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Abstract— This work presents a method for multi-robot
trajectory planning and coordination based on nonlinear model
predictive control (NMPC). In contrast to centralized ap-
proaches, we consider the distributed case where each robot has
an on-board computation unit to solve a local NMPC problem
and can communicate with other robots in its neighborhood.
We show that, thanks to tailored interactions (i.e., interactions
designed according to a nonconvex alternating direction method
of multipliers, or ADMM, scheme), the proposed solution is
equivalent to solving the centralized control problem. With
some communication exchange, required by the ADMM scheme
at given synchronization steps, the safety of the robots is
preserved, that is, collisions with neighboring robots are avoided
and the robots stay within the bounds of the environment. In
this work, we tested the proposed method to coordinate three
autonomous vessels at a canal intersection. Nevertheless, the
proposed approach is general and can be applied to different
applications and robot models.

I. INTRODUCTION

One of the challenges to ensure safe navigation of au-
tonomous vehicles (such as cars or vessels) in urban envi-
ronments is that of generating safe trajectories that coordinate
with other traffic participants. A typical scenario is that
of intersections, where efficient navigation can be achieved
with tight coordination between the interacting participants.
This is a multi-robot motion planning problem, for which
we present a distributed method based on Nonlinear Model
Predictive Control (NMPC).

Common approaches for intersection control rely on the
computation of controlled invariant sets and scheduling [1],
[2], [3], [4], but typically require a discretization and allo-
cation of the environment and limit their results to systems
with order-preserving dynamics. In contrast, our approach
operates directly in continuous space via a constrained opti-
mization and applies to arbitrary dynamics. Several authors
have proposed centralized optimization-based approaches for
multi-robot coordination and intersection negotiation [3], [5],
[6]. In contrast, our approach does not require a central co-
ordinator and is decentralized via a communication channel.

In recent years, MPC has gained attention in applica-
tions with fast dynamics, such as automotive [7], [3], [8],
waterborne transport [9], [10] and aerospace [11] thanks
to great improvements in terms of solvers used for online
optimization [12], [13], [14], [15]. We build on [8], which
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relies on the model predictive contouring control (MPCC)
formulation proposed in [16], [17], to design our model pre-
dictive controller. Compared to [8], we extend the problem
formulation to a network of agents. We also rely on the fast
solver Forces Pro [15] in our implementation to solve the
local optimization problems that arise from our proposed
decomposition.

Our contribution is a decentralized approach for multi-
robot trajectory planning based on NMPC, which does not
require a central coordinator nor a discretization of the
environment. In particular, we first formulate the navigation
problem as if a central coordinator was available. Then,
we show how to reformulate this centralized problem in a
distributed way without the need of a central coordinator. We
achieve this goal by introducing (i) a new set of decision vari-
ables that act as shared variables among the different robots
and (ii) a new set of constraints that handle the consensus
among the robots. The resulting optimization problem can
be decomposed among the robots, which work in parallel,
thanks to the use of an operator-splitting technique, namely a
modified version of the alternating direction method of mul-
tipliers (ADMM) suitable for nonconvex optimization [18].
We evaluate our method for the control of autonomous
vessels at a canal intersection. Yet, the method is general and
can be applied to other multi-robot systems and scenarios.

In the remainder of the paper, all the vectors are indicated
with a bold symbol. The 2-norm of a vector u is ‖u‖.

II. PRELIMINARIES

A. Model of the agents

In the remainder of the paper we consider autonomous
agents whose dynamics can be represented by the following
nonlinear discrete-time model:

xi(t+ 1) = fi(xi(t),ui(t)), i ∈ IV , (1)

where xi(t) ∈ Rni represents the state of agent i, ui(t) ∈
Rmi represents the associated control command, fi : Rni ×
Rmi → Rni represents the (possibly) nonlinear dynamics of
agent i, and IV := {1, . . . , V }.

The model description above is general and can be em-
ployed in different applications, ranging from automotive to
aerospace. In case of a continuous-time systems, the model
above can be obtained by discretization of the continuous-
time dynamics, as in the example provided in Section V.

B. Collision avoidance constraints

The proposed control design should be able to avoid
collisions among different agents. Hence, in the following,
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(a) Perspective of agent i. (b) Perspective of agent j.

