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RAST: Risk-Aware Spatio-Temporal Safety
Corridors for MAV Navigation in Dynamic
Uncertain Environments

Gang Chen'?, Siyuan Wu!, Moji Shi', Wei Dong?, Hai Zhu' and Javier Alonso-Mora'

Abstract—Autonomous navigation of Micro Aerial Vehicles
(MAYVs) in dynamic and unknown environments is a complex
and challenging task. Current works rely on assumptions to solve
the problem. The MAV’s pose is precisely known, the dynamic
obstacles can be explicitly segmented from static ones, their
number is known and fixed, or they can be modeled with given
shapes. In this paper, we present a method for MAV navigation
in dynamic uncertain environments without making any of these
assumptions. The method employs a particle-based dynamic map
to represent the local environment and predicts it to the near
future. Collision risk is defined based on the predicted maps and
a series of risk-aware spatio-temporal (RAST) safety corridors
are constructed, which are finally used to optimize a dynamically-
feasible collision-free trajectory for the MAV. We compared our
method with several state-of-the-art works in 12000 simulation
tests in Gazebo with the physical engine enabled. The results
show that our method has the highest success rate at different
uncertainty levels. Finally, we validated the proposed method in
real experiments.

Index Terms—Aerial Systems, Perception and Autonomy, Mo-
tion and Path Planning, Collision Avoidance

I. INTRODUCTION

UTONOMOUS navigation of micro aerial vehicles
(MAVs) in complex, dynamic, and unknown environ-
ments has drawn significant attention in recent years, yet it
remains an open problem due to many challenges [1]. These
challenges include collision avoidance with both complex
static obstacles and an unknown number of dynamic obstacles
in the environment, and dealing with uncertainties arising from
the MAV’s noisy obstacle sensing and inaccurate localization.
To tackle these challenges, existing methods for the problem
typically make one or more assumptions. For example, a
popular pipeline for autonomous flight of MAVs is to use an
occupancy grid map [2] to represent the complex environment,
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Fig. 1. Autonomous MAV navigation using our risk-aware spatio-temporal
(RAST) safety corridors in a dynamic environment. The safety corridors
are shown with semi-transparent green cuboids and the flight trajectory is
illustrated by a white curve.

then construct a safe flight corridor [3] in it and finally
optimize a collision-free trajectory within the safe corridor [4],
[5]. However, these methods assume the environment is static.
Other works that consider dynamic obstacles typically assume
that they can be explicitly segmented from static obstacles [6],
their number is known and fixed [7], or they can be modeled
with given shapes, e.g. ellipsoids [8], [9] and polytopes [10].
However, these assumptions can hardly be satisfied in many
real-world scenarios, where an unknown number of arbitrarily-
shaped dynamic or static obstacles can appear, and the MAV’s
sensing and localization contain non-negligible noise.

In this paper, we present a method for autonomous navi-
gation of MAVs in dynamic uncertain environments without
making any of the above assumptions. The novelty of our
method is to construct risk-aware spatio-temporal (RAST)
safety corridors from a particle-based map, which takes obsta-
cle sensing and localization uncertainties into account. Specif-
ically, first, the dual-structure particle-based (DSP) map [11]
is adopted to represent the environment. The map can model
arbitrarily-shaped static and dynamic obstacles simultaneously
with particles and inherently considers the MAV’s environment
measurement noise. We then predict the map to the near future
taking into account the MAV’s localization uncertainty and
define a risk metric to evaluate the collision risk of any region
in the map. Based on this information, we generate the RAST
safety corridors for the MAV, as shown by the green cuboids
in Fig. 1. Unlike the safety corridors developed in previous
works that guarantee a free space in static environments [3]
[12] [13], our RAST safety corridors guarantee that the risk
of staying inside the corridors during a future time interval
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is lower than a specified threshold. With the RAST safety
corridors as constraints, we solve a quadratic programming
(QP) problem to find a collision-free and dynamically-feasible
trajectory for the MAV.

The main contributions of this paper are:

1) A method for autonomous flight of MAVs in dynamic
uncertain environments without making specific assump-
tions on the obstacles.

