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Abstract— This work formally defines the problem of fleet
sizing with delays (FSD), where the option of delaying
individual tasks within fleet sizing is considered. We prove
that the FSD problem is NP-hard and solve a formulation of
the FSD problem as a mixed integer linear problem (MILP).
We then analyze the proposed method in detail in an abstract
case and validate it in a case study of taxi rides in Manhattan.
We show that fleet sizes can be decreased significantly and
that the trade-off space of the number of required vehicles to
execution time and added delay can be enlarged.

I. INTRODUCTION

Fleets of vehicles of various types are used to drive today’s
world. For example, taxi fleets offering mobility in cities,
robot fleets operating entire warehouses or bike courier
fleets delivering your pizza for dinner. Thereby, a wrongly
sized fleet, regardless if it is too small or too large, causes
inefficient operations regarding bad service or additional
costs. Thus the general question of fleet sizing, i.e. “How
many vehicles does an operation optimally need?”, is posed.
Typically this question involves a trade-off between the
quality of the solution that can be provided and the posed
costs. Previous works showed the great potential of fleet
sizing, [1] showcase a great reduction in required taxis within
Manhattan, or [2] optimizing the size of robot fleets in
flexible manufacturing systems.
All works tackling the fleet sizing question assume that tasks
have a fixed starting and ending time. In this work, we pose
a new problem called fleet sizing with delays (FSD), which
allows to actively delay individual tasks slightly, if beneficial.
Let us exemplify through a situation of daily life: Person A
wants to go from home to sports leaving at 18:00, and person
B arrives at the same home at 18:01. If A cannot delay her
trip, two vehicles are required to fulfil this demand. This
changes if we allow person A to leave slightly delayed at
18:01. Then, the two persons could use the same vehicle
sequentially.
This paper introduces and formally defines the FSD problem
in a general fashion. We give a general formulation that
applies to operations, which can be described as a set of
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tasks, with vehicles that can execute the given tasks on
their own and move independently. Through such a general
formulation, this work covers a wide range of operations.
For example, in the case of an operation of shared taxi
rides, a task can be a series of customers a single taxi
fulfills, transporting a set of customers to their locations
until it becomes empty again. In the case of autonomous
robots in a greenhouse, a task can represent a set of crops
to be harvested or pesticides to be applied. In a warehouse
or factory, a task can be a single request of parts to an
engineer. In the case of an on-demand delivery service,
a task can represent multiple orders one bike rider can
transport at the same time.

Contribution Statement: This work proposes a new prob-
lem, fleet sizing with delays. It introduces the option of
delaying individual tasks within fleet sizing. The problem
is formally defined. We prove that the FSD problem is NP-
hard. Further, we propose and solve a formulation of the
FSD problem as a mixed integer linear problem (MILP).
A large experimental analysis is conducted, analyzing an
abstract case in detail and investigating a case study of taxi
rides in Manhattan. We show that introducing the option to
delay tasks has two effects on obtained results. Firstly, fleet
sizes can be decreased significantly. Secondly, the trade-off
space of the number of required vehicles to execution time
and added delay is increased.

II. RELATED WORK
A. Overview

The fleet sizing problem was originally introduced by [3]
in 1984. It poses the question of the number of required
vehicles (identical operating characteristics) to satisfy a
given demand. Since then, the problem itself has only
slightly evolved, mainly changing in the application it is
asked for and the scale it can be tackled at. For example,
looking at fleet sizing in the maritime context [4], [5],
considering the need to charge for electrical vehicles [6],
[7], fleet sizing together with service region partitioning
[8], or pooled taxi rides [9]–[11]. Extending on the fleet
sizing question, the question of Fleet Design emerged
[12]–[14]. Fleet Design goes beyond determining the
number of vehicles of one predefined type and incorporates
considerations about the types of vehicles to employ from a
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range of options and the corresponding quantities needed. To
tackle the fleet sizing problem various approaches in various
areas have been developed and applied. We categorize these
approaches into three categories: chaining-based approaches,
simulation-based approaches, and others. As an overview,
we highlight each class.
Chaining-based approaches build on the idea of sequencing
tasks to build so-called chains, each chain representing the
journey of a single vehicle. The obtained number of chains
equals the required fleet size if done for all tasks. The
proposed approach belongs to this class. As such, we have
a closer look below, see Section II-B.
Simulation-based approaches implement a simulation
of an operation reflecting its real counterpart as well as
possible, [15], [16] (on-demand mobility services), [17],
[18] (shared rides) and [2] (flexible manufacturing systems).
Once this is obtained, various input parameters are changed,
and the resulting Key Performance Indicators are logged.
By this means, fleets of different sizes and their influence
can be analyzed. The downside to these methods is that no
theoretical guarantees can be given and that it might require
a lot of computational resources, as the simulation needs to
be repeated for each set of parameters. The upside is the
capability to represent the simulation environment in more
detail, for example, traffic flow or traffic lights.
Other approaches found in the literature are analytical
approaches, such as [14] looking at robots in a warehouse
environment. They derive an optimal analytical solution
for the case of infinite pick-up stations. Further, we see
approaches doing a structured search, for example, [19]
applies a binary search to find the best fleet size for a fleet
of mobile robots. Further, genetic algorithms have been used
in fleet sizing. A comparison of a genetic algorithm and a
chaining-based approach (Hopcroft-Karp algorithm for the
minimum path cover problem) was made by [20] revealing
that the genetic algorithm was outperformed in regards to
the quality of solution and the required computational time.
[21] builds an optimization model to estimate required fleet
sizes based on GPS data. [22] formulates a mixed integer
linear problem to solve the joint fleet sizing and charging
system planning problem.

