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Abstract: Reward learning is a highly active area of research in human-robot
interaction (HRI), allowing a broad range of users to specify complex robot be-
haviour. Experiments with simulated user input play a major role in the devel-
opment and evaluation of reward learning algorithms due to the availability of a
ground truth. In this paper, we review measures for evaluating reward learning
algorithms used in HRI, most of which fall into two classes. In a theoretical worst
case analysis and several examples, we show that both classes of measures can fail
to effectively indicate how good the learned robot behaviour is. Thus, our work
contributes to the characterization of sim-to-real gaps of reward learning in HRI.
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1 Introduction

Researchers in human-robot interaction (HRI) study how robot behaviour can be adapted to the end-
users’ preferences. To achieve this, intelligent autonomous robotic systems often do not receive
explicit instructions, but instead optimize a reward function that encapsulates how the robot should
accomplish its tasks. Defining such reward functions is challenging. Therefore, interactive learning
frameworks have been designed that allow a broader range of users to transfer their preferences into
a reward function [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15]. In those frameworks, different
modes of interaction have been studied, including pair-wise comparisons of trajectories [2, 3, 4, 5,
6, 7, 8, 15], rankings of trajectories [16, 17], and feedback [18, 11, 13, 19], among others.

The development and validation of efficient algorithms for reward learning requires numerical ex-
periments where the ground truth reward function is known. Since the reward function of real users
is in general unknown, this usually involves simulated users, i.e., sampling potential user reward
functions and then generating user input following a behaviour model. To evaluate algorithm per-
formance various measures are used, most of which fall into two classes: parameter-based and
reward-based measures. The former capture how close the learned parameters of the user’s reward
function are to the ground truth parameters, while the second class considers the reward that the user
assigns to the learned solution.

We show that both classes have significant shortcomings: parameter-based measures do not give
a direct indication about the reward collected, i.e., how good the learned behaviour is in specific
instances, while reward based measures do not necessarily translate well between related problem
instances, e.g., between training and test environments. These observations shed light on limitations
of evaluation methods for reward learning algorithms in HRI: i) Even similar (but not identical)
parameters do not guarantee that the learned robot behaviour is close to optimal. ii) Reward-based
measures might indicate strong performance in training environments, yet the performance in test
environments can be much poorer, even when the environments are relatively similar. Thus, both
classes of measures do not effectively indicate how good the learned robot behaviour is in general.

Related Work: Parameter- and reward-based measures are used extensively in reward learning in
HRI [2, 4, 5, 20, 21, 22, 23, 24, 25, 26]. Yet, their respective shortcomings are not widely discussed.
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To address the transfer problem between training and testing, it is common in machine learning to
use several testing instances [27]. This practise is also applied in reinforcement learning (RL) and
inverse reinforcement leraning (IRL) [28, 29]. The authors of Fu et al. [29] use an adversarial RL
framework to obtain a reward function that yields robust behaviour in test instances. The relation of
inaccurate parameters and optimality of the corresponding solution leads to the observation that even
inaccurate reward functions can yield an optimal RL-policy [29, 30, 31]. Similarly, Wilde et al. [9]
discretize the parameter space of a graph-based planner into subsets called equivalence regions such
that all parameters from the same subset yield the same path. Brown et al. [32] recently proposed
value alignment for Markov Decision Processes (MDP) to capture if the robot behaviour corresponds
to a user’s preference, avoiding the pitfalls of parameter-based measures. Gleave et al. [31] propose a
measure for evaluating reward functions in RL without requiring the costly computation of a policy.
In contrast to these works, our paper does not focus on a specific problem domain such as RL or
graph search. Instead, we study shortcomings of learning measures used in HRI, describe their
theoretical worst-case and show different characteristics in numerical experiments.

Contributions: In this paper, we provide a review of measures used in HRI for how well a robot
has learned a user’s reward function, followed by an extensive analysis of their limitations. In
particular, we study exemplary cases highlighting the shortcomings of the two main reward learning
measures. We then provide a theoretical analysis, showing that both measures can be arbitrarily bad
indicators for the actual performance. In numerical experiments for three different robot planning
problems, we highlight that the issue is prevalent in various domains.

