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Abstract A large number of traffic accidents, especially those involving vulnerable
road users such as pedestrians and cyclists, are due to blind spots for the driver,
for example when a vehicle takes a turn with poor visibility or when a pedestrian
crosses from behind a parked vehicle. In these accidents, the consequences for the
vulnerable road users are dramatic. Autonomous cars have the potential to dras-
tically reduce traffic accidents thanks to high-performance sensing and reasoning.
However, their perception capabilities are still limited to the field of view of their
sensors. We propose to extend the perception capabilities of a vehicle, autonomous
or human-driven, with a small Unmanned Aerial Vehicle (UAV) capable of taking
off from the car, flying around corners to gather additional data from blind spots and
landing back on the car after a mission. We present a holistic framework to detect
blind spots in the map that is built by the car, plan an informative path for the drone,
and detect potential threats occluded to the car. We have tested our approach with
an autonomous car equipped with a drone.

1 Introduction

Globally, over 3000 people lose their lives in vehicle-related accidents and over one
hundred thousand are injured or disabled on average every day [4]. In the United
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States, over 90% of these accidents are due to human error [1]. This has resulted
in the continued development of advanced safety systems by commercial car man-
ufacturers. For example, systems exist to automatically brake in the case of unex-
pected obstacles [18], maintain a car in a lane at a given speed [6], and alert users
of pedestrians, signage, and other vehicles on the roadway [7]. These systems will
make our cars safer and eventually autonomous. However, many accidents are due
to blind spots, for example when a vehicle takes a turn with poor visibility or when
a pedestrian crosses from behind a parked vehicle. In these accidents, vulnerable
road users, i.e. pedestrians and bikers, are typically involved and the consequences
are dramatic.

We propose to extend the perception capabilities of a vehicle, autonomous or
human-driven, with a small Unmanned Aerial Vehicle (UAV) capable of taking off
from the car, flying around corners to gather additional data from blind spots and
landing back on the car after a mission. Small UAVs are highly mobile and agile,
and they are capable of capturing aerial footage autonomously[17]. The quadcopter
could use the car as a charging base, while the car could send the quadcopter out on
missions to scout ahead and fill in the blind spots in its vision.

A crucial step in enabling a small UAV and an autonomous car to work together
is to ensure that there exists an accurate pose transform between the car and the
quadcopter. In this paper, we present a method for relative localization using ultra-
wideband radios (UWBs) to measure the relative position of the quadcopter relative
to the car with an accuracy of less than 14cm. This information is fused with the
internal state estimation to enable the UAV to safely navigate to blind spots and then
land back on the car. Furthermore, we have developed a path planning algorithm for
remote sensing and have carried out experiments using a quadrotor and a car.

Our method has similarities with multi-robot mapping. For instance [15] and [9]
combined the maps from a ground and an aerial robot for enhanced exploration and
[8] employed a map created by an aerial robot for planning the motion of a ground
robot.

Quadrotors have been able to track a moving vehicle using visual techniques such
as AprilTag localization [5], optical flow [11], and infrared markers [22]. However,
a weakness of visual systems is that visual cues must be in the line of sight of the
quadrotor-mounted camera. Moreover, the lighting conditions must be suitable for
the cameras. These restrictions limit the usefulness of visual tracking. Meanwhile,
GPS tracking, while useful in long-range outdoors scenarios, is not accurate enough
for maneuvers such as landing and obstacle avoidance. For example, average accu-
racy in smartphone GPS receivers is 4.9 m [2].

UWB sensors have in recent years become a popular tool for localization of
quadrotors, particularly in indoor GPS-denied environments [14, 19, 12], since they
can provide distance measurements with an accuracy of 10 cm and a range of up to
300 m[3]. Indoor localization of quadrotors has been achieved by placing UWB “an-
chors” around the perimeter of a room and attaching a UWB “tag” on the quadrotor.
Using this technique, [16] and [13] have achieved localization with accuracy on the
order of 30cm.
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The problem of relative localization is more challenging because the UWB tag
is outside of the perimeter of the anchors. However, in [10], a quadrotor outfitted
with four UWBs was able to follow a person carrying a UWB tag in the plane of
the quadrotor with less than 10 cm mean error. The authors achieved this accuracy
using an iterated Extended Kalman Filter. Building off of this work, we used 6
UWB sensors on a car to estimate the 3D position of a UWB on a quadrotor with
an average mean error of 13.7 cm. Moreover, unlike in previous systems, we take
advantage of the accurate relative transform to use the sensors on the car to plan safe
paths for the quadrotor.