This paper is concerned with centrally controlled systems.
That is, we do not review works dealing with cases in
which vehicles decide themselves on their plan, such as [23]
or [24], both papers modeling the behavior of ride-hailing
drivers.

B. Chaining-based approaches

For the following of this literature review, we will focus
on chaining-based approaches alone, as our method belongs
in this category. The general idea of chaining-based ap-
proaches was first introduced by [1] to tackle the minimum
fleet problem for taxi rides in Manhattan. [1] first create
a so-called Vehicle-shareability network, which is a graph
capturing which rides could be executed by a single vehicle

Fig. 1: Illustration of a vehicle-shareability network [1],
vertices are tasks or rides, and edges represent potential
chaining options, i.e. a single vehicle can serve both tasks
in succession.

in succession. Rides or tasks are the graph’s vertices, and
edges represent potential chaining options. A vertex i is
connected to another vertex j, if a vehicle can serve ride
j after ride i. An example is illustrated in Figure 1. They
show how through these networks, the minimum fleet sizing
problem can be transformed into a minimum path cover
problem. As the resulting graph is acyclic, the minimum path
cover problem can be solved through a maximum-matching
algorithm (Hopcroft-Karp algorithm [25]).
Since its introduction, chaining-based approaches have found
great popularity, especially within the mobility of people
community, and were adapted and extended. Next, we an-
alyze adaption from a problem perspective and from a
methodological one, subsequently.
Problem perspective: Finding the minimum fleet for non-
shared taxi rides in the city of Manhattan by relocating taxis
to serve subsequent customers, is tackled by [1]. A group of
papers extend chaining-based approaches to the application
of ridesharing, i.e. the option for multiple customers to share
one vehicle simultaneously. A minimum fleet sizing problem
with ridesharing was studied by [9], [10] and [11], while the
latter focused on the inclusion of demand predictions. [26]
formulates the pooling and chaining questions in a combined
fashion and shows the effect of pooling on obtained fleet
sizes. Fleet sizing for On-Demand Multimodal Transit Sys-
tems, combining fixed routes with on-demand vehicles, was
studied by [27].
From a methodological point of view, the most relevant
question for chaining-based approaches is how the chains
are found. As a starting point, the problem is often modelled
as a graph, like the vehicle-shareability-network, capturing
chaining options. Transforming the graph into a bipartite
graph and applying a maximum-matching algorithm (like
the Hopcroft-Karp algorithm) results in a minimal fleet, like
[1], [11], [28]. Other works formulate an ILP and solve it
as a minimum flow problem [27], [29]. If other objectives
are considered beyond the fleet size, such as the costs to
chain tasks, other techniques are required. With costs, the
problem changes to a minimum-weight bipartite matching
problem. It can be formalized as an ILP considering costs
in the objective function and solved as such or as a bipartite
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matching problem with costs, approached by means of a
Hungarian algorithm. Forming chains iteratively by means
of solving an ILP repeatedly was done by [9]. They use the
chains formed up to this point as input and prolong them
by adding new tasks at each step. They start at the end of
the day, and with each step, they go further back in time.

This work extends the chaining-based approaches by
allowing to delay individual tasks. This changes the
problem in both regards, from the tackled problem
perspective and methodological. From an application-driven
point of view, this enables to decrease minimal fleet sizes
even further, by adding delay. From a methodological point
of view, the newly posed problem can not be tackled by the
existing approaches as the decision, which tasks are delayed
and if, by how much, is added.

III. PROBLEM FORMULATION

In this section, we formally introduce and define the fleet
sizing problem with delays (FSD). Intuitively described, the
FSD poses a problem in which a fleet of vehicles and their
operational plans need to be found to fulfil a given set of
tasks while allowing to delay individual tasks. Solutions are
optimized based on a given objective.