1.1 Reward Learning Formalism

Let I be the instance of a robot planning problem, defined by a robot’s state and action space,
an initial state, a set of goal states, and a collection of constraints. In HRI, reward functions are
often used to describe how well a robot trajectory fits a user’s preferences. Thus, we consider a
reward function R taking a robot trajectory 7 as an input and assigning a real value. Usually, R
is assumed to be a weighted sum of features [33, 23, 2]. Let 7 be a robot trajectory, and ¢(7) =
[01(T) ... ¢n(T)] be some predefined feature functions. Then the reward of T is

R(T, w**) = w*™ - ¢(T), (D

user

where w is a weight vector, expressing how a particular user values these features. Without loss
of generality, we assume the weights to be positive. The objective is that a robot executes trajectories
of maximum reward, i.e., computes

TU = arg max R(T,w"*) 2

for any instance I of the planning problem. However, in many applications, it is difficult to obtain
the weights w"*°* from a particular user. Reward learning is the problem of interactively learning
these weights in order to solve (2). This can be informally stated as follows:

Problem 1 (Reward Learning). Given is a user with hidden preference w"*%*, some mode of user

interaction M, and K iterations for querying the user. Using the interaction, the robot needs to learn
the best possible estimate w’ of the user’s weight vector w"seT,

2 Review of Reward Learning Measures

Problem 1 is ambiguous about what defines a good estimate w’. In simulation experiments ground
truth user weights w"*°* are available, allowing for a direct comparison to optimal. The HRI com-
munity uses different measures, which can be divided into two primary categories: reward-based and
parameter-based. We will briefly review the most common measures from the literature, followed
by a discussion about the fundamental difference of reward-based and parameter-based measures.

2.1 Reward-Based Measures:

Reward-based measures directly evaluate estimated weights w’ based on how well the corresponding
optimal trajectory 7 solves the principal problem in (2).



Returned Reward: The most direct reward-based measure is to consider the reward R(7”, w"seT)
some trajectory 7' collects for user weights w"*®*. This measure has been used in [20, 21, 22],
among many others.

Relative Reward: To measure closeness to optimal, the Relative Reward [15, 26] takes the ratio
of the reward w"s°* assigns to the learned solution 7 over the reward assigned to 75, i.e.,
!
Rrel(w/ wuser) _ R(T ,wuser) (3)
’ - R(Tuser wuser) :
)

In case the reward function takes negative values, the ratio is inverted. When rewards can be positive
and negative, a normalization is needed.

Regret: In some cases, it might be favourable to use a negative measure, i.e., where 0 corresponds
to the best achievable value. This is capture by the Relative Regret [5], which is Reg™! = 1 —
R*e(w', w*seT). Alternative to the ratio, the Absolute Regret is formulated as a difference [26, 23,
25], i.e., Reg®® = R(T"s%* w"**) — R(T’,w"**"). This is a convex function of w"*** [26].

2.2 Parameter-Based Measures:

user

This group of measures also requires ground truth weights w"***, and measures the similarity of the

estimated weights w’ and the optimal weights w"se*,

Alignment: The alignment measure [2, 4, 34] captures how similar the learned weights are to the
user weights by measuring the angle between the vectors:
, ’UJ/ . quuser

(s W) = T @

Mean squared weight error: Similar to alignment, other works use the mean squared error (MSE)
of estimated weights and user weights [23, 24].

2.3 Other Measures

For completeness we also briefly review a third category used in learning from choice frameworks,
which we label as predictive measures. There are two measures in this category, log-likelihood
[16, 3, 15], and prediction accuracy [3]. Both measures describe how well a learned probability
distribution over weights w allows for predicting how a user would choose between two trajectories.
These measures do not require the ground truth weights, but only a user’s response to a validation
set consisting of choice queries, which makes them suitable for evaluating user studies. However,
prediction measures are indirect and depend on the validation set.

