) ∈
R3 is the vector through the desired screen position. �e pixel
coordinates md are given by the camera intrinsics (see App. C).

Similarly, the size of objects in the image is controlled via the
quadratic error function cd : R7 → R+ on the residual between
the actual and desired Euclidean distance, σ and σd , between the

position of the �lmed subject ps and that of the camera pc :

cd(ps , pc ,σd ) = ‖ ‖ps − pc ‖2 − σd ‖Qσ . (2)

Note that minimizing these costs will require actuation of the robot
and hence the actor’s natural motions cause the robot to move in
order to minimize these costs.

3.3 Subject collision avoidance
To guarantee that the �ying camera does not collide with moving
subjects, we introduce a collision avoidance constraint. We model
the to be avoided region using an ellipse E(ps ) around each subject
and ask the method to compute quadrotor positions p that lie outside
or on its boundary, i.e. the non-convex set

Ē(ps , ζ ) := R3 \ E(ps )

:= {p ∈ R3 | (p − ps )T E(p − ps ) ≥ 1 − ζ }, (3)

is the admissible region for camera positions p for some positive
de�nite matrix E. �e scalar ζ ≥ 0 is a slack variable necessary
in practice to ensure �nding a solution (so� constraint). It can be
shown that under su�ciently high penalization of a linear cost
such slack variables, the solution of the hard constrained problem,
i.e. ζ ≡ 0, is recovered when it exists; otherwise, a plan with
minimum deviation will be computed by the optimizer [Kerrigan
and Maciejowski 2000]. Such use of slack variables to relax hard
constraints is common practice in the MPC literature. We use a 3-4
orders of magnitude higher penalization than for remaining costs.
Note that unusually high values of the slack variables, indicating
infeasible solutions or exhaustion of the computational budget, can
be detected and handled, for example by triggering an emergency
landing.

3.4 3D virtual camera rails
�e above objectives and constraints locally determine the position
and orientation of the �ying camera in relationship to the subjects in
the scene. To control global motion, we use virtual rails, an analogy
to physical camera rails and camera cranes, routinely used on �lm
sets to produce smooth camera motion (see Chapter 22 in [Daniel
Arijon 1976]). A virtual rail is a user-speci�ed geometric path, or a
set of positions in 3D space, which may be modi�ed interactively.
�is process is schematically illustrated in Fig. 3. To incorporate
virtual rails into our method, we �rst approximate them by smooth
curves and use an MPCC path following approach to generate a
feasible path close to the user-de�ned rails.

Smooth path approximation s(θ ) of virtual rails: At each time-
step we compute a di�erentiable path s(θ ) given by a second order
approximation of the input. We then seek to follow this smooth path
as closely as possible. To do so we want to minimize the projection
of the drone’s position pq onto the path:

θ∗ = arg min
θ
‖s(θ ) − pq ‖. (4)

�is projection yields the closest distance to the path which is
commonly denoted as the contouring error ϵc , illustrated Fig. 2,
A. However, this projection is not suited as error measure within
an optimization formulation since it is an optimization problem
itself (over the entire path) and cannot be solved analytically. In
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Fig. 2. Exact projection of the quadrotor position onto the virtual rail (A)
and it’s approximation in the local linearized frame (B).

2D MPCC it is common practice to approximate ϵc via separation
of contouring and lag-error. �e lag-error ϵl =

∫ θk
θ ∗ s(x)dx is the

integral over the path segment between the desired location on the
path θ∗ and the location θ found by solving the �nal MPCC problem
(Eq. (8)).