Fig. 1: Agents’ representation for collision avoidance: the circles represent the agent, while the ellipses describe its neighbors.

we introduce the notation and the strategy used to represent
each agent and formulate the collision avoidance constraints
in the control problem. In this work, we use a strategy
similar to the one proposed in [8] for autonomous cars.
Other strategies exist to formulate the collision avoidance
constraints [19], [20]. Compared to [19], we do not linearize
the collision avoidance constraints, while compared to [20],
we do not rely on scheduling. Compared to [8], the agents
can exchange information concerning their position.

Without loss of generality, we consider two agents i and
j. We note that the method applies in an straight-forward
way to the case of V ≥ 2 agents by including additional
constraints for each of the other agents analogously to the
case for agent j (as depicted in Figure 1 where we added
a third agent, namely agent k, to represent a more general
scenario). Figure 1 depicts the proposed approach from the
perspective of agent i (Figure 1a) and agent j (Figure 1b),
respectively. Consider Figure 1a. Agent i is represented as
ndisc discs centered in phi (where we used p to indicate
the position on the (x, y) plane in the body frame and
ndisc is the number of discs used to describe the agent),
h ∈ Idisc := {1, 2, . . . , ndisc}. From the perspective of agent
i, agent j is represented as an ellipse with semi-major axis a
(longitudinal direction) and b (lateral direction), respectively.
This description of the agents’ shape is well suited for NMPC
and not overly conservative.

To formulate the collision avoidance constraints for agent
i, we define the distance between the center of the h-
th disc—used to represent agent i—and the center of the
ellipses—used to define agent j from agent i point of view—
as follows (and depicted in Figure 1a):

∆phi,j = phi − pj , h ∈ Idisc. (2)

Hence, the collision avoidance constraints from agent i at
time t are1:(
R(ηj)∆p

h
i,j

)T [ 1
a2+r2 0

0 1
b2+r2

]
R(ηj)∆p

h
i,j︸ ︷︷ ︸

chi,j

> 1, h ∈ Idisc,

(3)

1We assume the same size for all the agents (same a, b, and r in order
simplify the notation).

where R(ηj) is the rotation matrix related to agent j with
orientation ηj . Note the constraints above require pj and ηj .
We can repeat this argument from the perspective of agent j,
as depicted in Figure 1b. In particular, from the perspective
of agent j, the information concerning pi and ηi is needed.

III. CENTRALIZED NMPC

Our approach relies on MPC. The MPC controller
recursively solves an optimization problem based on the
available plant measurements to compute the optimal
sequence of control commands over a finite time window,
called prediction horizon. Only the first control command
of this sequence is applied to the plant in closed loop in the
receding-horizon fashion.

Following [8], we do not rely on a classical reference
tracking MPC formulation in which the controller aims to
minimize the error with respect to a time-dependent reference
signal. The goal of the proposed controller instead is to
minimize (for each agent) the following cost2:

Je := eTQee− vx, (4)

where e ∈ R2 is the error with respect to a given path
ppath(φ) ∈ R2 (where φ is the path parameter and vx is
the velocity in the longitudinal direction (17)) in the path’s
tangential and normal directions. This error is defined as
follows:

e :=
[
el ec

]T
, (5)

where el and ec are the longitudinal error (i.e., the error
in the path’s tangential direction) and the contouring error
(i.e., the error in the path’s normal direction), respectively.
In particular, at time step t, the longitudinal error is defined
as follows:

elt := −
[
cos θ̄ (φt) sin θ̄ (φt)

] (
pt − pref

t

)
, (6)

where θ̄ (φt), pt, and pref
t are the heading of the path, the

position on the (x, y)-plane of the agent, and the reference
path on the (x, y)-plane, respectively. Similarly, at time step
t, the contouring error is defined as follows:

ect :=
[
sin θ̄ (φt) − cos θ̄ (φt)

] (
pt − pref

t

)
. (7)

2We omit the time and agent dependency when it is clear from the context
to simplify the notation.



More details on the derivation of the longitudinal and con-
touring errors can be found in [8].