2) An approach to construct RAST safety corridors from
a particle-based map representation that considers the
MAV’s obstacle sensing and localization uncertainties.

3) We validate our approach and compare it to state-of-the-
art approaches in extensive tests under different levels
of uncertainty.

In addition, the source code of this paper, including environ-
ment mapping, trajectory planning, and execution is released
at https://github.com/tud-amr/RAST_corridor_planning.

II. RELATED WORK
A. Obstacle Avoidance in Dynamic Environments

Obstacle avoidance in dynamic environments requires pre-
dictions of the future states of dynamic obstacles, where
the environment representation plays an important role. [8]
uses depth images to detect and track dynamic obstacles and
assume that they can be modeled with ellipsoids whose shapes
are known and positions are Gaussian distributed. Collision
avoidance trajectories are optimized via chance-constrained
model predictive control [7]. In [9], [6] and [14], complex
static obstacles are also considered and are modeled by a
local voxel map separately [15]. Then a sampling-based [9] or
optimization-based [6] [14] planner is used to plan trajectories
for the MAV to avoid both static and dynamic obstacles. How-
ever, these works also assume that the dynamic obstacles have
certain shapes such as cylinders or ellipsoids. To represent
arbitrarily-shaped static and dynamic obstacles, researchers
in [16] use the DSP map [11] to model all obstacles with
particles. Then a sampling-based planner is used to search for a
trajectory curve with a low collision cost. However, the method
was discrete and localization uncertainty was not considered In
the above works, one or more assumptions are made to reduce
uncertainties and solve the problem (as discussed in Section I).
Learning-based methods [17] [18] [19] can cope with uncer-
tainties implicitly by using raw sensor data as input and letting
the network learn the control policy. However, generalizing
the learned models to various scenarios is challenging. An
explicit method that tackles uncertainties without relying on
those specific assumptions is hence required.

B. Autonomous Navigation with Safety Corridors

Safety corridors for MAV navigation originated from [20] a
decade ago and were proposed to represent the free space with
convex hulls. Since they are represented by linear constraints,
trajectory optimization with safety corridors is computation-
ally efficient. The common pipeline to build safety corridors
is first to search for a collision-free reference path in the map
and then expand convex hulls along with it. [12] searches

a reference path with the A* algorithm in the Octomap
[21] and generates corridors from the nodes of the path.
Corridors are expressed in the voxel form. To include more
free space in the safety corridor, [3] utilizes convex polyhedra
generated from ellipsoids to express the corridors and turns
the optimization problem into a QP problem. The reference
path is searched with the Jump Point Search algorithm [22].
In [13], the reference path is given by a human operator’s flight
path, which is designed to follow the intention of the human
operator. These safety corridors are constructed for static
environments. To deal with dynamic environments, [23] builds
spatio-temporal safety corridors, but the number and shapes of
dynamic obstacles are assumed to be known. Spatio-temporal
safety corridors have been employed in the autonomous driv-
ing field, by using axis-aligned bounding boxes along the
reference trajectories to avoid obstacles [24], by building
semantic corridors to handle both obstacles and traffic signals
[25], or by leveraging S-T graph-based [26] and vertical cell
decomposition [27] methods. Compared to these works, which
consider deterministic obstacles, our corridor is computed in
3D space and considers risk. This paper investigates risk-
aware safety corridors to cope with uncertainties in dynamic
environments and realize efficient trajectory optimization.

III. SYSTEM OVERVIEW

The structure of our system is shown in Fig. 2. The major
modules include:

(a) DSP map building: We provide a brief introduction
to the DSP map in Section IV-A. The DSP map is able to
represent arbitrarily-shaped static and dynamic obstacles with
particles and takes measurement uncertainty into account. In
this paper, we further consider the localization uncertainty
of the MAV when predicting the map to the near future for
trajectory planning. By propagating the particles in the map,
we can predict the collision risk of any region in the map
during a given future time interval.

(b) RAST safety corridor generation: We employ a risk-
aware kino-dynamic A* algorithm to search for a piece-wise
reference path, which is then used to initialize and expand
the RAST safety corridors. Fig. 2(b) illustrates the predicted
risk of different regions in three future time intervals and the
corresponding RAST safety corridors.