Error measures: Previous work for planar (2D) motion [Lam et al.
2010; Liniger et al. 2015] uses expressions for the contouring and lag
error that are not directly transferable to the 3D case. We propose
formulations suitable for 3D which also separate lag from contour
error. We approximate ϵl , ϵc by projecting the current MAV position
pq onto the tangent vector n, with origin at the current path position
s(θ ). �e relative vector between pq and the tangent point s can be
wri�en as rpq s := s(θ ) − pq . Further the derivative of the path s(θ )

with respect to the path parameter θ is de�ned as: s′ := ∂s(θ )
∂θ which

de�nes the normalized tangent vector n = s′
‖s′ ‖ . �e approximation

of the lag error is then given by:

ϵ̂l (pq ,θ ) = ‖rTpq sn‖, (5a)

�e approximations of the contour error is computed by:

ϵ̂c (pq ,θ ) = ‖rpq s −
(
rTpq sn

)
n‖, (5b)

With these error measures in place, we de�ne a cost function cp :
R4 → R+ which represents the trade-o� between path following
accuracy and progress Ûθ along the path:

cp(pq ,θ , Ûθ ) =
[
ϵ̂l (pq ,θ )
ϵ̂c (pq ,θ )

]T
Q

[
ϵ̂l (pq ,θ )
ϵ̂c (pq ,θ )

]
− β Ûθ , (6)

where Q ∈ S2
+ is a positive de�nite weight matrix (typically diago-

nal) chosen by the user, and β ≥ 0 is a scalar weight such that:
• If β = 0: the camera is forced to stay on the virtual rail, but

its position along the path is free running. In this case the
movement along the rail is entirely subject driven.

• If β > 0: the camera will automatically move along the rail.
�e movement velocity can be controlled by the user and
will be traded o� with framing objectives.

Fig. 2, B illustrates that as ϵ̂l (pq ,θ ) becomes small the approxi-
mation quality of the contour error increases. In particular when
ϵ̂l (pq ,θ ) → 0 then ϵ̂c (pq ,θ ) ≈ ϵc . We therefore typically chose a
high penalty on ϵ̂l (pq ,θ ). For the contouring error we allow some
�exibility in order to account for the subject-driven framing objec-
tives and constraints since it might be desirable to deviate locally

Fig. 3. Online warping of camera reference path. The original reference
(red) is changed by the user (blue) at runtime, causing the contour error ϵc

(in green) to increase for the initial stages of the planning horizon (B). ϵc

quickly converges to the changed reference path (B).

from the virtual rail in favor of these other objectives (cf. Fig. 3, B).
�e relative weight of the objectives can be set by the user via an
appropriate tuning of the cost function Eq. (6).

3.5 MPCC Formulation
We take a linear combination of the error measures for image loca-
tion, Eq. (1), and size, Eq. (2), and the path following cost, Eq. (6), to
de�ne a stage cost that serves as a performance index for the path
generation, following and videography goals of the method:

Jk = aici(xk , ξk ) + adcd(ps k , pc k ,σd ) + apcp(pqk ,θk ,
Ûθk ), (7)

where the scalar weight parameters ai ,ad ,ap > 0 can be set inter-
actively to control the (relative) importance of the di�erent terms.
�e trajectory and control inputs of the drone at each time-step are
computed via the solution of the following N -step �nite horizon
constrained non-linear optimization problem at time instant t :

minimize
u,x,θ, Ûθ,ζ

N−1∑
k=0

(
Jk + u

T
k Ruk

)
+ aN JN + λ‖ζ ‖∞ (8)

subject to x0 = x̂(t) (Initial state)

θ0 = θ̂ (t) (Initial path parameter)
xk+1 = f (xk , uk ) (Dynamics)

θk+1 = θk + ÛθkTs (Progress virtual rail)
pqk < E(ps k , ζk ) ∀s (Collision avoidance)
0 ≤ θk ≤ L (Path length)
xk ∈ X, (State constraints)
uk ∈ U, (Input constraints)
ζk ≥ 0, (Slack positivity)

where R ∈ Snu+ is a positive de�nite penalty matrix avoiding exces-
sive use of the control inputs. �e vector x̂(t) and the scalar θ̂ (t)
denote the (estimated or measured) values of the current states x
and θ , respectively. �e scalar Ts is the sampling time. �e scalar
aN > 0 is a weight parameter used to weight a so-called terminal
cost JN on the �nal stage. �is is common in �nite-horizon schemes
such as MPCC to mimic long horizons, approximating the in�nite
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Fig. 4. Schematic of collision between two quadrotors. (A) shows classical
priority based collision avoidance where the blue quadrotor has higher
priority than the red. (B) shows our solution with iterative sharing of
planned trajectories. This results in cooperative collision avoidance.

horizon solution. Finally, the scalar λ is a penalty parameter for
the slack variables associated with the so�ened obstacle avoidance
constraints. �e drone is actuated using the optimal inputs from
the �rst step u0. Importantly, a new trajectory is recomputed at
each time-step, taking updated sensor data, rail con�gurations and
user-speci�ed viewpoints into consideration.