A. Formal Problem Formulation

We first introduce the inputs, then the decision variables, and
last the cost function of the problem.
Inputs: The operational environment is represented by a
weighted directed graph G = (V,E). The set of vertices
V represents all locations, and the set of weighted edges E
represents connections between them. An edge exists if an
vehicle can move from one vertex to another directly, and
the edge’s corresponding weight c(e) is the time needed to
traverse it.
All tasks are summarized in the set T . Each individual
task T is characterized as T = (lstartT , lendT , tstartT , αT , σT ):
the first two variables representing the starting and ending
location1 (lstartT and lendT ), while the following two represent
the starting time and duration of the task (tstartT and αT ).
Last, σT defines the maximum time a task can be delayed2.
The resulting ending time tendT is the starting time plus the
task duration, i.e. tendT = tstartT + αT . All tasks start within
tstartT ∈ [0,Λ], ∀T ∈ T , with Λ defining the end time to
request any task. An illustration of a single task, its delayed
variant, and all associated points in time is shown in Figure
2.

Decision Variables: The decision variables of the FSD
problem are the number of vehicles and their trajectories,
also defining the required delay per task. A single trajectory

1The starting and ending locations can be different or the same, there is
no inherent need to return to the starting location.

2Without a maximum delay, a single vehicle can serve the full set of
tasks by serving all subsequently.

Fig. 2: Illustration of a single task, its delayed variant, and
associated points in time. For clarity, we use tstart,ρT and
tend,ρT , as the notation for the new starting and ending time
of a delayed task.

is an operational plan for one vehicle. Formally, a trajectory
is an ordered sequence of tasks, so that it is feasible for a
single vehicle to serve all of them within the given maximum
delays. We denote a trajectory as gi = (Ti,1, Ti,2, ..., Ti,k),
thereby Ti,k denotes that task T is part of the trajectory
gi and is served at position k. A trajectory starts at the
starting location and at the starting time of the first task it
serves, after serving this task, the vehicle relocates from the
ending location to the starting location of the subsequent
task, if needed the vehicle waits until the task starts and
serves it, subsequently the vehicle relocates again. This
procedure is continued until the vehicle serves the last task,
after which the vehicle stops. If the vehicle arrives at the
starting location of a task later than its starting time, the
trip is delayed by the difference. The time a task is actually
delayed is denoted as ρT . A set of trajectories is summarized
in the set ω. To be feasible, ω must fulfill that all tasks are
served, i.e. the union of all the trajectories results in T ,
mathematically ∪i∈ωgi = T ; and that no task is delayed
more than its maximum delay, i.e., ρT ≤ σT , ∀T ∈ T .

Cost Function: The cost function C(ω) assigns a cost to
a set of trajectories ω. It includes costs for the number
of vehicles used (fixed capital costs), their total traveling
time between tasks (relocation time), and costs for the total
delay added. For each vehicle used, i.e. for each executed
trajectory, a capital cost of Mfix is charged. To ease notation,
we summarize the total relocation time of a single trajectory
gi as ϕ(gi). We denote the relocation time from task i
to task j as τTi,Tj or short as τi,j . As such, the total
relocation time of a single trajectory can also be expressed
as ϕ(gi) =

∑|gi|−1
j=1 τTi,j ,Ti,j+1

. Note that the execution time
of the vehicles during tasks is not part of the cost function,
because this is a constant value. Additionally, two weights
are used to weigh the influence of the total delay and the total
relocation time, which we denote as Mρ and Mϕ. Their exact
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values depend on the specific cost structure of the operation3,
which is also the case for Mfix. In Section V we indicate
those values for our experiments. This results in the objective
function as follows:

c(ω) = Mfix · |ω|+Mρ ·
∑
T∈T

ρT +Mϕ ·
∑
g∈ω

ϕ(g) (1)

Problem: We define Ω as the set of all sets of trajectories
ω that are feasible solutions to the FSD. As such the fleet
sizing problem with delays can be posed as:

min
ω∈Ω

c(ω) (2)

Note that an instance of the FSD problem is fully
characterized by G = (V,E), T ,Mfix,Mρ,Mϕ.

B. Problem Complexity

Here we analyze the complexity of the newly introduced
FSD problem. We first compare the FSD problem on an
intuitive level to its closest related problem, fleet sizing
without delays. Second, we claim and prove that FSD is
NP-hard (Section III-B.1).
On an intuitive level, introducing delay changes three points
that are worth highlighting, when comparing FSD to fleet
sizing without delays:

• First, allowing delays will result in more options to
chain individual tasks. For no delays, each pair of tasks
for which the starting location of the subsequent task
can not be reached in time can not be chained. For two
tasks i and j of the set of tasks T , this can be expressed
as

tendi + τi,j ≤ tstartj i ∈ T , j ∈ T

This is relaxed with the option of delaying tasks,
resulting in

tendi + τi,j ≤ tstartj + σj i ∈ T , j ∈ T

• Second, the individual decisions on whether to chain a
pair of tasks, are independent of each other in case of no
delays. This follows as the starting and ending times are
not changed by chaining. Thus, when deciding to chain
task i to task j, it is irrelevant which partial trajectory
the corresponding vehicle followed before task i. With
delays, this is not the case, as the ending time of a
task changes if the task is delayed, which in turn might
modify the starting time of all the subsequent tasks
assigned to the same vehicle. We remark that this fact
precludes utilizing the approach based on a bipartite
graph, as done by [1].

