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Abstract— In this paper we study the multi-robot task
assignment problem with tasks that appear online and need
to be serviced within a fixed time window in an uncertain
environment. For example, when deployed in dynamic, human-
centered environments, the team of robots may not have perfect
information about the environment. Parts of the environment
may temporarily become blocked and blockages may only
be observed on location. While numerous variants of the
Canadian Traveler Problem describe the path planning aspect
of this problem, few work has been done on multi-robot task
allocation (MRTA) under this type of uncertainty. In this
paper, we introduce and theoretically analyze the problem of
MRTA with recoverable online blockages. Based on a stochastic
blockage model, we compute offline tours using the expected
travel costs for the online routing problem. The cost of the
offline tours is used in a greedy task assignment algorithm. In
simulation experiments we highlight the performance benefits
of the proposed method under various settings.

I. INTRODUCTION

Autonomous robots find increasingly widespread deploy-
ment in service applications. For instance, in hospital en-
vironments mobile robot platforms can help to reduce the
workload for qualified hospital staff [1], [2]. Service tasks
usually arrive periodically over time and then require a
robot to travel to a specific location. This problem is often
modelled as a (multi-) dynamic vehicle routing problem [3],
[4]. The goal is to allocate tasks to robots such that they can
provide the most efficient service, for example in terms of
cumulative waiting times, in some cases subject to additional
constraints such as time-windows.

In this paper we study the multi-robot task assignment
(MRTA) problem when the environment – and thus the
robot travel time to the service locations – is uncertain.
In particular, parts of the environment can become tem-
porarily untraversable. For instance, corridors in human-
centered buildings can become cluttered with maintenance
personnel and equipment, or large crowds of people make it
very hard for a robot navigate in a socially acceptable way
while avoiding the freezing robot problem [5], [6]. Often
such events can only be observed when a robot is at the
location. However, it might be possible to identify in what
locations blockages can happen, e.g., narrow corridors with
frequent maintenance activities, and with which frequency.
Such online blockages pose two challenges in MRTA: 1)
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(a) Optimistic Assignment.

(b) Informed Assignment.

Fig. 1: Illustrative example for multi-robot task assignment
with blockages. Black indicates obstacles, and hexagon are
task locations, where the colour indicates which robot is
assigned to it, and the red area might become temporarily
blocked. We compare an optimistic (a) and the proposed
informed approach (b).

During the task assignment step, robots should be matched
to tasks taking into account possible blockages. 2) When a
robot is assigned to service some tasks, it needs to compute
a route that maximizes the expected quality of service, given
the chance of blockages appearing during navigation. In case
a blockage is encountered, it replans its route.

We illustrate this problem with an example in Figure 1. In
(a) we show an optimistic assignment that does not consider
the risk of blockages. Robots are assigned such that the
tour lengths are minimal. However, during execution the
purple robot might find that the red area has become blocked,
causing it to take a large detour, possibly resulting in missing
the second task’s service deadline. We propose an assignment
algorithm that takes the possibility of blockages into account.
In (b) the robots avoid the blockage area. This leads to
slightly longer tours when the blockage is not present, but
significantly shorter tours in case the blockage is present.

We pose the problem of MRTA with a homogenous
fleet where tasks i) require one robot to visit a location,
ii) appear online, and iii) have a fixed time window for
service. Further, we model the environment as uncertain



where blockages appear in a stochastic way, making parts
of the environment temporarily untravesable. To the best
of our knowledge, these two fundamental robot planning
problems have not been combined before [3]. We model
blockages with Poisson processes, and present a greedy task
assignment algorithm using the expected state of this process,
given the available observations. In a theoretical analysis, we
show how this approach avoids failure cases of two naive
alternatives, and demonstrate the performance benefits in
numerous simulations with different environments, fleet sizes
and task loads.