The centralized NMPC problem is the following:

min
x,u,φ

V∑
i=1

Ni∑
k=1

Ji(xi(t+k),ui(t+k),φi(t+k),p̄(t+k)) (8a)

s. t. :xi(t+ k + 1) = fi(xi(t+ k),ui(t+ k)), (8b)
φi(t+ k + 1)=φi(t+ k)+vxi

(t+ k)∆tk (8c)

xi(t) = xinit
i , (8d)

Gi(xi(t+ k),ui(t+ k)) ≤ gi, (8e)

chi,j(t+ k) > 1, j 6= i, h ∈ Idisc (8f)

where xi,ui, and φi represent the predicted evolution of the
state, control command, and approximated progress along
the path of agent i, respectively, over the prediction hori-
zon Ni. In the remainder of the paper, we define zi :=[
xT
i , u

T
i , φ

T
i

]T
.

For each agent, the goal is to minimize the cost Ji. This
cost penalizes the deviation from the reference path of each
agent (i.e., the longitudinal and contouring errors (6)-(7)) and
maximizes the longitudinal speed. In particular, Ji is defined
as follows:

Ji := Jei − vT
xi
Qvxi vxi

, (9)

where Jei penalizes the error with respect to the path for
agent i and Qvxi is the matrix weights the longitudinal speed
vxi

. The navigation must comply to (i) the dynamics of each
agent (expressed by the dynamic constraints (8b)) and (ii)
the physical constraints on the state and control command
of each agent (expressed by the constraints (8e)). Further-
more, the navigation must comply to safety requirements of
collision avoidance with the other agents moving in the same
area (expressed by the nonconvex constraints (8f) detailed in
Section II-B).

Solving Problem (8) has some practical limitations. In
particular, Problem (8) requires a central node to compute
the appropriate control command for all the agents in the
network (this node can be required for example to handle
an intersection). The central coordinator has to solve the
predictive control problem online (i.e., within the sampling
time of the fastest agent). This can cause problems for the
scalability of the proposed approach, when the number of
agents increases. Furthermore, having a central node means
that all the agents must be willing to share information
concerning their dynamics, constraints, and objectives with
the central node. This might be problematic for car or boat
manufacturers, which might not be open to share information
concerning their products.

IV. DISTRIBUTED NMPC

Consider the centralized problem above (Problem (8)).
Note that the only coupling among the different agents is
represented by the collision avoidance constraints (8f). Recall
that our goal is to solve Problem (8) in a distributed way, that
is, without the need of a central coordinator. In the following,
first Section IV-A describes our proposed distributed NMPC

formulation. Second, Section IV-B shows how to decompose
the problem to solve it using a nonconvex version of ADMM
proposed in [18].

A. Formulation

We have to modify the centralized problem formulation
above to solve it in a distributed way. Each agent needs a
local copy of the predicted position and orientation along
the prediction horizon of its neighboring agents to solve its
local optimization problem. A simple strategy could be that
each agent computes its control command using the predicted
position and orientation that its neighbors computed at the
previous time instant. We could use this strategy to commu-
nicate the orientation of the agent to the neighbors, given
that the orientation is subject to small variations over time.
This strategy, however, is problematic for the (predicted)
position on the (x, y) plane of the agent given that it can
significantly vary between two time instants. Hence, we can
adopt the following strategy to handle the coupling caused
by the position and orientation. We introduce the following
relationships:

∆phi,j := phi − p̄j = p̄hi − pj , η̄i := ηi, (10)

where p̄j is the local information that agent i has of agent j
and p̄i is the local information that agent j has of agent
i. Similarly, η̄i is the local information that agent j has
concerning the orientation of agent i. Hence, we reformulate
Problem (8) as follows:

min
z

V∑
i=1

Ni∑
k=1

Ji(zi(t+k)) (11a)

s. t. : (8b)-(8e), (11b)

p̄j(t+k)=phi (t+k)−∆phi,j(t+k), j 6=i, h∈Idisc (11c)

pj(t+k)=p̄hi (t+k)−∆phi,j(t+k), j 6=i, h∈Idisc (11d)

phi (t+k) = Rh(zi(t+k))zi(t+k), h ∈ Idisc (11e)
ηi(t+ k)− η̄i(t+ k) = 0 (11f)

c̄hi,j(t+ k) > 1, j 6= i, h ∈ Idisc (11g)

c̄hj,i(t+ k) > 1, j 6= i, h ∈ Idisc (11h)