2.4 Comparison of Measures

Parameter-based and reward-based measures take different perspectives on describing how well
some estimate w’ describes a user reward function with weights w"**. Reward-based measures
consider the robot trajectory that a planner or policy returns when optimizing for weights w’, and
compute the reward assigned to it by the user w"***. This directly captures how well the robot is
able to solve problem (2). However, this statement only relates to one specific problem instance. For
instance, a robot might learn a reward function for how to carry dishes around the kitchen, where the
features are trajectory length and risk of collision. When trained for a specific planning problem in
a specific kitchen, the reward-based measures then describe how well the robot is able to solve that
task, but give no direct information about how well the robot would operate in a different kitchen.

In contrast, parameter-based measures describe how well the reward function is estimated. These
measures are universal, i.e., independent of the instance. When capturing w"*®* accurately, a robot
would be able to compute 7"%°F in any problem instance with the same features. Yet, parameter-
based measures also have a major drawback: they do not consider the robot’s planner, i.e., the
mapping from weights to optimal trajectory. Thus, there might be no relation to the collected reward
- and thus no information about how well the robot will solve (2), unless w’ = w"se*,
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(a) Dubins instance 1. (b) Dubins instance 2.
Figure 1: Different Dubins paths with three features. Green shows a user’s optimal trajectory T 5%,

blue and orange two different estimates 74 and 72. Grey shows other Dubins paths for different
radii.

(a) Instance 1, Fig. la. (b) Instance 2, Fig. 1b.

R Rl Reg®™ «  MSE R Rl Reg®™ «  MSE
w584 1 0 1 .01 w339 1 0 1 .01
w? —-5.92 .98 .08 .98 .01 w? —3.56 .95 17 .98 .01
w? —6.36 .92 52 .98 .01 w? -3.39 .1 0 .98 .01

Table 1: Estimation measures for the Dubins example.

3 Exemplary Fail-Cases

Using a simple motion planning task we now illustrate the weaknesses of parameter and reward
based measures. A robot is navigating in 2D space with constant velocity following Dubins paths,
where the radius can be chosen within some bounds. There are two features: path length, and integral
square jerk (IS jerk) — the first captures the time-efficiency while the second measures discomfort or
risk (Note: to obtain a maximization problem, we take the negative of these values).

Single-Scenario Example: We arbitrarily choose a user with preference w*s®* = [.5, .5], and two
estimates w? = [4, .6], and w® = [.6, .4]. We illustrate the corresponding optimal trajectories
in Figure la and summarize the resulting measures in Table 1(a). The parameter-based measures
evaluate w* and w? as equally good estimates of w"s¢*. However, w* collects more reward
than w®, making it the better solution. This observation demonstrates that the alignment metric is
unaware of the sensitivity of the optimization to find the optimal trajectory given some w. Thus,
alignment can fail to capture how well estimated weights can allow the robot to compute trajectories
that fit a user’s preference.

Multi-Scenario Example: We now study the case where a robot has to perform multiple similar
tasks. Hence, we consider a second planning instance in Figure 1b with a different goal location.
This serves as a test case, while we use the same w"s* and estimates w* and w? as before. In
practise, a robot might have obtained these estimates from reward learning in the first instance. A
good estimate of w"** should then also achieve high reward in the test case. The measure values
are shown in Table 1(b). Naturally, the alignment and MSE yield the same value as earlier since
they only depend on the weights, not on the planning instance or trajectory. However, the reward
measures show that, while w?® was a poorer estimate than w* in the first example, the places are
now reversed. Hence, good values of a reward-based metric do not necessarily translate between
instances, e.g., from training to test cases.

4 Theoretical Analysis

In addition to the previous motion planning tasks with a Dubins model, we present more rigorous
theoretical results. For brevity, the proofs can be found in the supplementary material.
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(a) Rewards for Dubins instance 1. (b) Rewards for Dubins instance 2.

Figure 2: Example reward functions ryuse:(w’) for the Dubins problem from Figure 1. In each
plot, we pick 5 different w"**, uniformly spaced, and plot the respective rewards 7yuse: (w’). The
markers on each line show the location of the optimal estimate, i.e., where w’ = w"s®*.

4.1 Worst-Case Study

First, we show that for any non-optimal alignment or MSE error the collected reward under the true
weights w"** can be arbitrarily far from optimum.