(c) Trajectory optimization: Taking the RAST safety
corridors as constraints, we can optimize a flight trajectory
by solving a QP problem. The optimized trajectory is finally
sent to a trajectory tracker to control the MAV.

IV. METHODS

We start by briefly introducing the DSP map based on our
previous work [11]. Then, we present the method to utilize
this map for MAV trajectory planning via the proposed RAST
safety corridors.

A. DSP Map Building

The DSP map [11] is an egocentric local map that can
represent arbitrarily-shaped static and dynamic obstacles in
the environment and is built upon the random finite set (RFS)
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Fig. 2. System structure. The system consists of three modules: (a) DSP map; (b) RAST safety corridor generation; and (c) trajectory optimization. Black
arrows show the procedures that our system take from input data with uncertainties to output trajectory. Plots in the blue box in (a) visualize the relationship
between obstacles and point objects. The point objects form an RFS. The PHD of the RFES is estimated with particles in the SMC-PHD filter. Red ellipses
outline a pedestrian. Plots in the blue box in (b) visualize the defined risk with risk maps in three time intervals, which are to — t1, t1 — t2, and t2 — 3.
In each risk map of a time interval, the map space is divided into many voxel subspaces. The higher brightness of the voxel corresponds to a larger risk.
The ground is painted gray. Red ellipses outline the region with risk caused by a pedestrian. The pedestrian has a downside velocity, and thus the red ellipse
moves down as the time increases. The RAST safety corridors are shown with semi-transparent green cuboids. The yellow path in each corridor presents a
piece of the reference path searched with the risk-aware kino-dynamic A* algorithm. Three safety corridors are constructed for to — t3 in the figure and are
shown together in a voxelized DSP map of the current time (Zg). (c) shows an optimized trajectory where the blue point is the start point, and the red point
is the end point. The optimized trajectory is sent to a PID trajectory tracker to control the MAV.

theory [28]. The RFS is defined as a set that has a random
but finite number of elements, whose states are also random
and finite. In the DSP map, obstacles are represented by many
point objects, as illustrated by the green points in Fig. 2(a).
Let xy, = [ps,,Vs,]' € R be the state of a point object at
the current time t(, which includes its position p;, € R3 and
velocity v;, € R3. All the point objects in the map space form

aset Xz, = {mto ,mg), e ,ch() , where K > 0 is the total
number of point objects. Since the obstacles are unknown, K
and wgf),Vk € {1,2,---, K} are random. Meanwhile, They
are finite because the map is a local map with a limited range.

Therefore, X;, is an RFS.

Instead of estimating the state of each point object, the DSP
map estimates the probability hypothesis density (PHD) [28]
of the RFS X;, during its construction process. Denote by
Dx,, the PHD of X;,. It is the first-order moment of X,
that describes the density of the hypotheses with different
states x;, € Xy,. The estimation of Dx, is realized by a
sequential Monte Carlo PHD (SMC-PHD) filter [29], where
numerous particles are predicted and updated iteratively to
estimate Dy, . The input of the SMC-PHD filter includes two
channels of data, as shown in the top right of Fig. 2(a). One
is the point cloud data from a depth camera which is used
in the update procedure. The other is the localization data

from the MAV visual odometry which is used in the prediction
procedure. The output of the DSP map is a set of ny, particles.
Each particle ¢ € {1,--- ,n,} has a weight wt(z) and a state

:737(5;) = [~§?, 'Dgé)]T € RY. Let Dx,_ (x,) be the current PHD
at state @y,. According to [11], Dx,, (x¢,) can be estimated

with particles by:
= () (4)

where 0(-) is the Dirac function.&; ', w; ~ and n;, are updated
dynamically in the filter. The estimation works on the basis of
the Law of Large Numbers and n;, is usually as large as one
million [11].