In particular, we introduce Constraints (11c)-(11f) to break
up the coupling introduced by the collision avoidance con-
straints and Constraint (11e) to indicate the nonlinear rela-
tionship (highlighted by the matrix Rh(zi(t+k))) between
the center of the discs describing the agent and the center of
the agent. Furthermore, we modify the notation (c̄hi,j(t+ k)
instead of chi,j(t+ k)) for the collision avoidance constraints
in (3) to indicate that c̄hi,j(t + k) uses p̄j instead of pj (η̄j
instead of ηj) and that c̄hj,i(t+k) uses p̄i instead of pi. Note
that if both (11c) and (11d) are satisfied it means that p̄i = pi
and p̄j = pj . Hence, Problem (11) is a reformulation of
Problem (8). The difference between the two problems is that
Problem (11) can be solved in a distributed fashion by relying
on the use of splitting techniques, such as the Alternating
Direction Method of Multipliers (ADMM) described below.



B. Problem Decomposition

The approach proposed in this paper strongly relies on
ADMM (the interested reader can refer to [21] for a overview
for convex optimization). ADMM is a state-of-the-art al-
gorithm used to handle equality constraints in optimization
problems such as the ones that can arise from model pre-
dictive control applications. In the following, we explain the
steps for ADMM.

First, consider the local problem solved by agent i:

min
zi,∆ph

i,j ,η̄j ,p
h
i

N∑
k=1

J(z(t+k)) (12a)

s. t. : (8b)-(8e), (12b)

phi (t+k)=Rh(zi(t+k))zi(t+k), h∈Idisc (12c)

p̄j(t+k)=phi (t+k)−∆phi,j(t+k), h∈Idisc (12d)

pi(t+k)= p̄hj (t+k)−∆phj, i(t+k), h∈Idisc (12e)

c̄hi,j(t+k) > 1, j 6= i, h ∈ Idisc (12f)

c̄hj,i(t+k) > 1, j 6= i, h ∈ Idisc (12g)

It is evident from the problem formulation above that zi
and phi are local variables (i.e., a variable whose value is
computed on board of agent i). In the remainder of the paper
we use ξi := [zT

i p
1T

i . . . ph
T

i ]T as the vector of local vari-
ables. Vectors ∆phi,j , ∆phj, i, and η̄j , instead, play the role of
buffer (or global) variables that carry the information on the
position and orientation of the other agents j. In particular,
these buffer variables allow the independent agents to agree
on a common strategy to avoid collisions (i.e., to prevent the
violation of the collision avoidance constraints (11g)-(11h)).
Furthermore, rewrite in a more compact form the equality
constraints (12d)-(12e) as follows:

Aiξi(t+ k) +Biyi(t+ k) = bi(t+k), k = 1, . . . , Ni (13)

where yi :=
[
∆p1T

i,j . . .∆p
hT

i,j∆p1T

j, i . . .∆p
hT

j, i

]T
. The matri-

ces Ai, Bi, and the vector bi are defined as follows:

Ai :=
[
ETi . . . E

T
h F . . . F

]T
, (14a)

Bi := [−I . . .−I I . . . I]
T
, (14b)

bT
i :=

[
p̄T
j . . . p̄

T
j p̄

1T

j . . . p̄h
T

j

]
, (14c)

where Eh select phi from the vector of local variables ξi,
and F selects the components of pi from ξi. We can rewrite
Problem (12) as follows

min
ξi,yi

N∑
k=1

J(ξi(t+k)) (15a)

s. t. : ξ ∈ F (15b)
Aiξi(t+ k) +Biyi(t+ k) = bi(t+k), (15c)

where F := {z| (8b)-(8e), (11e), and (12f)-(12g) are satis-
fied} is the feasible region of the local agent, which includes
dynamic constraints, control constraints, state constraints,
road boundaries, and the reformulation of the local collision
avoidance constraints.

Remark 1. Note that the introduction of the nonlinear local
equality constraints (11e) (together with a new set of local
variables that also impact the local cost with an associated in-
dicator function to ensure the feasibility of the equality con-
straints) might seem redundant. Their introduction, however,
is fundamental for ADMM, which requires linear coupling
constraints. In particular, without them constraints (15c)
would be nonlinear in the decision variables and there are
no existing ADMM algorithms that can handle them to the
best of the authors’ knowledge.