A. Related Work

Among the early works on path planning in uncertain
environments is the Canadian Traveller Problem (CTP) [7]–
[9]. An agent travels on a graph from a start to a goal vertex,
however some edges can be blocked. Unfortunately, this can
only be observed on-site, when the agent is at one of the
edge’s endpoints. In general, the CTP is PSPACE complete
[7]. The two most prominent variants are a) the classic CTP
where blockages are placed by an adversary, and b) stochastic
CTP where blockages appear randomly. The classic CTP
has been extended to the case where a robot needs to visit
multiple locations, i.e., solve a Steiner Traveling Salesman
Problem (S-TSP), and the number of blockages is known
[10]. Similarly, [11] and [12] study minimum-latency vari-
ants of the problem. Moreover, the authors of [13] consider
the multi-robot case of the S-TSP for a homogeneous fleet
where any robot in the fleet can visit each location. This is
closely related to our work. However, there are two major
differences: Firstly, we consider stochastic blockages instead
of adversarial ones, and secondly, tasks in our MRTA setting
have deadlines.

Stochastic versions of CTP are considered in [14]–[18].
The stochastic nature of blockages can be unstructured [17],
or structured [18]. In the latter case, the robot can infer
about the status of edges that are not currently or previously
observed. The authors of [14] tackle the stochastic CTP by
sampling possible environments and then perform rollouts of
an online path planning policy. In our approach, we also rely
on sampling environments, but instead of rollouts we only
compute offline Steiner-tours for computational efficiency.

With exception of the adversarial setting of [13], the
discussed literature did not consider multi-robot coordination
where a fleet needs to decide which tasks are served by which
robot.

Multi-robot task assignment (MRTA) problems where
tasks appear online and require robots to travel to locations
are usually referred to as Dynamic Vehicle Routing Problems
(DVRP) [3], [19]. Stochastic version of the DVRP include
uncertainty on the load [20], travel time [21], [22], and
demand [21]. For general MRTA, [23] considers uncertainty
on the robots’ capabilities to complete tasks (on time). Inter-
agent congestion is another source of online blockages [24],
[25], where the robots’ paths have direct influence on the
occurrence of blockages while in our problem blockages
appear independently of the robots’ behaviour.

The most distinctive features of our work are that travel
time uncertainty takes a binary form as in the CTP –
parts of the environment are either traversable or blocked
– and blockages are recoverable, i.e., after some time they
disappear allowing the robots to travel through again.

B. Contributions

We make the following contributions: i) Pose the problem
of multi-robot task assignment with stochastic blockages in
the environment, ii) propose a greedy assignment using the
expected blockage status and discuss naive alternatives, and
iii) demonstrate the practicality of the proposed framework
in extensive simulations.

II. PROBLEM FORMULATION

In this section we formalize the problem of MRTA where
tasks require robots to visit some location in the workspace
and perform a service operation. We consider an environment
encapsulated in a directed weighted graph G = (V,E, l)
where V and E are vertices and edges, and weights l describe
the duration of traversing an edge. A fleet of m robots R =
{r1, . . . , rm} serves a set of n tasks T = {T1, . . . , Tn}. Each
task is a tuple T = (v, tr, td, d) where v is a vertex in V , tr

is the release time when the task is announced to the robot
fleet, td > tr is a deadline, and d is the duration it takes
for the robot to serve the task. Let ta(r) be the time a robot
r servicing task T arrives at the vertex v. (Note: To avoid
unintentional servicing, we can design the graph G such that
v is a copy of an existing vertex in V .)

Let ri be a robot currently located at position si, and let
Ti, be the tasks assigned to it. Further, let τi be a tour starting
at si serving tasks Ti. The tour then defines the robot arrival
times ta(T, τ) for all tasks T ∈ Ti. The service quality for
each task is measured by the wait time defined as

w(T, τ) =

{
ta(T, τ)− tr(T ) if ta(T, τ) ≤ td,
M otherwise.

(1)

Here M is a large constant to penalize service after the
deadline. The cost of a robot’s tour τ is then defined by
the sum of the associated service costs:

c(τi) =
∑
T∈Ti

w(T, τi). (2)

An assignment is a set A ⊆ {(ri, Tj)|ri ∈ R, Tj ∈ T }
such that for every Tj ∈ T there exists exactly one pair in
A containing Tj , i.e., every task is assigned to exactly one
robot. However, a robot can be assigned to multiple tasks;
thus each ri can appear in multiple pairs in A. Further, let
Ti(A) be the set of tasks assigned to robot ri under A. The
MRTA problem then solves

min
A

∑
ri∈R

c(τi)

s.t. τi serves tasks Ti(A),
T1(A) ∪ · · · ∪ Tm(A) = T .

(3)

Note: We do not explicitly model the possibility to not
service a task. This case can be handled by assigning the



task to an arbitrary robot which will visit the task location
at some time after the deadline with penalty M .