With the PHD calculated with particles in Eq. (1), the cur-
rent occupancy status of any position (discretized by voxels) in
the map can be estimated by checking the number of particles
within the corresponding voxel. Details can be found in our
previous work [11]. Note that the velocities of these particles
are also estimated, which can be used to predict the map to the
near future. In the following sections, we first present a map
prediction method that takes the MAV localization uncertainty
into account (Section IV-B). Then a risk definition is given to
evaluate the collision risk of any region in the map (Section
IV-C). Next, with the predicted map and defined risk, a risk-

nto

DXtO (wto) = Z wt(;)é (mto - 535?
i=1

)]
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aware spatio-temporal (RAST) corridor is constructed (Section
IV-D) which is finally used to optimize a dynamically feasible
collision-free trajectory for the MAV (Section IV-E).

B. Map Prediction with Uncertainties

Let X, be the RFS formed by point objects in the map space
at a near future time ¢ and Dy, (z;) be the PHD of X;. To
predict Dx, (x), we first predict the future state :E,El) of each
particle in the map via the constant velocity model (CVM)
[30], i.e.

I35

(t —to)Isx3]| ~(i)
03><3 mto

+ 2
I3><3 v ( )

where u ~ N (0, Xgx¢) is the added Gaussian noise of the
CVM. To take into account the MAV localization uncertainty
which is assumed to be Gaussian distributed, we further add
the uncertainty to the particle prediction:

) = p(ay)) + 3)

!
where v’ ~ N (0, Tz Oaxs
03x3 0O3x3

covariance from the odometry. When predicting each particle
using Egs. (2) and (3), w and u’ are obtained by sampling from
their distributions. 3¢ and 3%, 4 are determined empirically.
We consider the weight of particle constant during the short

] ) and X%, 5 is the position

prediction horizon, i.e. wg D= w§0> Hence, Dy, (x;) can be
obtained as follows:
Dx, (x:) Z wy' (wt - fi'gl)) “)

where n; is the number of particles within the map range at
time ¢. Since some particles may have moved out of the map
range from g to ¢, then ny < ny,.

The measurement uncertainty of the point cloud has been
inherently considered during the DSP map building step [11].
Here, we further explicitly take into account the MAV localiza-
tion uncertainty from visual odometry in the map prediction.
Thus, the dispersion of :?:El) after the prediction gets larger and
will affect the defined risk regions in the environment, which
will be illustrated in the next section.

C. Risk Definition

The risk is defined to evaluate the safety level of a subspace
in the map during some time interval. Denote by E; C R? a
subspace in the map, such as a cuboid subspace shown in Fig.
3. Then, at any time ¢ the point objects within E; form an
RFS X7 . Trivially, there is xlff C X, and the PHD of X} is

Dy, ( Z w?§ (:1:,5 — g ) (5)

where n]tEj < ny is the number of particles within the subspace
E; at time ¢.

Map space

Subspace E/

@ Point object

<O Particle

Map : %
coordinate o

Fig. 3. Tllustration of the risk calculation process. The map space is a cuboid
space where the MAV is in the center. A point object is moving to the left
through a subspace [E; from time £o to ty. Particles with velocities follow
the motion of the point object and model the PHD at the state of point object.
Gray ellipsoids indicate the Gaussian distributions.

According to the property of the PHD [28], the cardinality
expectation of XEj, namely the predicted number of point
objects in [E; at time ¢, can be calculated by

Ej
E, ] _ N0
B = [ Dy ldm =3 uf©

where | - | is the cardinality and F [-] denotes the expectation.
If £ {|X]tEj || > 1, the predicted number of point objects in E;
at time ¢ is larger than one, which suggests that E; is likely
to contain obstacles and is risky at ¢.