4 MULTI-DRONE FLIGHT
In the previous section we discussed the proposed online trajectory
planning method for the case of a single quadrotor. In this section we
describe additional constraints and costs that allow for the �lming of
multi-view shots in a single take. For instance, when �lming highly
dynamic scenes, such as live sports, it is o�en desirable to provide
di�erent views of a subject as it moves through the environment,
requiring usage of several cameras to orchestrate views to allow for
spontaneous, non-scripted motion.

Collision avoidance with coordination: Further to avoiding col-
lisions with subjects, see Sec. 3.3, each drone now needs to avoid
collisions with the other drones that are videographing the scene.
�is becomes especially critical when �lming in clu�ered spaces
with li�le room to navigate and when the camera trajectories may
overlap and intersect.

In traditional priority planning each robot would avoid only the
robots of higher priority, leading to highly suboptimal trajectories
(Fig. 4, A), which can con�ict with ful�lling the cinematographic
objectives. In typical videography scenarios the multiple drones will
be centrally controlled or at least have a communication channel.
Leveraging this communication channel, our method is sequential
consensus, not priority based.

To this end we extend our algorithm to consider Eq. (3) for each
drone’s future states. In this scheme each drone receives the current
plans from all other drones and plans a collision-free trajectory
with respect to the complete set of plans. Further, to guarantee
safety, we assume that planning is performed sequentially and plans

Fig. 5. Schematic of the mutual visibility cost Eq. (10).

are communicated to all other drones a�er each planning iteration.
While in the �rst iteration this is equivalent to priority planning,
in the subsequent iterations it is not and leads to more cooperative
trajectories, illustrated in Fig. 4, B.

Formally, the non-convex set Ē(pjk , ζ
j ) is the admissible region

for drone position pq for all time-steps k ∈ {0,N } and for all drones
j ∈ {1,M} other than i:

Ē(pjk , ζ
j ) := R3 \ E(pjk ) (9)

where scalar ζ j ≥ 0 again are slack variables ensuring that a solution
is found in practice.

Mutual visibility: When �lming a multi-view scene it is desirable
to reduce visibility of other cameras. Our method can take this into
account by extending the stage-cost of Eq. (7) with an additional
term cv for each pair of drones, penalizing mutual visibility. �e
computation of this cost is schematically illustrated in Fig. 5 and
details of the derivation can be found in Appendix D. Here we
provide only an intuition for the procedure.

We approximate the camera’s view frustum by a bounding cone
and test for all other drones if their bounding sphere intersects the
bounding cone C . For this, we project the relative vector between
the drones i and j onto the view direction of drone i to a�ain the
distance to drone j along the viewing direction. We then compute
the signed distance dsurf from the position of drone j to the cone
surface at the intersection point pint and normal to the viewing
direction. If this distance is positive, then drone j is outside of the
viewing cone of drone i . �e stage cost is then

cv(xi , xj ) =

{
Qvd

2
surf if dsurf < 0

0 otherwise
, (10)

where xi is the state of drone i . �e cost cv is added to Eq. (7) with
a tunable weight Qv . �e resulting behavior is shown in Fig. 6.

MPCC Formulation: Algorithm 2 summarizes the procedure for
multiple quadrotors. At each time-step a new trajectory is computed
for each drone independently and sequentially, by solving the MPCC
problem of Eq. (8). For each neighboring drone, we add: a) the
collision constraints of Eq. (9), and b) the mutual visibility cost of
Eq. (10). Note that communicating motion plans, rather than relying
on estimates, can enable highly dynamic maneuvers.
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Algorithm 2 Multi-drone algorithm
Input: Trajectories Ti for all drones i ∈ {1,M} at time t − 1.
Input: Inputs [Ss , Sc , ps , Ûps ] from Algorithm 1.