1.1 Contribution

This paper presents a method for extending the sensing capabilities of self-driving
vehicles by using a small quadrotor to autonomously locate and observe regions
occluded to the vehicle and detect potentially unsafe obstacles such as pedestrians
or other cars. Our contributions include

• A method for determining the relative transformation between a ground vehicle
and a quadrotor using an array of ultra-wideband radios

• An informative planning algorithm that computes collision free paths for the
quadrotor relative to the ground vehicle that view occluded regions

• A system that uses the localization and planning algorithms and enables a UAV
to position itself and transmit images outside the field of view of the sensors on
the car

• Experimental validation using a sensor-equipped Toyota Prius and a Parrot Be-
bop 2 quadrotor

1.2 Method overview

We consider two vehicles.

• A ground vehicle, i.e. the car, which can create a local map of the environment,
localize with respect to it and autonomously navigate. We utilize a 2D grid map
to represent the free space and obstacles seen by the car. In particular, our vehicle
is equipped with a 2D LIDAR.

• A lightweight companion quadrotor equipped with a front facing camera. The
drone is able to fly autonomously to/from the ground vehicle and detect obstacles
that were originally occluded for the ground vehicle.

Given a laser scan from the ground vehicle, our objective is to: a) determine
which areas of the environment are occluded to ground vehicle, b) compute a safe
path for the aerial vehicle to observe the occluded areas, and c) detect unseen obsta-
cles, such as pedestrians, and report them back to the ground vehicle. The quadrotor
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will take off from the vehicle when it is ready to begin driving and land back on the
vehicle when it has parked.

To accurately localize the quadrotor relative to the ground vehicle, we equip the
ground vehicle with several UWBs. In the quadrotor, we fuse, via an Unscented
Kalman filter (UKF) relative information from a UWB radio with odometry esti-
mates from a down-facing optical flow sensor and an onboard IMU. Our algorithm
operates directly on the laser scan from the ground vehicle to find occluded regions.
We then employ an anytime sampling-based algorithm to compute a collision free
path for the drone that maximizes the occluded area viewed by the quadrotor. To
detect obstacles within the occluded areas, we employ a real-time object detect-
ing convolutional neural network [20], which is able to classify and locate objects,
such as pedestrians, cars, bicycles, in monocular images. These obstacles are then
reported back to the ground vehicle.

Using the ground vehicle’s 2D laser scan, we compute the areas it is unable to
sense. We employ an anytime sampling-based algorithm to construct a collision
free path for the quadrotor that maximizes the total area of the occluded regions
it is able to observe. While the quadrotor is executing the planned path, we use a
convolutional neural network to classify and detect objects in the quadrotor’s field
of view, such as pedestrians and cars, and relay this information back to the ground
vehicle. The driver of the vehicle is then able to view the quadrotor’s camera feed
along with the annotated objects. The path is updated if it is no longer collision free
due to changes in the laser scan or if a new path is computed that can observe a larger
occluded area. A high level overview of the entire process is shown in Algo. 1.

Algorithm 1 Overview of the Foresight algorithm
1: Π ← /0
2: while ISRUNNING() do
3: x← GETQUADROTORCONFIGURATION()
4: L← GETLASERSCAN()
5: P← CONSTRUCTBOUNDINGPOLYGON(L)
6: B← COMPUTEBLINDREGIONS(L)
7: Π̃ ← COMPUTECOVERAGEPATH(x,B,P)
8: if |Π |= 0∨¬PATHCOLLISIONFREE(Π ,P)∨

OBSERVINGAREA(Π̃ ,B)> OBSERVINGAREA(Π ,B) then
9: Π ← Π̃

10: SENDPATHTOQUADROTOR(Π)

2 Planning For Exploration

Planning a path to observe the blind spots of an autonomous car is broken into
following steps. First, using the 2D laser scan from the car, we compute a bounding
polygon. This polygon represents the known free space where the quadrotor can
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travel. We use the laser scan to determine regions in space where that the car is not
able to sense. These regions are called blind regions. A path is then computed for
the quadrotor that maximizes the observed area of the blind regions while staying
within the bounding polygon for a given time horizon.

The remainder of this section is structured as follows; Sec. 2.1 introduces the
our formal definition of a laser scan and describes how the bounding polygon is
found, Sec. 2.2 describes how the blind regions are computed from the laser scan,
and Sec. 2.3 describes the algorithm we developed for computing the exploratory
path.