Theorem 1 (Unbounded Reward Difference). Let w"*°* be a user weight, and w’ be an esti-
mate, where the alignment is § < o(w’, w"**) < 1 for some § < 1. The difference in reward
R(Tvse*, w"*") — R(T’, w"**") is unbounded.

Theorem 1 shows that even when the alignment is arbitrarily close to 1, it does not allow for claims
on how much reward is collected, compared to optimal. Following the same proof the result extends
to the second parameter-based measure, the MSE. Next, we study the multi-scenario case to show
that the reward-based measures do not translate from test to training scenarios. Let 72" be a
training and /7% a test instance. For weights w’, w"®*, we use Rl (w’, w"*°T) to denote the

train

relative reward collected in /™ and similarly RESL, (w’, w®™) for the test instance 17,

Theprem 2 (Unbounded Test Error). Let w"®* be a user weight, and w’ be an estimate. Further, let
I™212 be a training instance, where the relative reward RIS, (w’, w"®%) is taking values in [4, 1]
for some § < 1. There exist test instances I7°5* where the relative reward REeL, (w’, w"**) has no

tighter lower bound than 0.

The two theorems show that in a worst case the observed shortcomings can cause both classes of
measures to be arbitrarily poor indicators of the actual performance.

4.2 Non-linear Characteristics of Reward Functions

Given the exemplary cases and the worst-case analysis, we briefly characterize the underlying
relationship of weights and rewards. Using the convention that 7" is the optimal trajectory for
weights w’ we can write the collected reward when optimizing for estimate w’ as r(w"**, w') =
w"e* . ¢(T’). This is a linear function of w"*** for any fixed w’. Yet, maybe surprisingly, for
any fixed w"*** it is in general a non-linear function of the estimate w’. That is, the features ¢(7”)
are often not linearly dependent on the weights w’. This is related to the sensitivity of optimization
problems — small changes in w’ can lead to the same solution. Indeed, if trajectories are computed
with a discrete planner, then almost all trajectories outputted by the planner are an optimal solu-
tion to not just a single weight, but a set of weights. Thus, the function r(w"s*, w’) is piece-wise
constant over w’ [9]. Yet, this phenomenon also applies in continuous space. For instance, when
planning around an obstacle, multiple weights can lead to the tightest feasible trajectory that takes
the detour around the obstacle; only for a high enough weight on minimizing trajectory length, the
planner will switch to the other side of the obstacle. Different weights leading to the same optimal
solution is also related to reward-ambiguity in RL [30, 29].

We illustrate the non-linearity of r(w"*®*, w’) in Figure 2 using the planning examples from Sec-
tion 3, where we fix several values for w"*®*. Since the problem is only two-dimensional, we can
set wg = 1 — wy, allowing us to plot r(w"®* w’) over the scalar values of wj. We make two
key observations: i) r(w"®* w’) is non-linear in w’ and and can exhibit jumps, which causes the
shortcomings of parameter-based measures. ii) r(w"*°*, w’) shares very little similarities between
the two instances, resulting in the transfer problem between training and testing.
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(a) Dubins experiment. (b) Driver experiment.

Figure 3: Examples for the relationship between alignment and relative reward. In each plot, the
relative reward values have been normalized.

Dubins Driver Server
Mo Md SD Min/Max Mn Md SD Min/Max Mn Md SD Min/Max

Pears. .41 .43 .28 -3/96 45 50 .32 -39/96 45 .46 .18 -.06/.87
Spear. b5 .56 .29 -36/.97 56 .59 .23 -17/97 42 42 18 -.06/.85

Table 3: Correlations between alignment and relative reward. Correlation values: Pears. — Pearson
correlation coefficient, Spear.— Spearman Rank coefficient. Statistics: Mn—mean, Md — median, SD
standard deviation.

5 Numerical Results

To validate that the described fallacies of the measures do not only arise in constructed examples,
we conduct extensive numerical experiments with randomly generated instances and user weights.