The risk of the region E; during some time interval [to,t¢]

is then defined with the integral of E {|X]tEj |} from tg to ty:

ty
Risk(E;, to, ) = / E [\XQEJ |} dt )
to

This risk indicates the predicted number of point objects in the
region [E; from #y to ty. The risk gets higher if more point
objects enter E; or the current point objects stay for a longer
time. In practice, we discretize the integral with d¢. Hence, by
combining Eq. (6), we can rewrite Eq. (7) as

> Zw# ®)

t= {tg,to—‘r(st tf}l 1

Risk(E,, to, tf) ~

Fig. 3 shows a situation where one point object moves
through a subspace [E; from the current time ¢ to a future time
t¢. The motions of the particles, which represent the PHD at
the point object, are predicted using Eq. (3). Risk(E;, to,ty)
is evaluated with the summation of the weights of the particles
in E; at {to,to+ 6t,...,t;} multiplying 6t (Eq. (8)). The
risk maps in Fig. 2(b) illustrate the risk in three future
time intervals with small voxel subspaces. Only the high-
risk voxels are presented for clear visualization. A pedestrian
is moving downside in the scenario, and thus the high-risk
voxels correspond to the pedestrian moving downside as time
increases. When the perception uncertainties are considered,
particles disperse to a larger area. Fig. 4 reveals the dispersion
with the risk map. This dispersion increases the volume of
the high-risk regions around the obstacles, especially for the
regions that a dynamic obstacle may pass through in the future.
As a consequence, the low-risk regions become smaller and the
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(b)

Fig. 4. Comparison of risk maps with and without the consideration of
uncertainties in the same scenario as shown in Fig. 2. The predicted time
interval is 0.5 s to 1.0 s. Subfigure (a) shows the risk map without considering
measurement uncertainty or localization uncertainty. The risk map in (b)
considers measurement uncertainty as the original DSP map [11] does. In
(c), the localization uncertainty is also considered by using Equation (4) in
the prediction step of the SMC-PHD filter. The red ellipses outline the high-
risk regions corresponding to a pedestrian. The volume of high-risk regions
increases when the uncertainties are considered.

flight path planned in the low-risk regions is safer in dynamic
and uncertain environments.

D. Spatio-Temporal Safety Corridor

Using the risk definition in Eq. (8), we first compute a
reference path composed of motion primitives using a risk-
aware kino-dynamic A* algorithm and generate initial safety
corridors. Then the initial safety corridors are expanded to the
final RAST corridors.

The risk-aware kino-dynamic A* algorithm is modified from
the kino-dynamic A* algorithm in [31] by checking the risk
rather than the occupancy status of static grids in the feasibility
checking procedure. We illustrate the risk checking process in
Fig. 5. For visualization convenience, the process is shown on
the 2D plane, but our algorithm works in 3D spaces. Each step
in the kino-dynamic A* samples acceleration commands and
generates motion primitives to obtain new nodes. Each motion
primitive has a fixed planning time 4. Since the sampled
command is acceleration, the motion primitive is a quadratic
curve. We first calculate a rectangle envelope for the quadratic
curve, as shown in Fig. 5(a) and Fig. 5(b). Considering the size
of the MAYV, the envelope is expanded by a safety distance d as
illustrated in Fig. 5(c) and Fig. 5(d). The expanded envelope
is the initial safety corridor, denoted as E;. The risk of a
motion primitive is evaluated by the risk of the corresponding
initial safety corridor E;. Suppose the start time and end
time of the motion primitive are ¢;_; and t;, respectively.
Then the risk of the motion primitive is Risk(E;,t;_1,t;),
where t; —t;_1 = t,. Considering the trade-off between high
computational efficiency and large searching space in kino-
dynamic A*, we choose t; =0.6 s in practice. Fig. 5(e) shows
multiple motion primitives generated in one step of the kino-
dynamic A* algorithm. The initial safety corridor [E; of the
selected motion primitive is shown by a red box. No particle
moves into E; during ¢;_; to t; and thus the risk is zero.

By incrementally expanding the initial safety corridor E;,
the final RAST safety corridor ]Ej can be generated. The
expanding process is shown in Fig. 6. To generate the RAST
safety corridor El, we set a local coordinate for the initial
corridor, and the expansion is along +z, —z, +y and —y
directions of the local coordinate. Firstly, the initial corridor is

< Particle
(with velocity arrow)