• Third, the set of all chaining options may contain a
pair of tasks i and j twice, once as (i, j) and once as
(j, i).

3For example, for taxi rides, delays are more important than for logistical
operations, resulting in a higher value of Mρ.

1) Proof: The Fleet Sizing with Delays Problem is NP-
Hard: Here we prove that the FSD problem is within
the complexity class of NP-Hard problems. We do so by
showing that the FSD can be reduced to the problem of
determining whether a Hamiltonian path exists, which is
known to be NP-Complete.
A Hamiltonian path is defined as a path that visits each
vertex of a given directed graph G = (V,E) exactly once.
As each vertex is exactly visited once, this implies that the
path is exactly of length |V |−1.

Let us consider an instance of the Hamiltonian Path
problem G = (V,E). We prove that: a Hamiltonian path
exists on the graph if and only if the FSD problem4

(G, T ,Mfix,Mρ,Mϕ) admits a solution with a cost equal
or lower to Mfix + (|V |−1 · |V |/2) + |V |−1.

Reduction:

c(e) = 1 ∀e ∈ E (3a)
T = {Tv}v∈V , with: (3b)

lstartT=v = lendT=v = v ∀T ∈ T (3c)
tstartT = tendT = 0 ∀T ∈ T (3d)

σT = |V |−1 ∀T ∈ T (3e)
Mρ = Mϕ = 1 (3f)

Mfix = |V |2+|V |> (|V |−1 · |V |/2) + |V |−1 (3g)

The cost to traverse any edge of the graph is set to one
(Equation 3a). Equation 3b specifies that there is exactly one
task per vertex in the graph (|V |= |T |); this allows us to
index the tasks using the vertices. For each of these tasks,
the start and the end location are at the corresponding vertex
(Equation 3c). Equation 3f sets the weights of added delay
and relocation time equally to one. Equation 3g specifies that
Mfix is larger than a given threshold, ensuring that reducing
the fleet size is always more important than the other parts
of the objective function.
To prove the above-posed claim, we need to verify the claim
in both ways. First, that if the FSDW is solvable with a cost
less or equal than Mfix + (|V |−1 · |V |/2) + |V |−1, then a
Hamiltonian path exists on G. Second, that if a Hamiltonian
path exists on the graph G, then the FSD can be solved with
a cost less or equal to Mfix + (|V |−1 · |V |/2) + |V |−1.
Direction 1: FSDW is solvable with a cost less or equal than
Mfix+(|V |−1 · |V |/2)+ |V |−1 ⇒ Hamiltonian path exists
on G:
A solution to the FSD with the target costs of Mfix+(|V |−1·
|V |/2)+ |V |−1 is only achievable under specific conditions.
First, only a single vehicle can be used, causing costs of
Mfix. Using an additional vehicle would add costs of Mfix,
leading to total costs larger than 2Mfix, which is, in turn,
larger than the target costs (Equation 3g), 2Mfix > Mfix +
(|V |−1 · |V |/2) + |V |−1. Second, a solution of FSD must
serve all tasks, and therefore all vertices of the graph are

4One instance of the FSD is fully characterized by G =
(V,E), T ,Mfix,Mρ,Mϕ (see Section III-A).
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visited, as each task takes place in exactly one vertex. That
is, the existence of the solution with the said costs ensures
that a single vehicle is able to visit all of the nodes within
the maximum allowed delays. This clearly ensures that a
Hamiltonian Path must exist: otherwise, the vehicle would
need to traverse at least V arcs, violating the maximum delay
for the last visited task.
Direction 2: A Hamiltonian path exists on graph G ⇒ the
FSD can be solved with a cost less or equal than Mfix +
(|V |−1 · |V |/2) + |V |−1:
The desired solution is found by making a single vehicle
follow exactly the Hamiltonian Path. Each vertex is visited
by a Hamiltonian path; thus, each task gets served. The first
task is served at t = 0. The next task is met a time unit
later as a Hamiltonian path will traverse exactly one edge
to visit the next vertex. This pattern continues till the last
task is served at t = |V |−1, thus satisfying the constraints.
As a Hamiltonian path traverses |V |−1 edges, each having
the cost of one, this results in costs for total relocation time
and delay of exactly (|V |−1 · |V |/2) + |V |−1. As a single
path is formed, a single vehicle is required, adding costs of
Mfix. As such, A Hamiltonian path is a solution to the FSD
problem and satisfies the cost cap.
Conclusion: As the FSD problem simplifies, under the
above-described reduction, to the problem of whether a
Hamiltonian path exists or not, which is NP-Complete, we
conclude that the FSD problem is NP-Hard.