Robot planning problems: We consider three different robot experiments: i) A mobile navigation
problem using a Dubin’s car similar to Figure 1 but with three features: trajectory length, jerk and
the closeness to humans present in the environment. ii) The driver simulation previously used in
[2, 4,5, 15, 32], among others. This problem has four features: keeping speed, closeness to another
vehicle, staying in a lane, and orientation on the road. iii) A manipulator robot serving drinks. The
experiment has eight features, describing the choice of drink as well as how the robot moves over a
plate and stove. Trajectories were generated on a real-world system by the authors of [15].

Generation of user weights and estimates For each experiment, we generate a set 2 of 100
uniformly random weights vectors in [0, 1]™ (where n is the number of features). User weights
w"°" are picked uniformly random from 2. We do not conduct any reward learning. Instead, all
weights w’ € Q) are considered as estimates of w"***, which could have been the result of learning.

Dependent Measures: For each pair (w"*®*, w’) we compute different learning measures. We
characterize the relationship between measures using the Pearson correlation and Spearman rank
coefficients. The Pearson coefficient describes a linear correlation — a strong linear relationship
would be the best possible result. The Spearman coefficient measures monotonicity.



Dubins Driver Server
Mn Md SD Min, Max Mn Md SD Min,Max Mn Md SD Min, Max

Pears. .44 47 .23 -5/97 48 47 25 -57/90 .80 .91 .26 -21/1.00
Spear. .45 .43 .26 -55/97 .76 83 .19 -07/95 80 .93 .28 -.17/1.00

Table 4: Correlations between relative reward in training and testing.

5.1 Analysis of Alignment-Reward Relation

First, we investigate how alignment relates to solving the principal problem in equation (2). For
any pair (w"*°T, w'’) we compute alignment and relative reward'. Figure 3 shows exemplary results
for 5 users, across 5 different problem instances. Overall, the relationship between alignment and
relative reward varies drastically between instances as well as between users. The results fall into
five categories:

1. Approximately Linear: In some instances alignment is a good indication of the collected
reward. Examples are Dubins: User 5, Instances 1 and 5, as well as Driver: Users 2 and 4,
Instances 2-5.

2. Underestimates / Simple Instances: In some cases, most samples with alignments > .5
collect close to optimal reward. Thus, the different sampled solutions are similar to optimal
solutions for these users, resulting in easy problem instances. Here, the alignment is a
drastic underestimate of the actually collected reward. Examples are Dubins: Users 1 and
3,Instance 3, Driver: User 3 and 5, all instances expect 3.

3. Overestimates: Some plots show a monotone trend that becomes steeper for higher align-
ments. In most such cases the relative reward is small even for high alignment values. Thus,
the collected reward is overestimated. In case of Dubins, User 2, Instance 1 or 2, the align-
ment values of ~ .95 correspond to less than .25 relative reward, i.e., highly suboptimal
solutions. Other examples are Dubins: User 4 Instances 1, 2 and 5.

4. Unstructured: In various instances, alignment and reward have no, or at most a weak cor-
relation, i.e., alignment gives almost no reliable information on the collected reward.

We repeated the experiments for 40 random seeds for (2, yielding 1000 user-instance pairs, numerical
results are shown in Table 3. For all three planning problems the Pearson correlations are weak
and have high standard deviations. This strongly supports the observations from the plots: Across
instances and users there is no consistent linear trend between alignment and reward. The Spearman
coefficients are slightly higher for Dubins and Driver, yet not high enough to indicate a strong
monotonic relationship. In summary, the experiments show that alignment is not a reliable indicator
on how much reward is collected, i.e., how well some estimate w’ solves the principal problem (2).

5.2 Analysis of Reward between Training and Testing

Next, we study the relation of relative reward between training and test instances. We fix one in-
stance as a training instance /2%, and compute the relative reward with respect to w**** for all
w’ € Q. For the same samples, we compute the relative reward in a set of fest instances. Figure
4 shows exemplary results: Each row corresponds to a fixed random user, and each column is a
different instance with the first column being the training, and the others the test instances.