In this paper, we consider dynamic changes in the envi-
ronments. That is, edges in the graph can become blocked
during execution. Whether an edge e is blocked is only
revealed when one of the robots reaches an endpoint of e.
We assume that this information is shared instantaneously
among the fleet, but that previously assigned tasks cannot be
reassigned. Thus, the routing problem for each robot over the
destinations Ti becomes one of finding an online algorithm,
i.e., a policy π, that recomputes the route whenever a robot
discovers a blocked edge. Blockages appear following some
stochastic process X . Thus, the set of edges in the graph
becomes a random process over time E(t) We denote the
length of a tour starting at s, visiting Ti found by a policy
π under edge presence E(t) as c(π, s, Ti, E(t)). This leads
to our main problem statement.

Problem 1 (MRTA under stochastic edge blockages). Given
is a graph G = (V,E, l), a set of n tasks T , a robot fleet
R = {r1, . . . , rm} located at a common depot s. Further, let
X be a stochastic process describing the traversable edges
E(t) at any time t ≥ 0. Find an assignment A and a routing
policy π that solves

min
A,π

EE(t)∼X

[ ∑
ri∈R

c(π, s, Ti(A), E(t))
]
. (4)

III. APPROACH

We begin by characterizing a stochastic process for how
blockages occur and how a robot fleet can keep track of
observations. This prepares us for introducing algorithms
for dynamic single robot path planning and a greedy MRTA
assignment in the subsequent section.

A. Blockage Model

First, we specify how blockages occur on the graph. In
this work, we assume that blockages appear independently
at k different locations in the environment. That is there are
k subsets of edges E = {E1, E2, . . . , Ek} where Ei ⊂ E
and Ei, Ej are disjoint for all i, j = 1, . . . , k where i ̸= j.

Definition 1 (Poisson Blockage Model). Given subsets of
edges E = {E1, . . . , Ek}, blockages appear on a subset
Ei following a Poisson process Ai with parameter λi, and
the edges Ei remain blocked following a second Poisson
process Bi with parameter µi. The processes Ai, Bi, Aj , Bj

are independent for all i, j. We denote the model as a triplet
X = (E ,λ,µ).

This model is known as a Birth-Death Process, often
used in queuing theory [26], [27]. We focus on the case
when the queue has a capacity of 1 such that blockages
cannot accumulate, i.e., queue. This particular process is a
M/M/1/1 queue, also known as a queuing system with
blocked calls cleared [27]. This is equivalent to pausing
process A by setting λ = 0 once an event happened (a
blockage appeared), until the event of process B happened
(the blockage cleared) and vice versa. The blockage model

then describes a stochastic process ψe(t) for each edge e ∈ E
taking values in {0, 1} with the convention that 0 corresponds
to no blockage. We summarize the process for all edges in
the vector ψ(t).

Without loss of generality we can assume that the union
of the partitioning E is equal to the set of all edges E. All
edges that are never blocked can be summarized in a set
Ek+1 for which we set λk+1 = 0. Moreover, we make the
following assumption.

Assumption 1 (Connectivity). Given a graph G and block-
age process X , we assume that for any realization of X at
an arbitrary time step t, the graph G remains connected.

Connectivity assures that each robot can always reach ev-
ery task. Without this assumptions, robots could temporarily
become trapped, requiring a richer formulation that allows
them to wait.

B. Recording Observations

We introduce some notation for how the robot fleet keeps
track of the observation about blocked edges. Recall that
ψe(t) ∈ {0, 1} denotes if the edge e is blocked at time t.
The blockage model describes a random process ψ(t) for
each edge being blocked at some time t. Now let Ω =
{ω1, . . . , ω|E|} be the observations for all edges. That is, for
each e ∈ E there exists an ωe = (te, ψe) where te indicates
the last time some robot visited one of the end points of edge
e, and ψe the observation about the edge being blocked at that
time. If an edge was never observed we set ωe = (−∞, 0).

Property 1 (Most recent observations). For any edge e ∈ E,
let t be the time of the most recent observation. For any time
t′ ≥ t, the probability P(ψe(t) = ψe(t

′)) is independent of
any past observations made at time t′′ < t. Thus, Ω only
stores one observation per edge. This is a direct result of the
memory-less property of the Poisson process [26].