IV. METHOD: FLEET SIZING WITH DELAYS AS A
MIXED INTEGER LINEAR PROBLEM

A. Mixed Integer Linear Problem

Here we formalize the FSD as a MILP based on the idea of
chaining. We connect the individual tasks into chains, each
forming a trajectory g for one vehicle. For a single vehicle
to be able to serve two tasks i and j in succession, it needs
to be able to relocate from the ending location of task i to
the starting location of task j and arrive before its starting
time plus the maximal delay. This can be expressed as:

tendi + τi,j ≤ tstartj + σj i ∈ T , j ∈ T (4)

Recall, τi,j denotes the relocation time from task i to task
j. It is calculated as the sum of all costs of traversed edges
if following the shortest path in between the ending location
of task i and the starting location of task j.
We define the set of all pairwise feasible chaining options
of tasks as X , it contains all pairs of tasks (i, j) that fulfill
Equation 4.
To formulate this idea into a tractable problem, we
introduce an integer decision variable xi,j for each pair of
tasks (i, j). xi,j takes the value of 1 if task i and j are
served by one vehicle in succession (i before j), i.e. the two
tasks are chained together. Otherwise, it takes the value of 0.

Taking the cost as defined previously (Equation 1), we
award a constant value of -Mfix for every two tasks that

are chained.5 Further, we penalize delay and total relocation
time (total driven time between tasks). This allows us to
formulate the problem as a mixed integer linear problem
(MILP) as follows, using the newly introduced decision
variable and notation:

min
x,ρ

∑
(i,j)∈X

xi,j ·
[
−Mfix +Mϕ · τi,j

]
+Mρ ·

∑
i∈T

ρi (5a)

T∑
j=1

xi,j ≤ 1 ∀i ∈ T (5b)

T∑
i=1

xi,j ≤ 1 ∀j ∈ T (5c)

0 ≤ ρi ≤ σi ∀i ∈ T (5d)

xi,j · ρi ≤ xi,j ·
[
tstartj + ρj − tendi − τi,j

]
∀i ∈ T , ∀j ∈ T

(5e)

Equation 5a describes the objective function of the MILP. -
Mfix is awarded each time two tasks are chained. Further, we
add the time the vehicles need to drive between the two tasks
(τi,j) and the sum of the delay of all tasks (ρi ∀i ∈ T ). Note
that the minimization problem can yield a negative value for
the objective function due to awarding −Mfix, if two tasks
are chained. The trivial feasible solution where all variables
are zero (no chaining and no delays) yields an objective value
of zero, which is not optimal. Equation 5b ensures that each
task is maximally chained to one subsequent task. Equation
5c ensures that each task has a maximum of one preceding
task. Note, that the Equations 5a to 5c recover the traditional
ILP for fleet sizing if no delays are allowed. A constraint as
Equation 5e can be omitted in the no delay case, as for no
delays (ρ = 0), it is always trivially fulfilled because all (i, j)
belong to X , hence satisfying Equation 4 which is equivalent
to Equation 5e for no delays. The set X does not contain any
decision variable and, as such, can be calculated beforehand.
Equation 5d ensures that the actual delay of a task (ρi) is
not larger than its maximum delay (σi) and not smaller than
zero. Equation 5e ensures that an vehicle arrives at the next
task in time. To be precise, it means that if xi,j = 1, the
vehicle leaves the final location of i at its ending time plus its
potential delay (tendi + ρi), drives to the new location taking
time τi,j , and arrives in time to the starting position of task
j, including potential added delay of this task (tstartj + ρj);
if xi,j = 0, this constraint has no implication. An illustration
of this constraint is shown in Figure 3.
Unfortunately, the constraint formulated in Equation 5e is not
linear. To linearize it, we define two new auxiliary variables
Ai,j and Bi,j and apply a temporal scaling to ensure σ ≤ 1.
Intuition-wise, the new variables represent Ai,j = xi,j · ρi
and Bi,j = xi,j · ρj . As this would not be linear, these
equations are represented by the four Inequalities 6a-6d
and respectively 6e-6h. The temporal scaling ensures that

5Each chained formed means one vehicle less is required.
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Fig. 3: Illustration clarifying the constraint of Equation 5e. Two tasks, i and j, their delayed variants, and the relocation
time between are shown. An vehicle follows the top line of arrows if it serves delayed task i relocates to task j, which was
also delayed by ρj .

equations 6c and 6g can always be satisfied also for the case
of xi,j = 0.

Ai,j ≤ xi,j (6a)
Ai,j ≤ ρi (6b)

Ai,j ≥ xi,j + ρi − 1 (6c)
Ai,j ≥ 0 (6d)

Bi,j ≤ xi,j (6e)
Bi,j ≤ ρj (6f)

Bi,j ≥ xi,j + ρj − 1 (6g)
Bi,j ≥ 0 (6h)

Two cases can occur: First, xi,j = 0, as such Equation 6a
demands Ai,j = 0. Second, if xi,j = 1 then Ai,j = ρi forced
by the Equations 6b and 6c. The same holds for Bi,j and ρj .
Using the auxiliary variables, Equation 5e can be rewritten
in linear form, see Equation 7.