We observe a large variability in the relationship between the relative rewards collected in training
and testing, with similar archetypes of correlations as in the first experiment. For Driver we notice
that in Instances 3 and 5 almost all samples are close to optimal for user 1-4, showing that these in-
stances are trivial for some, but not all users. Again, we repeated the experiment for 40 random seeds
and report the statistic in Table 4. For the Dubins and Driver experiment, we observe only weak cor-
relations — the reward collected in training is not a reliable indicator for the reward collected in other
instances. However, the Server task exhibits strong Pearson and Spearman correlations. Indeed, for

!The relative value is favourable over returned reward or absolute regret since it takes values in the unit in-
terval. Further, we use relative reward instead of relative regret such that the optimum is at 1, akin to alignment.



Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

100 A P T .-3@ ..... _ 100 AT 1
075 & .e . ei}"' i 075 o M i
050 o M 050 yf M
025 o] &

000 . 000 .
100 TR 3 - 100 = pr o e
/| K 4 = / ¢4 i@ ¥ Fe
075 & o B I3 075 . FaA s . z
s c .

2 050 : R S Dos ¢ M

T o -k o

E 000 . H E 00042 .

| 10 7 g v |10 7 v e 7 7

Py ye I3 o g *:% e

o o y, st 7 Do & . " K Sl

g 050 & N :U g 050 & L ;

Z o Z o

g 0.00 g 0.00 . H .

= 100 3 = 100 ) 7 | o

5 - E 7 AL # o s

S o Vs v S o . B

& oso l,e'. NI . N
025 * 025
0.00 0.00 it 1
100 . s e Frri e 100 ri 7

K LA R Lan # .
075 P f‘ & ealabiiie® ,5 ors s s .:..::_a E
0s0 rd y : M sl i
H
oas{ 0| .
0004¢” . 8 000{¢” . K . . h
G0 o5 1o do 05 10 do o5 To do o5 1o do o5 10 0o 05 1o do o5 1o oo o5 1o do o5 1o oo o5 10
RelativeReward — Training RelativeReward - Training
(a) Dubins experiment. (b) Driver experiment.

Figure 4: Examples for the relationship between relative reward in Training and Testing. In each
plot, the relative reward values have been normalized.

many instances, the relationship follows a strong linear trend allowing for better predictions (exam-
ple plots can be found in the supplementary material). Nonetheless, the high standard deviations
and very small min values reveal that this does not extend to all instances and users.

In summary, we observe that the relative reward does not necessarily translate from training to test
instances. Thus, high rewards in training do not necessarily yield good performance in test instances.

6 Discussion

Summary: In this paper, we reviewed measures for evaluating reward learning algorithms when
ground truth weights w"* are available, and characterized the two main classes of measures:
parameter-based and reward-based. Through 1) illustrative examples, ii) theoretical worst-case anal-
ysis, and iii) experiments with various robot planning problems, we have shown that both classes
are not reliable indicators for how well the robot has adapted to a user’s preferences.

Limitations: While our analysis describes theoretical worst-cases for both classes of measures, it
does not derive characteristics of feature functions under which the shortcomings are more severe,
or where a tighter worst-case bound could be derived. Further, our work is mostly concerned with
identifying and describing these issues, but provide no detailed study of how prevalent the they are
in published work. Moreover, the paper relies on relatively simple planning problems for theoretical
studies, leaving it ambiguous how severe the issues are in more complex or real-world settings.

Future Work: Our analysis raises the question about a better way to evaluate reward learning
algorithms. The transfer problem can be addressed by using several test instances for reward-based
measures, which is common in machine learning. This approach could be adapted to actively or
adversarially selecting test instances similar to [29]. Unlike random test instances this could yield
a bound on the error in any test instance, i.e., soften the negative result of Theorem 2. In Section
4.2 we showed that the relation from weights to features and thus rewards for a fixed w"*** is non-
linear. Yet, this depends on the choice of features. Future work could investigate if features can
be modified to mitigate the two shortcomings described in this paper. However, it is unclear if
there exists a principal way, or if this would require creating proxy-features for individual instance.
Finally, post-processing estimates could make them more robust towards the observed fallacies.
Even when collecting high reward in training, the estimated parameters are likely not accurate. This
allows us to modify the estimate by solving a bi-objecitve optimization problem: the first objective
is that the new estimate collects as much reward as the initial estimate in the training. The second
objective then solves a max-min robust optimization problem for the test instance.
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