C. Observation Model

An observation model takes as input observations Ω
where the latest observation was made at time t and outputs
a probability for blockages at some time t′ ≥ t, i.e.,
P(ψ(t′)|Ω).

Definition 2 (Observation Model). Given is a blockage
model (E ,λ,µ), current time t and some observation ψ about
an edge e made at time t′ ≤ t. Further, let Ej denote the
subset in E containing e. The probability of e having the
same blockage status as at time t is then given by

P(ψe(t) = ψe(t
′)) =

{
f0(t, t

′) if ψe(t
′) = 0,

f1(t, t
′) otherwise,

(5)

where
f0(t, t

′) =
µ

λ+ µ
e−(λ+µ)(t−t′),

f1(t, t
′) =

λ

λ+ µ
e−(λ+µ)(t−t′).

(6)



Algorithm 1: MRTA with Stochastic Edge Blockages
Input: Graph G = (V,E, l), online task sequence T ,

fleet R
1 Q = ∅, A = ∅
2 for time t = 1 to tmax do
3 Ω← Update Observations(R)
4 Q← receive online Tasks(T , t)
5 A ← Assign Tasks(G, t,Q,R,A)
6 for i = 1 to |R| do
7 if Ti changed or Ω changed then
8 τi ← Compute Tour(G,Ω, t, si, Ti)
9 ri ← Move Robot(G, ri, τi)

The probabilities f0 and f1 are given by the transient
probabilities for an M/M/1/1 queue being either empty or
filled at some given time [28].

This observation model requires the blockage model
(E ,λ,µ) to be known. In practise, the process parameters
can be estimated from historic data for the robots’ environ-
ment.

D. Task Model

As common in dynamic vehicle routing [19], we model the
online arrival of tasks as a Poisson process with parameter
ξ, i.e., the expected time between task arrivals is 1/ξ. Task
locations v are randomly distributed following some density
α : V → [0, 1].

IV. ASSIGNMENT ALGORITHM

In this section we first present a general framework to
solve Problem 1, and then derive a online path planning
approach using an estimate of the blockage process.

Algorithm 1 provides a high level overview. Over the given
time window, the robot fleet maintains up-to-date information
on their observation set Ω as well as any newly arrived tasks
Q (line 3,4). If Q is non-empty, the new tasks are added
to the assignment A (line 5). Then, each robot recomputes
their route if a) the set of tasks assigned to them Ti has
changed, or b) new observations are available (line 6-8). This
re-computation upon making new observations Ω makes the
tour computation a policy. At the end of each iteration all
robots move along their tour τi for the next time step. We will
now first describe a greedy online task assignment algorithm
before we then study different approaches for online path
finding and discuss how they affect the assignment.

A. Computing Tours

We first present our approach for Compute Tour using
the expected blockage status for each edge, given current
and past observations. The online property of the problem
is taken care of in the recomputation condition in line 7
of Algorithm 1. Thus, the output of Compute Tour is an
offline tour, starting at s and visiting all task locations while
minimizing cost c. We call this the reference tour.

a) Static Simplification: In general, blockages can ap-
pear while a robot executes its tour, even if the respective
edges where observed as unblocked at start time. While this
is captured in our observation model, such dynamic changes
pose a major challenge for computing a tour, since it makes
the edge costs time dependent.

The task assignment algorithm requires frequent com-
putation of numerous tentative tours; thus, we make the
simplifying assumption that the probability of edges being
blocked is constant during the execution of the tour. That is,
let ∆(T ) be the time needed to service some tasks T . The
function Compute Tour then assumes that

P
(
ψ(t)

)
≈ P

(
ψ(t+∆(T )

)
. (7)

Notice, that this is solely a simplification of the tour planning
algorithm, we do not assume that the actual blockage process
satisfies this condition.

To plan a reference tour we define a new graph G′, where
the edge costs are defined by the current observations of
blockages Ω (which we describe below). We then compute
a tour starting at s and visiting all task locations while
minimizing cost c. Due to the complexity of our cost
function induced by the deadlines, we use a min-cost
insertion heuristic [29] for computing tours.

b) Expected edge length and expected graph: To main-
tain a homogeneous structure of the graph under different
blockage realizations, we make the modelling choice to not
actually delete blocked edges, but instead update their costs
accordingly. For any realisation of the edge blockages ψ, let
G(ψ) = (V,E \ E′(ψ), l). This is equivalent to having a
graph G′(ψ) = (V,E, l′) where for l′e is equal to the length
of the shortest path from v to u on G(ψ) with v and u being
the start and end vertex of the edge e, respectively. Trivially,
if e is not blocked l′e = le. The advantage of using G′(ψ) is
that any path or tour that exists on the unblocked graph G
also exists on G′(ψ), but will have a different cost.