(@ Ps

Fig. 5. Illustration of risk checking for each step of the kino-dynamic A*
algorithm. Blue curves in (a) and (b) show two sampled motion primitives.
Each motion primitive is a quadratic curve. Py is the start point, and Pp is
the endpoint of the curve. The rectangle envelope, shown by the red dashed
box, is composed of Line P4 Pp, a parallel line of P4 Pp tangent to the
curve, and two lines perpendicular to P4 Pp. The point of tangency on the
parallel line is Py, which locates at the %S point on the motion primitive. Pr
in (b) is the point of tangency on a line perpendicular to P4 Pg. Pr occurs
when the sampled acceleration command is large. In 3D space, the envelope
is a cuboid. In (c) and (d), we expand the envelope by distance d, and get
the initial safety corridor E;. Subplot (e) shows multiple motion primitives
sampled in one step of the kino-dynamic A* algorithm in an environment
with a static obstacle and a dynamic obstacle. The time interval this step
takes is t; 1 to t;. The selected motion primitive is shown in blue, while the
others are in gray. The risk of the selected motion primitive is evaluated by
calculating the initial corridor generated from this motion primitive, which is
Risk(]Ej, ti—1, tj).

< Particle
(with velocity arrow)

Initial

— Reference (-
corridor

I:l RAST safety
trajectory

corridor

Fig. 6. Illustration of the safety corridor generation process. A three-piece
reference path searched by the risk-aware kino-dynamic A* is shown with the
blue curve. Red rectangles represent the initial safety corridors, which are then
expanded to the RAST safety corridors E;. In the first RAST safety corridor
]El, a local coordinate is built on the initial corridor, and an intermediate
state in the expanding is shown with a gray dashed box. The expansion is
conducted to +z, —z, +vy, and —y incrementally with different priorities.

expanded to all directions incrementally with a step distance of
Ad. After each expansion, we check the risk of the expanded
corridor. If the risk is higher than a threshold R,,,., the
expanding along the low-priority direction is banned, and the
next step will only expand towards the remaining high-priority
directions. As Fig. 6 shows, expansion along the z-axis mainly
enlarges the overlap between this corridor and the next. Since
the time step in each corridor is fixed in kino-dynamic A*,
enlarging the overlap can hardly help increase the optimization
space in practice. In comparison, expansion along the y-axis
increases the optimization space and makes it easier to find a
safe trajectory in a corridor. Therefore, +x has a lower priority
than +y. The priority of +y over —y is set randomly. The
expansion stops when all the directions are banned. The risk
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Fig. 7. Simulation worlds. World A: a simple school with very sparse static
obstacles, and pedestrians walking slowly (0.5 m/s) in the same direction.
World B: a square with dense pedestrians walking in different directions.
World C: a street with oak trees and buildings in addition to pedestrians. The
walking speed in World B and C ranges from 0.8 m/s to 1.5 m/s.

of the final RAST safety corridor is Risk(E;,t;_1,t;). In 3D
space, the priority of 2 is between +x and +y. The reason is
that expansion along £z can increase the optimization space,
but the maneuver along £z is realized by thrust rather than
attitude changing and, thus, is less flexible than the maneuver
along +y [28]. Fig. 2(b) presents an example of the RAST
safety corridors in 3D space. Note that each corridor has the
same time interval (from ¢;_; to t;) and only guarantees the
risk is lower than R,,,, in this time interval.

E. Trajectory Optimization

The trajectory is a N-order M -piece polynomial trajectory
where M equals the number of safety corridors and N =7,
corresponding to the minimum snap cost [20]. Let f;(t),j €
{1,2,..., M} denote the trajectory piece in the j th corridor.

According to Section IV-D, ¢ € [t;_;,t;] and t; —t;_ = t,.
Thus f;(¢) can be formulated as:
fit) =cjB(t;), teltj1,t)) ©

where ¢; € R3 x RV*! is the coefficients’ vector of the
polynomial and B(t) = [1,t,t2,¢3,--- ,t™]T is the natural
basis. The optimization of c; is:

mlnz / d4£4 dt (10a)

st fi(to) = fo, fa(tar) = fu (10b)

fi(t) € By, Wt € [tj_1,t;] (10c)

fit5) = fira(t;) (10d)

£ () < fimh V€ totar), m=1,2 (10¢)

where fj is the initial state of the MAV given by the odometry;
far is the terminal state provided by the last node in the
kino-dynamic A* algorithm; f;l)(t) and fj@) (t) are first- and
second-order derlvatlves namely velocity and acceleration, of
the trajectory; fmaz and fmax are the velocity and acceleration
limitations. The constraints include boundary value constraints
(10b), corridor constraints (10c), continuity constraints (10d),
and maximum acceleration and velocity constraints (10e). The
corridor constraints (10c) can be transformed to the linear
constraints to the poles of each polynomial piece [12] and
the optimization problem is thus a QP problem that can be
solved very efficiently [12].