Ai,j ≤ Bi,j + xi,j ·
[
tstartj − tendi − τi,j

]
(7)

All used notation of this work is summarized in Table I in
Appendix A.

B. Heuristics

As the size of the problem can get too large to be solvable
through the above-proposed method, or the required solving
time can get too vast due to its NP-Hard nature, we
propose some heuristics for keeping the problem smaller.
All heuristics are designed to reduce the number of potential
chains, |X |, needed to be considered by the optimizer or by
tightening the given constraints. We propose the following
four heuristics:

• Artificially reducing the maximally allowed delay time
by introducing a new maximum delay variable ρmax

ρi ≤ ρmax ∀i ∈ T , ρmax < max
i∈T

σi

• Only allowing tasks to be chained if the end location
of the ending task is less than a given relocation time,
τmax, apart from the start location of the following task.

τi,j ≤ τmax ∀i ∈ T , ∀j ∈ T , τmax < max
i,j∈T

τi,j

• For each starting task i, we limit the number of pairs
(i, j) ∈ X to a maximum of z pairs. Tasks are ranked
by cost, and the z bests are considered. Here costs are
calculated as τi,j + ρi,j , with ρi,j being the minimal
delay if the tasks are considered in isolation. z is a
tuneable parameter.

• Due to allowed delays, it can happen that (i, j) ∈ X and
also (j, i) ∈ X . This heuristic consists of forbidding
this situation, by only allowing trips to be chained if
trip i ends before trip j, i.e. tendi < tendj . We refer to
this heuristic as the “NoDuplicates”-heuristic.

C. Solving the Mixed Integer Linear Problem
For practical reasons, the MILP actually solved differs
slightly from the one posed in Equation 6. Equation 5e is
replaced with it’s linear variant, Equation 7. Further, we add
a constraint for each pair of tasks, which can not be chained.
The according decision variable xi,j is set to zero from the
beginning, i.e.

(i, j) /∈ X → xi,j = 0

We solve the resulting problem using the Gurobi solver
version 9.5.2 [30]. If heuristics are applied the problem to
solve alters slightly. If setting a new artificial delay bound
(ρmax), Equation 5d is adapted accordingly. The other three
heuristics add an additional check while calculating the set
of potential chaining options X , which is used as described
above.

V. EXPERIMENTS AND RESULTS
A. Overview
This section presents our experimental results and is struc-
tured as follows: First, we analyze a theoretical example,
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Fig. 4: A graph representing the street network of the
Gridworld environment n = 20, thus containing 400 vertices,
is depicted. For an vehicle to traverse any edge takes 10
seconds, b = 10.

called Gridworld, in detail. We compare runs with and with-
out delay, analyze achievable trade-offs between fleet size,
total relocation time, and delay, compare different scenarios
varying the density of tasks, and analyze the introduced
heuristics. Second, we investigate a case study of pooled taxi
rides in Manhattan. All computations have been performed
on a PC with an AMD Ryzen 5 5600X and 64GB Memory.
All resulting MILPs were solved using Gurobi 9.5.2 [30].

B. Gridworld

The operational environment, which we call Gridworld, is a
grid-like structure consisting of n×n vertices arranged in a
square. Neighboring vertices are connected and equidistantly
spaced with a travel time of b seconds6. One instance of
Gridworld is fully characterized by n and b. An example of
Gridworld is depicted in Figure 4. Gridworld has a maximal
distance between vertices of 2 × (n − 1) × b seconds. For
tasks’ start and end locations (lstartT and lendT ), we randomly
(uniformly) chose two vertices from the environment graph.
Start times tstartT are sampled uniformly within the starting
time t = 0 and the end of the operation Λ. In Gridworld,
we define the duration of a task αT as the time it takes to
travel the shortest path from the start to the end location of
the task7. As such the ending time tendT is determined. This
results in an average task length in Gridworld of 4

6 × n× b
seconds.
Within this section, we use the following parameter settings,
unless mentioned otherwise: n = 40; b = 10; |T |=
1, 600; σT = 480; Λ = 8 · 3, 600, Mρ = Mϕ = 1. The
parameters have been chosen to be realistic while keeping
the required computational times at a reasonable scale.
We sampled and solved 5 different demand scenarios. The
mean and standard deviation are reported. The density

6This is a simplifying assumption that we consider as reasonable as the
proposed approach can accommodate real travel times if available. Real
travel times have an effect of the specific parameters of tasks, but not on
their general definition nor on the proposed method.

7This definition does not harm the generalization of the method and is
straightforward to adapt.

analysis and the heuristics are analyzed using a single case.
Unless mentioned otherwise, no heuristics are applied for
all calculations within this section, and the problem at hand
is solved to optimality (no time limit and an optimality gap
of 0.0001).