1: for i ∈ {1,M} do
2: for j ∈ {1,M}, j , i do
3: compute collision avoidance constraints w.r.t Tj .
4: compute mutual visibility cost w.r.t j.
5: end for
6: Ti ← solve Eq. (8) with new constraints and costs.
7: end for

Fig. 6. Influence of penalizing mutual visibility. A and C: single subject
is filmed by two drones simultaneously, the first drone (green) is in the
field of view of the second drone. B and D: Enabling the mutual visibility
cost triggers re-planning of trajectory resulting in unobstructed view with
correctly framed subject.

5 EVALUATION AND DISCUSSION
Here we discuss quantitative and qualitative results and experiments
conducted to evaluate our method and its components.

5.1 Implementation Details
Our experiments are conducted on a standard desktop PC (�adcore
Intel i7 CPU@3.5 GHz). �e subjects and drones are tracked via a
Vicon motion capture system for indoors experiments. We solve
the MPCC problem via the FORCES Pro [Domahidi and Jerez 2016;
Domahidi et al. 2012] so�ware which generates fast solver code,
exploiting the special structure in the non-linear program (NLP).

�adrotor hardware: We use unmodi�ed Parrot Bebop2 quadro-
tors in all our experiments with an integrated electronic gimbal. All
communication between the drones and the host PC is handled via
ROS [�igley et al. 2009] and we directly send the control inputs
from the �rst time-step u0 computed in Eq. (8), without an additional
feedback controller for trajectory tracking on the drone.

Fig. 7. Solve times for horizon length N = 20 and 2 subjects with number
of drones varying from 1 - 4.

Initialization: �e problem of Eq. (8) is non-convex and therefore
initialization is a concern. We initialize the solver with the solution
vector computed at the previous time-step, perturbed by random
noise. Generally speaking, the method is robust to initialization
and we did not observe drastic changes in solve time even if the
initialization is drastically perturbed.

5.2 �antitative and qualitative experiments
Computational performance: To assess the computational perfor-

mance of the method we record overall solve time of the method
(Algorithm 1 and 2). We use �xed horizon length N = 20 and a
�xed number of two subjects and vary the number of drones from
1 - 4. During the experiment we use framing and mutual visibility
cost terms and enable collision avoidance constraints. Importantly
the rails used in this last experiment are designed to force collision
avoidance maneuvers between the drones. Fig. 7 shows that the
computational cost grows linearly with the number of drones. �is
is expected due to our sequential planning approach. �e colli-
sion avoidance and visibility optimization does not yield signi�cant
overheads when adding further drones.

Multi-view cinematography: Fig. 6 shows the impact of penalizing
mutual visibility in multi-view scenarios. �e three frames are
taken without and with the cost active, resulting in an avoidance
maneuver of the drone. �is setup forces the drone to ‘warp’ the
input trajectory to ful�l all cinematographic constraints.

5.3 Preliminary expert feedback
Finally we invited a trained camera operator from the local uni-
versity’s �lm program to assess the overall utility of our approach.
�e expert designed a number of multi-view shots with our sys-
tem. While our work is mostly algorithmic and does not have a
sophisticated user interface at this point, the expert was still able
to plan and execute a number of challenging shots with receiving
only very li�le instructions and no more than 10 minutes training.
�e resulting shots have been included in the accompanying video
�gure as so-called real-time cuts (i.e., a single video sequence con-
taining views from multiple cameras o� the same duration as the
individual clips). Note that these shots include aspects that would
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Fig. 8. Figures A - F: Multi-view, multi-person shot, transcribed form story board (insets). Two drones enter and leave the buildin to frame the subjects. The
user interactively refocuses the subjects during filming. Full sequence as real-time cut in the accompanying video.

be di�cult or impossible to achieve with traditional camera cranes
or dollies, for example entering and leaving buildings through doors
and windows and positioning of multiple cameras in a tight space
with several moving subjects.