Algorithm 1 shows the proposed control strategy that
relies on ADMM (steps 3-16). In particular, we rely on
the modified version of ADMM suitable for nonconvex
optimization proposed in [18] due to the presence of the
nonconvex constraints (the collision avoidance constraints
described in Section II-B) and the nonlinear dynamics of the
agents (1), which make the problem to be solved nonconvex.

Compared to [18], the ADMM strategy in Algorithm 1
allows the agents to perform parallel local updates (i.e.,
the other agents do not have to wait for updated values of
the local variables of the neighbors). Neighboring agents,
however, still have to communicate to exchange the locally
computed values3 of ∆phi,j (steps 6 and 10). Furthermore,
compared to the strategy proposed in [18], we have to
deal with constraints in the inner problems solved by the
local agents (step 5). Each agent needs a local optimizer
able to solve nonlinear nonconvex constrained problems
(such as FORCES Pro [15]). In this respect, the augmented
Lagrangian associated to Problem (15) in the inner problems
is defined as follows:

L(ξ,y,λ) :=J(ξ)+〈λ, Aξ+By − b〉+ ρ

2
‖Aξ+By − b‖2.

The update of the buffer variables is performed in step 9
of Algorithm 1 and it is defined as follows:

∆phi,j :=
phi − p̄j + p̄hi − pj

2
, η̄j := ηj . (16)

Note that to perform the update above, it is sufficient for
Agent j to communicate the difference p̄hi −pj and ηj along
the prediction horizon for all h ∈ Idisc.
Remark 2. Note that the vector bi varies along the prediction
horizon, but it is not a decision variable. We can precompute
its values as follows. Agent i receives/updates iteratively the
values of ∆phi,j , ∆phj,i, ηi, and pi. Hence, bi can be derived
from (13) based on the values of zi(t+ k) computed at the
previous problem instant, but using the updated values of
∆phi,j ,∆p

h
i,j . We could proceed differently using the values

of pj and phj computed by the neighboring agents. This
will lead to an ADMM strategy with more than two sets
of variables to update and requires each agent to wait for
all the neighboring agents to update their decision variables
in a sequential fashion. Our strategy allows all the agents
to proceed in parallel with their local computations, saving
waiting time and reducing the amount of information to

3The values of ∆ph
i,j are shared among the agents, but for the compu-

tation we can use one of the computation units onboard of each agent.



Algorithm 1 Distributed NMPC.
1: Given ξ01, . . . , ξ0V , y0

1,. . . , y0
V , λ0

1,. . . ,λ0
V .

2: for t = 0, 1, 2, . . . do
3: for iter = 1, . . . ,itermax do
4: for i = 1, . . . , V each agent computes in parallel do
5: Update bi.
6: ξt+1

i ← argminξi∈Fi
Li

(
ξi,y

t
i,λ

t
i

)
.

7: Agent i sends/receives updates from neighbors.
8: end for
9: for i = 1, . . . , V each agent computes in parallel do

10: yt+1
i ← according to (16).

11: Agent i sends/receives updates from neighbors.
12: end for
13: for i = 1, . . . , V each agent computes in parallel do
14: λt+1

i ← λt
i + ρ(Aiξ

t+1
i +Biy

t+1
i − bi).

15: end for
16: end for
17: for i = 1, . . . , V each agent computes in parallel do
18: Select ui(1) and implement it in closed loop.
19: Update ξ0i and return to step 3.
20: end for
21: end for

share. Furthermore, the direct use of pj and phj means
that the ADMM strategy operates directly on the collision
avoidance constraints (that can be converted to equality
constraints using nonconvex indicator functions in the cost).
This leads to nonlinear equality constraints to be handled
by the ADMM solver (with similar consequences to the one
pointed out in Remark 1).