1) Comparison against the no-delay case: First, we compare
solutions to the FSD (allowing to delay individual tasks)
to the traditional fleet sizing problem (not allowing delays).
We do so for different values of Mfix (Equation 5a), as it
shapes the number of vehicles used. Generally, the amount of
extra delay and extra traffic to be accumulated to beneficially
decrease the fleet size by one vehicle is capped at Mfix, as
otherwise the objective value (Equation 5a) would increase
and thus not chaining is better. Thus a lower absolute value
of Mfix will lead to a less strong decrease in fleet size.
Thereby, for no delays, the value of Mfix that equals the
largest relocation time between any two vertices is of major
importance. For the scenario analyzed here, this value equals
Mfix = 780. A value of Mfix ≥ 780 leads to a minimal fleet
without delays, as it is always beneficial to chain two tasks
if possible. The threshold value of Mfix to not decrease the
fleet size at all, in other words using an individual vehicle per
task, depends on the analyzed scenario. The threshold equals
the minimum in the sum of of relocation time plus potentially
required delay of any two tasks that can be chained.
Figure 5 shows a direct comparison of runs with and without
allowing delays for Mfix ∈ [400, 600, 800]. All results are
also listed in Table II in Appendix B. The obtained fleet
sizes, total relocation times, added minor delays, as well
as the difference in costs, are shown. Runs without delays
are depicted in brighter colors. Allowing for delays reduces
the fleet size for all values of Mfix. The required fleet
sizes are reduced by around 1 vehicle for Mfix = 800,
by around 2 vehicles for Mfix = 600, and by around
1 vehicle for Mfix = 400. This showcases that allowing
delays is beneficial to decrease fleet sizes.8 This comes
at the price of increasing total relocation time and added
delay. Respectively a total delay of 14:46 ± 02:51, 11:16
± 02:02, and 05:50 ± 00:59 minutes and seconds is added.
The average delay per task is less than one second for all
runs. The total amount of added delay, in comparison to
the total relocation time, is small. Please also note that the
driving time of the vehicles during tasks is not depicted nor
part of the cost function, as it is a constant. The obtained
total costs, the objective of the optimization problem, are
smaller (minimization problem) if delays are allowed. As
such, it is beneficial to consider potential delays in fleet
sizing regardless of the importance of single objectives as
seen by the overall achievable lower costs.

2) Further Reduction in Fleet Size: In the previous section,
we showed the potential of solving the FSD in direct com-
parison to not considering the option to delay tasks. Here we

8Larger decreases in fleet size can be obtained for larger values of Mfix,
see below (Figure 6).
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Fig. 5: Comparison of runs with and without allowing to
delay tasks for 3 values of Mfix ∈ [400, 600, 800], scenarios
without delay are displayed in lighter colors. Allowing delays
decreases the obtained fleet size (purple) by adding some
minor delay (dark green). Total objective values (yellow)
are lower if delays are allowed (minimization problem).
The mean of 5 scenarios is shown, including their standard
deviation shown using black bars.

highlight the potential of considering delaying tasks to de-
crease the fleet size even more. When no delays are allowed,
the threshold Mfix ≥ 780 ensures that fleet size is always
the primary objective. When delays are allowed, larger values
of Mfix yield even smaller fleets, as chaining decisions are
not independent of each other anymore. Consequently, we
analyze Mfix > 780 within this section.
Figure 6 shows obtained results for values of Mfix from
1,000 to 6,000, in steps of 1,000, and for comparison the
minimum achievable fleet without delays (using Mfix =
800, same as previous section). Obtained fleet sizes, total
relocation time, and added delay are shown. Additionally,
results are listed in Table III in Appendix B. All runs are
able to achieve a smaller fleet at the price of increasing
total relocation time and added delay, compared to the non-
delay case. The higher Mfix, the smaller the obtained fleet
size, accompanied by higher sums of total relocation time
and added delay. This is expected as the sum of costs
(delaying tasks and longer relocation times) can be more to
include more tasks within each chain. Regarding fleet size,
the absolute number of vehicles saved for increasing Mfix

more and more diminishes slowly. Comparing the required
fleet sizes for Mfix = 6, 000 to the minimum fleet size
without delays shows a decrease of needed vehicles of more
than 50% (from 59.2 to 28.6 vehicles), at a cost of just 9.7
seconds of average delay per task. Average relocation time
increases from 35 seconds to 1:03 minute and seconds.
In conclusion, FSD increases the potential trade-off space
and, thus, the potential to decrease the number of required
vehicles significantly. This potential is huge but heavily
depends on the relation between costs involved, which in

Fig. 6: Figure showing the effect of the value of Mfix on
the obtained fleet size and the average delay and average
relocation time. For comparison, a run with no delay and only
optimizing on fleet size is shown. The mean of 5 scenarios is
shown, including their standard deviation shown using black
bars.