Multi-view real-time shot: Fig. 8 illustrates a shot entailing two
�ying cameras and two actors that move into and out of a building on
a simulated �lm set. �e shot was loosely de�ned using a storyboard
(shown in the insets), which is then transcribed into virtual rails,
constraining the camera motion. In this case the drone velocities
are entirely driven by subject motion. Note that the subject focus
and framing is changed interactively by the user at runtime.

Discussion: �e expert user was able to design several shots of
which we included some. Overall the expert felt that the approach
�ts well into the practice of �lming and that it drastically reduces
the complexity of a number of shots in dynamic environments, an
area in which aerial videography was previously not applicable.

Our expert also provided a number of interesting ideas for future
work including requirements for the user interface and the control
algorithm itself. Foremost, the user would have liked to be able to
have additional control over the exact framing or in other words
would have liked to manually re�ne the yaw and pitch of the camera
on top of computed control inputs. �is idea is compatible with the
proposed method but is le� for future work. Other interesting ideas
include being able to control the actual camera parameters such
as depth of �eld and focus points interactively and to incorporate
stabilization and smoothing of the optical �ow.

While not explicitly mentioned in our evaluation it became clear
that there is also an interesting opportunity to optimize camera
placement and virtual rails more globally, subject to a high-level

script or storyboard. In other words to provide a domain-speci�c
language to make the method more usable by non-technical users.

6 CONCLUSIONS
In this paper we proposed a method for the real-time generation
of multi-drone aerial cinematography motion plans. Our proposed
method formulates the motion plan generation and tracking prob-
lems as a joint real-time receding horizon optimization problem.
�e algorithm respects high-level user goals as well as possible and
ensures physical feasibility of the resulting plans at every time-step.
Importantly, the real-time nature of the method allows for incorpo-
ration of feedback and dynamic constraints, enabling the planning
of collision-free paths in clu�ered environments with moving actors
and multiple drones. We have evaluated our method in a number
of quantitative and qualitative experiments including single and
multi-view shots in dynamic environments.
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A NOTATION
Due to the many degrees-of-freedom of the problem discussed in
this paper, the resulting notation is rather verbose. For completeness
and reproducibility of our method we provide a summary of the
notation used in the paper in Table 1.

Symbol Description
pq , Ûpq �ad position and velocity
vz �ad velocity in z direction
ωqz �ad angular velocity around body-z
pqi Position of quad i
Φq ,Θq ,ψq �ad roll, pitch, yaw
ϕq ,θq �ad desired roll, pitch
Rψq (ψq ) �ad yaw matrix
pc , Ûpc Camera position and velocity
pc i Position of camera i
θд ,ψд Gimbal pitch, yaw
Rθд (θд), Rψд (ψд) Gimbal pitch, yaw matrix
ωθд Gimbal pitch rate
x,u �ad states & inputs
T Planned trajectory
ϵ i Projection error in image space
ri jk Relative vector between quad i and j
ri j Relative vector between camera i and j
ps , Ûps Position and velocity subject
ξ State of subject =(ps ,Ûps )
E Ellipsoid capturing subjects for avoidance
E Matrix de�ning collision ellipsoid
ζ Slacks used for collision ellipsoid
C Cone of the actual �eld of view
N Prediction horizon in MPCC problem
Ts Sampling time

Table 1. Summary of notation used in the body of the paper
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B QUADROTOR DYNAMICS MODEL
�e state of the quadrotor is given by its position pq ∈ R3, its
velocity Ûpq ∈ R2 and its orientation, i.e. roll Φq , pitch Θq and yaw
ψq . �e camera is a�ached to the robot via a pan-tilt gimbal (in case
of the Bebop this is a so�ware gimbal). �e state of the camera is
given by its position pc (rigid body transformation from pq ), the
x and y velocity Ûpq and a separate pitch and yaw angle Φq , Θq as
well as the gimbal states θд ,ψд . We denote the state of the system,
consisting of quadrotor and gimbal, by

x = [pq , Ûpq ,Φq ,Θq ,ψq ,θд ,ψд] ∈ R
10. (11)

Following the Parrot Bebop 2 SDK, the control inputs to the system
are given by the vector

u = [vz ,ϕq ,θq ,ωψq ,ωθд ,ωψд ] ∈ R
6, (12)

where vz is the velocity of the quadrotor in the body-z axis, ϕq and
θq are the desired roll and pitch angles of the quadrotor, respectively,
ωψq is the angular speed around the body-z axis andωθд ,ωψд are the
pitch and yaw rates of the camera gimbal. �e horizontal velocities
are not directly controlled.