V. NUMERICAL RESULTS

For each agent, we consider the vessel model provided
in [22], [23] and summarized below:

ẋ = vx cos(η)− vy sin(η) (17a)
ẏ = vx sin(η) + vy cos(η) (17b)
η̇ = ω (17c)

v̇x =
1

m
(ul + ur −Dxvx) + ωvy (17d)

v̇y = − 1

m
Dyvy − ωvx (17e)

ω̇ =
1

Iz
(l(ul − ur)−Dηω) (17f)

where the states are the following: (i) p := [x y]T, that is,
the position of the vessel, (ii) η, that is, the orientation,
(iii) vx and vy , that are, the velocity in the longitudinal and
lateral directions, respectively, and (iv) ω, that is, the angular
velocity. The commands are the left and right torques, that
are, ul and ur, respectively. The dynamics of the actuators
are not considered at this stage. The commands and the
states are subject to the following constraints: ul, ur ∈
[−686 kN, 686 kN], vx ∈ [0 m/s, 1.67 m/s], vy ∈ [−0.84
m/s, 0.84 m/s], and ω ∈ [−15π/180, 15π/180]. Furthermore,
we take into account that the states have to stay within the
canals’ bounds. In this respect, the local constraints of each
vessel takes into account also the description of the canal,
which is similar to the one described in [8] for the road. Fi-
nally, l = 1 m, m = 200 kg, Iz = 14 kg·m/s, Dx = 38 kg/s,
Dy = 5280 kg/s, and Dη = 104 kg·m2/s are the vessel’s

length, mass, moment of inertia along the z axis, and damp-
ing parameters, respectively [23]. We consider three vessels
(indicated in blue, black, and red in Figure 2) navigating at
a canal intersection. In particular, we consider a scenario in
which the blue vessel has to turn left, the black vessel has
to turn left, and the red vessel has to go straight ahead.

The challenge is for the vessels to cross the intersection
safely, that is, without colliding with the other two vessels.
The vessels have to agree on which vessel should cross first
between the blue and the black one, and which vessel should
go ahead first between the blue and the red one.

To reduce the amount of information exchange among
the vessel, we limited the number of exchanges within the
sampling time of the system to itermax = 4. In order to
improve the performance of the algorithm (given the limited
exchange of information), at every sampling instance, the
algorithm is warm-started with the results available at the
previous sampling instance. Furthermore, we fix the value
of ρ to 0.005 and we select a prediction horizon of Ni = 50.
The inner problems (step 5 of Algorithm 1) are solved using
FORCES Pro [15] in Matlab R2016b running on a Windows
OS with an Intel (R) Xeon (R) CPU @3.40 GHz.

Figure 2 summarizes the results obtained using the pro-
posed control strategy. In particular, row (1) shows the
trajectories of the vessels while crossing the intersection.
Row (2) shows the longitudinal velocity of the vessels.
Finally, row (3) shows the control command.

As Figure 2 shows, during phase (a) the vessels approach
the intersection. Then, during phase (b), as depicted row (2)
of Figure 2, the black vessel reduces its speed and allows
the blue vessel to occupy intersection. During phase (c),
the blue vessel reduces its speed to turn and interacts with
the red vessel to agree on the boat that will take the lead.
Finally, during phase (d), the blue vessel increases its speed
and proceeds in front of the red vessel.

From the computation point of view, the current MATLAB
implementation requires, for each vessel to agree on a control
strategy (steps 3-16 of Algorithm 1, on average less than 0.8
sec and has a worst-case computation time of 1.2 sec.

Thanks to the proposed problem decomposition, the ves-
sels are able to make decisions autonomously without the
need for a central coordinator.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a distributed model predictive control al-
gorithm for the coordination of autonomous agents. By
relying on a state-of-the-art alternating direction method of
multipliers suitable for nonconvex optimization, the proposed
algorithm allows the agents to communicate (sharing a
limited amount of information) and agree on a common
safe (i.e., collision-free) navigation strategy without the need
of a central coordinator. We tested the proposed design for
the control of vessels at a canal intersection. Nevertheless,
the proposed design is general and can be applied for the
distributed coordination of cars, aircraft, etc.

The current implementation considers that at every sam-
pling time, the vessels will stop to run steps 3-16 of Algo-



(1)

(2)

(3)

Fig. 2: Behavior of three vessels crossing an intersection using Algorithm 1.

rithm 1 and will proceed only when the algorithm terminates.
As part of our future work, we plan to investigate more prac-
tical strategies (by relying on asynchronous communications)
to run Algorithm 1 in real-time, that is, without the vessel
stopping to compute the control law.
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