(a) (b)

(c) (d)

Fig. 1: Plots showing the four stages of the planner. Fig. (a) shows the points from
the laser scan. Fig. (b) shows bounding polygon created from the laser scan. Fig. (c)
shows the regions occluded to the vehicle in red and Fig. (d) shows the initial plan
for the quadrotor to view some of these blind regions.

2.1 Finding the Bounding Polygon

The bounding polygon computed using a scan from the 2D LiDAR sensor on the
car is used as a conservative representation of the free space in which the quadrotor
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can travel. Below we provide a formal definition of a laser scan that is used in the
rest of the paper.

Definition 1. A laser scan is a sequence of points, L = {c + ri · [cosθi,sinθi]
T :

θmin ≤ θi ≤ θmax} ⊂ R2, where c is the 2D position of the LiDAR sensor, ri is
the distance from the sensor to the closest obstruction in the θi direction, and [θmin,
θmax] is the angular range of the sensor.

From the laser scan, we compute a bounding polygon. The bounding polygon is
defined as the minimum area simple polygon that contains all the points in the laser
scan. Since the laser scan data is ordered by θi from θmin to θmax, the bounding poly-
gon can be constructed in one pass with the vertex sequence {c}∪L∪{c}. Fig. 1b
shows an example of laser scan data and the corresponding bounding polygon.

2.2 Determining the Blind Regions

Using the laser scan data, we can determine which areas in the environment the car
is unable to sense. We call these areas blind regions. The blind region, B, is the set of
points contained within a rectangle with a vertex sequence {Li,Li +k · L̂i,i+1,Li+1 +
k · L̂i,i+1,Li+1,Li} where L̂i,i+1 is the unit normal for the vector between points Li
and Li+1 that points away from the bounding polygon and k is a tuning parameter
that contributes to the area of the blind region. In practice we only care for blind
regions where ||Li− Li+1||2 > δ where δ is a tuning parameter because the laser
scan consists of a finite number of points with a known angular distance. We will
use B to denote the set of all such regions. Fig. 1c shows an example of blind regions
in found in a found from a laser scan.

2.3 Computing the Exploratory Path

Using the blind regions, current configuration of the quadrotor, and the bounding
polygon, we present an anytime algorithm that computes a collision free path for
the quadrotor that maximizes the total observed area of the blind regions within
a given time horizon. The algorithm builds a search tree starting from the current
configuration of the quadrotor. It expands leaf nodes in descending order of total
observed blind region area and only adds new leaf nodes to the search that are con-
tained within the bounding polygon. When a collision free neighbour is propagated,
the orientation, θ ∗(x,B), that maximizes the area of the remaining blind region, B,
viewed at that configuration, x, is also added to the search tree. Below we formally
define this orientation.
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Definition 2. Let ψ(x,θ ,B) be the set of points visible by the quadrotor at position
x ∈ R3 with orientation θ . Let θ ∗(x,B) = arg max

0<θ≤2π

ψ(x,θ ,B). For convenience, we

define ψ∗(x,B) = ψ(x,θ ∗(x,B),B).

As the quadrotor follows the path, the planner is constantly replanning. To avoid
oscillating between candidate paths, the quadrotor only follows a new path if its
current path is no longer collision free or if the new path has a larger objective
value.

Algorithm 2 Path planning for remote sensing UAV (looking around the corner)
Input:

• x0: The initial position of the robot, B: The blind region, P: The bounding polygon

Output:

• Π ⊂ R3× [0,2π]: A sequence of 3D positions and orientations representing the path

1: Q←{(x0,θ
∗(x0,B),B\ψ∗(x0,B))}

2: while |Q|> 0 do
3: (x,θ ,B′)← arg min

B′∈Q
AREA(B′)

4: if SEARCHTIMEOUTEXPIRED() then
5: Π ←{}
6: while HASPARENT(x,θ) do
7: Π ←Π ∪{x}
8: (x,θ)← PARENT(x,θ)
9: return Π

10: for all x′ ∈ COLLISIONFREENEIGHBOURS(x,P) do
11: θ ′← θ ∗(x′,B′)
12: Q← Q∪{(x′,θ ′,B′ \ψ∗(x′,B′))}
13: PARENT(x′,θ ′)← (x,θ)
14: Q← Q\{(x,θ ′,B′)}
15: return {}

At the start of Algo. 2, we initialize a priority queue that is used to store the leaf
nodes of the search tree. Each node is comprised of the position of the quadrotor,
x∈R3, the orientation of the quadrotor on the Z-axis, θ ∈ [0,2π], and the remaining
blind region, B, that is left unobserved after the quadrotor reaches x with orientation
θ . Until the search timeout has expired, collision free neighbours of x are added to
the search along with their maximizing orientation and remaining unobserved blind
regions. Once the search has expired, the path, Π comprised of 3D positions and
orientations, that was able to view the largest cumulative blind region area starting
from x0 is returned. Fig. 1d shows an example of a path being computed to view the
blind regions.