V. RESULTS

In this section, we first compare the obstacle avoidance per-
formance of our method with several state-of-the-art methods
in simulation tests. Then the real-world tests are presented to
further validate our method.

A. Simulation Tests

Simulation tests were conducted with the IRIS quadrotor
running PX4 firmware in the Gazebo simulation environment
on a laptop equipped with an AMD R7-4900H CPU. The
full physical engine in Gazebo was enabled to better simulate
the dynamics of the MAV. Three simulation worlds shown in
Fig. 7 were utilized in the tests. We first tested our method
with different values of R,,,, to investigate the best risk
threshold. Twenty tests were conducted in each simulation
world with each risk threshold. The average success rate and
planning time at different risk thresholds are shown in Fig. 8
(a). The top average success rate is 0.68 when R,,,, = 0.2.
The planning time includes optimization, corridor generation,
and A* searching time. As R,,,, increases, the size of the
expanded corridor gets larger, and the trajectory optimizer
takes less time to find a safe flight trajectory. The overall
planning time decreases from 7.1 ms to 6.3 ms. Since 7.1 ms
is already efficient, R4, = 0.2 is adopted for a high success
rate. The average mapping time is 68.5 ms. Memory usage is
mainly consumed by mapping and is about 300 MB.

Then our method was compared with three recent works:
the Faster method [32], the FDF method [6], and the RAS
method [33]. In these works, Faster utilizes a corridor-based
method assuming obstacles are static. FDF and RAS use non-
corridor-based methods and consider both static and dynamic
obstacles. We did a full factorial experiment with four levels
of measurement uncertainty and five levels of localization
uncertainty. The input point cloud came from a simulated
depth camera. Let 7 denote the accurate depth value of
a pixel in the depth image from the camera. To simulate
the measurement uncertainty, we added Gaussian noise with
standard deviation (S.D.) ™ ={0, %27, %57, %107} to the
real depth 7. Thus the noised depth follows r ~ A/ (7,0™),
which simulates the depth from a real depth camera r is then
used to calculate the point cloud with the pinhole model.

For the localization uncertainty, Gaussian noise with S.D.
oP ={0, 5, 10, 15, 20} cm was added to the ground truth
odometry. Each method was tested 50 times under each noise
condition in each simulation world. Totally, 12000 tests were
conducted. A height limit of 1.8 m was added so that the
MAV could not fly over the dynamic obstacles. The maximum
velocity was set to 2 m/s. Mgxe and 3%, 4 are set to be the
same as the variance of measurement noise and localization
noise, respectively.

We evaluate the performance with four metrics: the average
success rate, the rate of collision to static obstacles, the rate
of collision to dynamic obstacles, and the freezing rate. A
freezing happens when the planner cannot find a feasible
trajectory and the MAV is trapped. Fig. 8 (b) shows the average
performance in different worlds. From World A to C, the
environment is getting more complex, and thus, the success
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Fig. 8. Risk threshold investigation and performance comparison between our proposed method and Faster [32], FDF [6], and RAS [9]. In (a), the bar plot
shows the average planning time with different risk thresholds and the line plot shows the average success rate. Subplot (b) shows the average success rate,
freezing rate, collision rate to dynamic obstacles, and collision rate to static obstacles of different methods in different simulation worlds. Subplot (c) and (d)
present the average success rate of different methods at different measurement noise level and localization noise level, respectively.

rate decreases for all methods. In a simple scenario World
A, Faster, RAS, and ours have similar success rates. In more
complex scenarios World B and World C, our method has a
distinct advantage over other methods. Specifically, the success
rate of our method is increased by 0.13 and 0.14, respectively,
in World B and C, compared to the second-best method. Due
to the consideration of uncertainties, our method searches for
trajectories prudently, thus, its freezing rate is usually higher
but the collision rate is lower.