Using expected edge lengths, we propose a method for
Compute Tour, denoted by πExpect. Given observations Ω
and thus the blockage probabilities P(ψ(t)|Ω) defined in (5),
we can generate a graph GExp(Ω, t) = (V,E, l̂) where the
edge cost correspond to the expected edge costs:

l̂e = Eψ∝P(ψ(t)|Ω)[l
′
e(ψ)].

In practice, we rely on sampling N random configurations
Ψ = {ψ1, . . . ,ψN} from the posterior. Thus,

l̂e ≈
1

N

∑
ψ∈Ψ

l′e(ψ). (8)

Our proposed approach πExpect computes a reference tour of
minimal cost on the graph GExp.

B. Greedy Assignment

With the function Compute Tour now defined, we present
our greedy task assignment approach. Algorithm 2 shows the
assignment algorithm, that iteratively assigns all tasks in the



Algorithm 2: Assign Tasks

Input: Graph G, current time t, task queue Q, latest
observations Ω, fleet R, current assignment A

Output: New assignment A
1 while Q is not empty do
2 for ri ∈ R do
3 Ti ← tasks assigned to ri under assignment A
4 τ = Compute Tour(G,Ω, t, si, Ti)
5 for Tj ∈ Q do
6 τ ′ = Compute Tour(G,Ω, t, si, Ti ∪ {Tj})
7 c(ri, Tj) = c(τ ′)− c(τ)

8 (r∗, T ∗)← argminri,Tj
c(ri, Tj)

9 A ← A∪ {(r∗, T ∗)}
10 Q← Q \ T ∗

11 return A

queue Q to the robot fleet. We compute the marginal increase
in cost of the reference path found by Compute Tour for all
pairs of tasks in Q and robot in the fleet (lines 2-7). We then
pick the pair with minimal value and add it to the assignment
(line 8), and repeat until Q is empty.

C. Naive Tour Computation Methods

In addition to the proposed approach, we introduce two
naive alternative methods for planning reference tours: Op-
timistic – πOptimistic and Static – πStatic. Both approaches
lead to policies that do not use predictions about blockages,
but only update the graph when making new observations.
Such techniques are still commonly used due to their sim-
plicity, as discussed in [18]. Further, we show how these two
methods can fail in simple example cases.

a) Optimistic Planning: The first alternative πOptimistic

plans in a purely optimistic fashion and only considers
observations made at the current time step. At time t, let
Et be the set of edges for which we have an observation
ωe = (t, 1) in the current set of observations Ω, i.e.,
Et = {e ∈ E|ωe = (t, 1)}. The optimistic approach then
constructs a vector ψt where ψt

e = 1 if e ∈ Et and
0 otherwise. We then use generate the graph G′(ψt) and
compute the corresponding optimal tour τ 0. This approach
always assumes a best case scenario and thus underestimates
the online cost.

We show a failure case for πOptimistic in (a). We assume
that both edges going through orange regions are blocked at
all times (λ = ∞, µ = 0). Let a single robot start at the
bottom left vertex, and a task with a deadline of 7 timesteps
appears at the upper green vertex. After observing the first
blockage, πOptimistic will reroute to go up through the central
edge. Upon observing that it is also blocked, the optimistic
approach will assume that the left blockage is no longer
present. Then, for any l′ > 1, the robot will reroute to the
left vertical edge. This traps the online planner in a cycle,
i.e., it will repeatedly try to use the left or central vertical
edge and thus fail to ever reach the task location.