Since the obstacles and blind regions are two dimensional, we fix the altitude of
the quadrotor in our experiments. In the future we would like to extend the blind
region detection and planning to three dimensions by using a 3D point cloud sensor
mounted on the ground vehicle.
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2.4 Autonomous Landing

To enable autonomous landing, the quadrotor tries to maintain a static position rela-
tive to the car as it drives towards a parking spot. Once the vehicle has stopped, the
quadrotor moves directly above the landing platform and proceeds to land on the
platform.

3 Relative pose localization

From each UWB tag we receive a range measurement ri in its own frame. From the
quadrotor we receive velocity measurements vvv, a yaw reading ψq, and an altitude
measurement za in an ENU-aligned world frame. The frames and relative transforms
of our system are visualized in Fig. 2. Given n UWBs, we define the measurement
vector as z = [r1, . . . ,rn,vvv,za,ψq] ∈ Rn+5

Yaw orientation is calibrated at the start by lining up the quadrotor along the
car’s x-axis and measuring the yaw offset ψoff between the car and the quadrotor.
The yaw of the quadrotor is then given by ψ = ψq−ψoff

One challenge we encountered in estimating the 3D position of the quadrotor
was that the distance measurements from the UWBs showed larger errors when the
UWB on the quadrotor was out of their plane. We therefore first estimate p̂ppodom

using only use the quadrotor’s onboard odometry readings vvv and za as the inputs to
a UKF. We then use the estimated height, p̂ppodom

zzz with the UWB range measurements
ri to estimate the quadrotor’s x-y position, p̂ppxy. We do this by first projecting each ri
onto the plane of the estimated height of the quadrotor:

rproj
i =

√
r2

i − (p̂ppodom
zzz )2

We then find p̂ppxy by solving the nonlinear least squares optimization

h(p̂ppxy) = min
p̂ppxy

n

∑
i=1

((rproj
i )2−‖ p̂ppxy− tttxy

iii ‖
2)2

We then define the 3D position estimate to be p̂ppls = [p̂ppxy, ẑ]. Next, we combine
p̂ppls and p̂ppodom in a second UKF to find a final position estimate p̂pp. Thus the final
state estimate is x̂ = [p̂pp,ψ].

4 Results

In this section we provide experimental results that validate our approach. A video
accompanies this submission and is available at [21].
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Fig. 2: The frames and measurements of our system.

4.1 Localization Accuracy

We tested our localization framework by emulating the car’s UWB configuration
inside a motion capture system. We placed motion capture markers on the quadro-
tor and on each UWB sensor. This allowed us to obtain the absolute position of the
quadrotor and UWBs in the same coordinate frame. We then flew the quadrotor in-
side the motion capture system and recorded its predicted position determined by
our localization and absolute position using the motion capture markers. We ran 10
tests and were able to obtain an error of 13.7 cm, or 35.9% the length of the quadro-
tor. Fig. 3 shows how our localization compares to the ground truth. The green and
red lines respectively show the ground truth and predicted positions of the quadro-
tor. While our accuracy is less than the system in [10], the UWBs in that study were
all in the same plane. The accuracy of out-of-plane position estimation using range
measurements is lower than in-plane estimation because of the larger state space.
Since we wanted our quadrotor to have the ability to fly beyond the plane of the
roof-mounted UWBs, we included additional out-of-plane UWBs which decrease
accuracy compared to having all UWBs in the same plane, but which help to pro-
vide greater accuracy for out-of-plane measurements.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

y

Actual Predicted

Fig. 3: Comparison of our localization method with respect to ground truth. Ground
truth was supplied by a motion capture system.
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4.2 Experimental Setup

For our experiments, we used a Toyota Prius with a SICK LMS1xx mounted on the
front of the car and six Decawave TREK1000 UWBs mounted on the roof and front
bumper of the car. A platform for the quadrotor to take off and land was attached to
the front bumper of the Prius. We used a Parrot Bebop 2 quadrotor with a Decawave
TREK1000 mounted on the battery. Fig. 4 shows the Toyota Prius and modified
Bebop 2 quadrotor used in the experiments.