Fig. 8 (c) shows the average success rate in all the simu-
lation worlds at different measurement noise levels. Raising
the measurement noise only has a significant influence on the
FDF method [6], whose success rate drops by 0.10 when the
measurement increases from 0 to 10%. In comparison, Faster,
RAS, and our method are robust to the measurement noise.
Fig. 8 (d) presents the average success rate in all the simulation
worlds at different localization noise levels. The localization
noise has a larger influence than the measurement noise. When
S.D. increases from 0 to 5 cm, the success rate of FDF and
RAS decrease by 0.03 and 0.07, respectively, while our success
rate has no decrease. When S.D. increases to 15 cm, the
success rate of FDF and RAS decrease by 0.13 and 0.14,
respectively, while our success rate decreases by 0.07. The
success rate of Faster grows when S.D. increases from 5 cm to
15 cm because the mapping module of Faster is prone to regard
all noise points as obstacles, and thus, the trajectories are
more conservative when the noise grows. However, when the
localization S.D. is 20 cm, this conservativeness causes more
collision and freezing cases, and the success rate drops again.
Overall, our method outperforms the state-of-the-art methods
in terms of navigation success rate and collision rate and also
shows robustness against measurement and localization noise.

B. Real-world Tests

In the real-world tests, a MAV equipped with an NVIDIA
Jeston Xavier NX computing board and an Intel Realsense
D455 depth camera was used. The measurement noise S.D. of
the camera is less than 2% within four meters. The position of
the MAV was given by the Optitrack system. We validated the
effectiveness of our method in obstacle avoidance tests at two
levels of localization noise, whose S.D. was 2 cm and 5 cm.
The corridors and trajectories were generated at a frequency of
about 20 Hz. To avoid the influence of the delay in trajectory

generation, a control command buffer (composed of position,
velocity and acceleration commands from previously planned
trajectory) was maintained, and the new trajectory was planned
to start from the last element in the buffer unless the trajectory
in the buffer was not safe.

Fig. 9. Snapshots of our MAV flying in dynamic environments. Images on
the right side show the risk map, the RAST safety corridors (semi-transparent
green cuboids), and the planned trajectory (green curve in the corridors).
Current high-risk regions in the map are shown in the voxel form colored
by height. The red dashed rectangles outline the pedestrians that MAV is
avoiding.

Fig. 9 (a) to (c) show snapshots of an obstacle avoidance
test in an environment with two pedestrians and several static
obstacles. In (a), a pedestrian is in front of the MAV. But
the region occupied by the pedestrian currently is predicted to
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be safe in the future because the pedestrian is moving to the
right. Fig.9 (b) and Fig.9 (c) present the process in which the
MAV avoids the second pedestrian. We conducted 43 tests in
total. The success rate is 0.67. The freezing rate is 0.12. The
static and dynamic obstacle collision rates are 0.12 and 0.09,
respectively. We also conducted the tests with the localization
provided by an onboard Intel Realsense T265 tracking camera.
A snapshot is shown in Fig.9 (d). More results can be found
in the attached video.

VI. CONCLUSION

This paper presents a risk-aware autonomous navigation
method for MAVs in dynamic and uncertain environments.
The method represents the local environment with the DSP
map and builds RAST safety corridors in the map. MAV
measurement and localization uncertainties are considered in
the map building and prediction process. Within the RAST
safety corridors, flight trajectories are optimized by solving a
QP problem. Simulation results show that our method achieves
the highest success rate compared to the state-of-the-art meth-
ods under different uncertainty levels. Physical experiments
also proved the effectiveness of our method in the real world
with localization and measurement noise embedded. However,
the method is still not robust enough for application tasks.
One major reason is that the limited FOV and the occlusion
between obstacles interfere with the perception of dynamic
obstacles. In future works, we will investigate perception-
aware planning to improve the sensing and reacting robustness.
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