(a) Failure Case for πOptimistic (b) Failure Case for πStatic

Fig. 2: Problem instances creating failure cases. Green ver-
tices indicate locations where tasks can arrive, all edges have
length 1 with exception of the right most edge with length l′.
The edge going through the orange area can become blocked.

b) Static Planning: The second approach πStatic takes
into account past observations about blocked edges, but does
not leverage the posterior probabilities. Instead, let Estatic

be the set of edges where the most recent observation was
blocked, i.e., Estatic = {e ∈ E|ωe = (t′, 1) for any t′ ≤ t}
where t is the current time. Similar to πOptimistic we then
construct the vector ψstatic and graph graph G′ = (ψstatic)
and compute the corresponding optimal tour τ static. The
static reference tour can yield an over- or an underestimate
of the online cost.

A failure case for πStatic is shown in Figure 2 (b). We
assume that the edge going through the orange region is
blocked at time step 0, but then follow a process with finite
parameters λ, µ > 0. Tasks appear at both green vertices
over time. The static method πStatic observes the blockage
at time 0 and will then use the right route. Due to the
static assumption, it will never go to either of the vertices
bordering the risk region, and thus the robots will not
observe when the blockage disappears. Let l′ = 5. Further,
let tasks appear every 10 time steps, but have a deadline of
4 timesteps. Then πStatic will not be able to deliver any
task within the deadline.

We observe that both failure cases are avoided by the
proposed method πExpect. In the first case, πExpect will use
the unblocked route and deliver the task after 6 timesteps. In
the second case, the probability of a blockage is ≈ 1/2 for
some sufficiently large t for any finite parameters λ, µ > 0.
The expected length of the risk edge then is l̂e = 1+6/2,
resulting a tour that attempts to traverse it. If the blockage
is not present, the task will be serviced in time. Thus, at
time t, the proposed approach πExpect has a .5 probability of
successfully servicing a task, while πStatic has a probability
of 0. Finally, we notice that these failure cases can be
extended to a multi-robot setting by creating connected
copies of the shown example graphs. When sufficiently far
apart, each subgraph will be served by one of the robots,
such that we retain the single robot failure cases.

V. EVALUATION

We show an extensive set of numerical experiments com-
paring the proposed approach to the naive baselines to
highlight. We will observe that our approach performs well



(a) Artificial environment. (b) Office environment.

Fig. 3: Simulation scenarios. Obstacles are shown in black, vertices of the graph in green. Purple indicate vertices where
tasks can arrive, and edges going through the orange areas are at risk of becoming blocked temporarily.

under different blockage processes and thus outperforms the
simpler techniques.

A. Experiment Setup

a) Environment: We consider two different environ-
ments: a) an artificial warehouse setting, reassembling the
feature of the two failure cases and b) a real world office
environment, shown in Figure 3. Both environments feature
multiple dedicated sparsely distributed task locations (shown
in purple). Moreover, orange indicates areas where there is
a risk of blockages. For each area, all edges going through
it form a risk set Ei, which are then the elements of the
blockage process.

b) Performance Measure: Our key measure of perfor-
mance is the rejection rate, i.e., percent of tasks that were
not served on time before the deadline.

c) Other parameters: Each trial of the simulation is run
for 4000 timesteps. We generate random arrival processes
for tasks, where the arrival rate ξ is chosen such that the
average number of tasks is 100, 200, 300, and 400. For each
generated task sequence, we run a simulation with different
blockages processes. For simplicity of analysis, we pick the
same parameters λi, µi for all risk sets Ei. In the plots, we
indicate the inverse values (λ−1, µ−1), which correspond to
the expected unblocked / blocked times.

For the proposed method πExpect we compute the expec-
tation with N = 20 samples in equation (8).

d) Baseline Algorithms: We compare our proposed
assignment framework using πExpect to a number of baseline
and competitive approaches.

We simulate the naive alternatives πOptimistic and πStatic

to show the benefits of computing the expected blockage
status and how the failure cases can also happen in realistic
scenarios. Moreover, we consider a heuristic lower bound
on performance Unblocked where no blockages are present.
Further, all blocked considers all risk edges being blocked
at all times, i.e., all risk edges are removed from the graph.
This corresponds to the most risk-adverse strategy.