We employ a �rst order low-pass Euler approximation of the
quadrotor dynamics, as follows. �e translational dynamics are
then given by Ûpq = [Ûpqx,y ,vz ] and Üpq = [Üpqx,y , 0], with

Üpqx,y = Rψq (ψq )
[
−tan(Φq )
tan(Θq )

]
д −C Ûpqx,y , (13)

where д = 9.81ms2 is the earth’s gravity, Rψq (ψq ) ∈ SO(2) is the
rotation matrix only containing the yaw rotation of the quadrotor
and C is the drag coe�cient at low speeds. �e rotational dynamics
of the quadrotor are
ÛΦq = τa (ϕq − Φq ), ÛΘq = τa (θq − Θq ) and Ûψq = ωψq , (14)

and the gimbal pitch rate is given by Ûθд = ωθд .

C FRAMING OBJECTIVES
We adapt rules from the ‘grammar’ of �lm [Daniel Arijon 1976]. In
particular, we are interested in framing objectives – that is formal
rules that specify how objects should appear on the screen. Here we
summarize the derivation of the framing objective for the position of
the subject on the camera screen, which is used in our optimization
framework. For further details and additional cost terms for viewing
angle and projection size, we refer to [Nägeli et al. 2017]. Each of cost
terms is computed for each state k ≤ N of the planning horizon and
for each subject i ≤ K . For simplicity of exposition, the derivation
of the costs is described for a single subject and time-step. We de�ne

the vector rcs which is the relative vector between the subject and
the camera as well as the rotation into the camera frame of rcs
which is denoted as rccs :

rcs = ps − pc and rccs = Rc (x)rcs ,

where Rc (x) is the rotation matrix induced by the orientation of
the camera. Given the desired position [µx d , µyd ] of each target’s
projection on the image plane, the desired pixel coordinates md are
computed via the camera intrinsics with focal point [Cx ,Cy ] and
focal length [fx , fy ]:

md =

[ (
µx d −Cx

)
fx(

µx d −Cy
)
fy

]
with [µx d , µyd ] ∈ [0, 2 max(Cx ,Cy )]2.

Consider the vector rcd = [md , 1]T ∈ R3 pointing from the camera
center through the desired pixel coordinates md . We compute the
quadratic image space location cost ci(x, ξ ) using the residual given
by the di�erence between the ray rccs from the camera to the target
and the desired direction rcd ,

ci(x, ξ ) = ‖ϵm ‖Qm with ϵm =
rccs
‖rccs ‖

−
rcd
‖rcd ‖

D MUTUAL VISIBILITY
To ensure that no other camera is in the �eld of view, for camera i
we approximate its view frustum by a bounding cone C , de�ned by
the image plane P , the focal length [fx , fy ], the focal point [Cx ,Cy ],
the center of the camera pc and its orientation Rc (x), see Fig. 5.
For each other drone j, we test if it is inside the cone C . We �rst
compute the view direction rview = Rc (x)[0, 0, 1]T of the camera
and the intersection point pint = cintrview, where cint = rTi j rview and
ri j = pq j − pc is the relative vector from the camera to drone j . To
determine if drone j is outside of the view cone C , we compute the
distance dsurf from the drone to the cone surface at the intersection
point pint,

dsurf = ‖rji − p
T
intrview‖ − rcone with rcone =

max(Cx ,Cy )
max (fx , fy )

cint

If dsurf > 0 then drone j is outside of the viewing cone and if
dsurf ≤ 0, then drone j is visible in the camera image of drone i .

To minimize mutual visibility, we de�ne, for each pair of drones
at states x and xj , the cost term

cv(x, xj ) =

{
Qvd

2
surf if dsurf < 0

0 otherwise
, (15)

where Qv is a tunable weight.
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