Fig. 4: Pictures showing Toyota Prius and Parrot Bebop 2 used in the experiments

We also ran tests using an autonomous golf cart as our ground vehicle in two
different settings. One setting, shown in Fig. 5d, was artificially created using tall
whiteboards as obstacles to mimic an adversarial environment. The second, shown
in Fig. 5c, was a more realistic setting with the golf cart approaching an open garage
door with blind spots on either side. In both cases, the quadrotor was successfully
able to observe the blind spots and relay this information back to the computer on
board the golf cart. For the interest of brevity, we will only discuss in detail the
experiments using the Toyota Prius.

Our experimental scenario involves a car preparing to leave a garage with a sig-
nificant blind spot. The car is unable to sense around the corner to determine if
there are pedestrians or other cars that may obstruct its path. Our quadrotor takes
off from the car’s front bumper platform and autonomously flies out of the garage
and looks around the corner. The car is then able to leave the garage when there
are no more pedestrians detected by the quadrotor. Once the car is ready to return,
it backs up into the garage. The quadrotor then follows the car into the garage and
autonomously lands on the platform.

4.3 Experiment With Quadrotor

Under each experimental condition shown in Fig. 5, we conducted multiple tests.
In the course of one afternoon we performed 25 tests in the environment shown



Foresight: Remote Sensing For Autonomous Vehicles 11

(a) (b)

(c) (d)

Fig. 5: Snapshots from four experimental settings in which we tested our algorithm.
Figures (a) and (b) used a Toyota Prius in a parking lot and a garage, respectively.
Figures (c) and (d) used an autonomous golf cart in outdoor and indoor environ-
ments.

in Fig. 5b in which the quadrotor successfully took off from the car, followed a
path to observe blind spots, and landed back on the car’s platform. Each test took
around a minute to autonomously look around the corner and land back on the car.
In every case, take off, path following, and landing was successfully completed. For
the remainder of this section we will detail one representative experiment.

4.3.1 Looking Around the Corner

Fig. 6 shows snapshots of the experiment as it progressed. The first column is a third
person angle of the Prius and the quadrotor. The second column shows frames from
the quadrotor’s on-board camera along with object detection and classifications from
the convolutional neural net. The third column is a visualization of the sensor data
from the car, the bounding polygon, blind regions, and the quadrotor’s plan. Each
row shows a single snapshot from the experiment.

The snapshots show that the quadrotor is able to successfully take off from the
car, use the laser scan to find the blind regions, and plan a path to look around
the corner in the garage. The last row shows that our system is able to detect the
pedestrian around the corner and provide the bounding box back to the car.

Note that even though the quadrotor is not equipped with the sensors needed to
perform robust 3D obstacle avoidance, it is able to avoid collisions and fly through
the open garage door using the laser scan from the car.
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Fig. 6: Snapshots from the experiment as it progressed. The second column is from
the quadrotor’s on board camera. The third column shows a visualization of the
planner.

4.3.2 Landing On the Car

Once the car is ready to park, the quadrotor is able to autonomously land back on the
platform attached to the front bumper. Fig. 7 shows snapshots from the experiment
as the quadrotor followed the car and landed on the platform. The first image in
Fig. 7 shows the quadrotor following the car as it backs up into a garage. The second
shows the car parked and the quadrotor hovering over the platform. The last image
shows the quadrotor after it successfully landed on the platform.

Fig. 7: Snapshots of the quadrotor landing on the car



Foresight: Remote Sensing For Autonomous Vehicles 13

5 Conclusion

In this work we presented a system for using a quadrotor to examine the blind spots
of an autonomous car. We developed a path planning algorithm that maximizes vi-
sual coverage of blind spots in a 2D laser scan; created an experimental system
using UWBs to localize the quadrotor with respect to the car; and performed tests
in a variety of environments to verify the effectiveness of our system. Extensions
to our work include planning using 3D laser scan data; improving the accuracy of
the UWB localization; and applying our system to other problems such as package
delivery and formation control. We believe that multi-robot coordination, particu-
larly in the context of an autonomous car and a quadrotor, will become increasingly
useful in the future.
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