B. Results

a) Artificial Environment: In the artificial environment
we first consider a fleet of 2 robots. Task appear only in the
left half of the environment, allowing us to later compare

the result with a fleet of 4 robots without changing other
process parameters. In Figure 4a we show the result for three
different blockage settings, varying the balance between
expected unblocked and blocked time. Overall we observe
that the proposed πExpect performs second best (neglecting
the Unblocked baseline). However, πOptimistic and πStatic

each fail for one of the imbalanced blockage processes.
When blockages are rare, i.e., (λ−1, µ−1) = (300, 100), the
static method performs significantly weaker than the other
two. This is due to the fact that it does not forget an observed
blockage, but continues to assume that the blockage is still
in place until observed otherwise. For some of the blocked
edges in the artificial map, the robot has no incentive to go to
an adjacent vertex, unless with the intent to traverse it. Thus,
for these edges πStatic does not make new observations
once they were observed as blocked. For long simulations
time the behaviour becomes similar to the All blocked

setting where any risk edges are avoided. In the opposite case
(λ−1, µ−1) = (100, 300) where risk edges are blocked more
often than not, the optimistic approach πOptimistic performs
very poorly. This is closely related to the failure case in
Section IV-C, the robots start to oscillate, i.e., go back and
forth between two blockages until one of them disappears
instead of using the blockage free detour. Finally, we observe
that All blocked performs poorly when blockages are rare,
but is among the strongest when blockages appear more
often.

We repeat the experiment with a fleet of 4 robots and
task appearing in all target locations as shown in Figure
3a; the results are plotted in Figure 4b. The overall trend is
similar to the 2 robot case, yet the differences between the
approaches are smaller. Moreover, when blockages remain
for long, i.e., (λ−1, µ−1) = (100, 300), the all blocked

approach performs best.
In summary, the experiment showcases the advantage

of the proposed approach. While πOptimistic and πStatic

are successful under some blockage parameters, their
performance is poor under other settings. In contrast,
πExpect avoids these pitfalls and performs strongly under all
parameter settings.

b) Real-World Environment: Figure 5 shows the results
of the second experiment using the map in Figure 3b.



(a) m = 2 robots.

(b) m = 4 robots.

Fig. 4: Results in the artificial environment. For m = 2 tasks
appear only in the left half of the environment, thus it can
perform better for the same number of tasks despite a smaller
fleet.

(a) m = 2 robots.

(b) m = 4 robots.

Fig. 5: Results in the real-world office environment.

For m = 2 robots, we first observe that the rejection rate
of Unblocked increases with the number of tasks, indicating
the the problem is harder even in the absence of blockages.
Nonetheless, the proposed approach πExpect is still among the
strongest of all other techniques. Interestingly, πStatic does
not fail when (λ−1, µ−1) = (300, 100), but performs worse

in the opposite case. The optimistic approach πOptimistic

shows the same trend as in the first experiment, showing
a high rejection rate when blockages are lasting longer.

For m = 4 we doubled the number of tasks throughout
the experiment. In case of Unblocked the rejection rate
still grows with the number tasks. Again, we observe that
πOptimistic fails for (λ−1, µ−1) = (100, 300). On the other
hand, here πStatic performs similar to πExpect in almost all
settings.

In conclusion, the proposed method πExpect shows a strong
performance across all settings in the real-world environment
as well. While the static approach πStatic performs nearly
as good as πExpect, the optimistic approach πOptimistic still
exhibits its failure cases. Thus, the second experiments high-
lights the benefits of the proposed approach under realistic
settings.

VI. CONCLUSION

In this paper we studied the problem of MRTA with
dynamic temporary blockages in the environment. We used
Poisson processes to model edge blockages, and derived an
according observation model. We proposed an online routing
policy based on reference tours using the expected travel
distances, given observations. The cost of these reference
tours is used in a greedy task assignment algorithm. We
showed how using the expected travel distance avoids pitfalls
of simpler naive routing policies, namely an optimistic and
a static approach. Simulation experiments showed that the
proposed approach is always among the strongest in vari-
ous settings while the naive approaches perform much less
reliably.

There are several directions for future work. Our method
assumes that the parameters of the blockage process are
known, which does not necessarily hold in practise. We
would like to i) study the robustness of the proposed method
towards inaccurate estimates of these parameters, and ii)
include the estimation of the parameters in the problem setup.
This poses an interesting exploration versus exploitation
trade-off similar to [15], [18]. Moreover, the problem setup
can be extended to pickup and delivery. We believe that
blockages potentially have a larger impact on performance in
such problems since robots cannot partition their workspace
to avoid using risk edges. Finally, it would be interesting
to consider large scale problems with tens to hundreds of
robots, ideally using real world data sets.
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