turn depends on the nature of the operation at hand.
3) Density analysis: This section analyses the effect if
the number of potential chains is varied and shows that
obtainable benefits are robust against external changes.
The number of potential tasks that a vehicle could serve after
finishing a task (the number of chaining options) increases
if more tasks need to be fulfilled (i.e. if we increase |T |).
The same effect occurs the smaller the environment is, as the
average relocating time becomes smaller (which we analyze
by changing n), and thus it is easier to reach the new starting
location in time. To analyze this effect on the proposed
method, we vary |T | and n. We compare runs with no
delay, fully minimizing fleet size, to runs allowing delays
with Mfix = 5, 000. We vary the size of the environment
n as [20,40,60]. As for the number of placed tasks, we
use different numbers of total tasks to fulfill, |T |∈ [800,
1,200, 1,600, 2,000, 2,400]. Obtained results are visualized
in Figure 7. The differences in fleet size (left) and delay
plus relocation time (right) for each value pair are shown
for the scenarios with and without delay. Values are shown
in percentage, the baseline is the corresponding run with no
delays, fully minimizing fleet size.
The decrease in fleet size ranges from 15.7% to 35%. This
decrease is always significant. The increase in total relocation
time plus delay lies between 13.4% and 44.7%. Generally,
greater changes accompany each other, seen by similar sizes
of the corresponding dots in Figure 7. No other clear trends
show.
4) Effect of Heuristics: To enhance the scalability of the
proposed approach to solve the FSD, we introduce a variety
of heuristics in Section IV-B. They reduce computational
cost, while not significantly compromising the quality of the
results. This capability is particularly advantageous when
tackling larger scenarios. In this section, we apply these
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Fig. 7: The difference in fleet size and total relocation time
plus delay for allowing delays to no delays is shown in
percentage as the environment size and the number of placed
tasks are varied.

Fig. 8: Visualization of the effect of reducing the maximal
allowed delay ρmax on fleet size, delay plus total relocation
time, run time, and the number of chaining options X , all
presented as percentages of the run without any heuristics.

heuristics and analyze their effectiveness. Additionally,
we vary the strengths of the applied heuristics. For each
heuristic, we compare fleet size, total relocation time plus
delay, the required computation time for the optimization,
and the number of chaining options, |X |. As a baseline
for comparison, we use the case with Mfix set to 5,000.
For ease of comparison, in all figures of this section, all
numbers are displayed in percentages relative to the baseline.

Restricting maximum allowed delay: We restrict the max-
imum allowed delay form σi = 480∀i ∈ T to ρmax ∈
[360, 240, 120]. Results are illustrated in Figure 8. Reducing
the maximally allowed delay can be effective in decreasing
run times. Figure 8 shows that the heuristic only slightly
increase the fleet size and relocation time plus delay, for a
strong decrease in required run times. But, if the heuristic
is applied strongly, i.e. for lower values of ρmax = 120, we
see a substantial increase in fleet size.
Restricting maximum allowed relocation time: We restrict
the upper limit on the relocation time between two tasks to
τmax ∈ [600, 400, 200, 100]. Results are displayed in Figure
9. For larger values of τmax the fleet size does not increase,

Fig. 9: Visualization of the effect of reducing the maximal
allowed relocation time τmax on fleet size, delay plus total
relocation time, run time, and the number of chaining options
X , all presented as percentages of the run without any
heuristics.

but the heuristic is also not effective in reducing required
run times. Reducing the maximum relocation time strongly,
τmax ∈ [200, 100], greatly decreases the number of chaining
options and a decrease in run times. For τmax = 200 the fleet
size does not change and total relocation time and delay only
increase slightly. In contrast, the fleet size increases strongly
for τmax = 100. As such the heuristic needs to be well-tuned
to be effective.
Comparing this heuristic to the previous one, we see a
notable difference. Reducing the maximum delay decreases
the number of potential chaining options only slightly but
significantly affects the required computation time. In con-
trast, reducing the maximum relocating time reduces the
number of potential edges in a stronger fashion but with a
smaller effect on the computational time. This indicates that
the complexity of the problem is within the newly allowed
delay.
Restricting the maximum number of chaining options per
task to z: We varied z ∈ [250, 200, 150, 100]. Most notably
the run time increases for all values of z. As such, the
heuristic is ineffective, and the sum of relocation times
and minimum required delay is ineffective in judging the
potential of chaining options. Results are shown in Figure
11 in Appendix C.
“NoDuplicates”-Heuristic: This heuristic can either be used
or not (no additional tuning). The total number of chaining
options only decreases very slightly (about 1.3%). The run
time increases, and as such we do not recommend the use of
this heuristic. Results are shown in Figure 12 in Appendix
C.

C. Case Study: Manhattan

This section analyses a real-world instance to analyze the
proposed method’s potential. We investigate the FSD prob-
lem considering taxi rides in Manhattan.
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To build the set of tasks T , we utilize one hour of taxi rides
data in Manhattan9 [31]. 19,809 individual transportation
requests are placed within this hour. The tasks we consider
are not these individual requests but groups of them that
are pooled to travel together. Here the pooling of requests
is done following a method based on the Vehicle-Group-
Assignment method by [32]. Details on this step can be found
in Appendix D. The ending time of the transportation tasks
is based on the task’s duration, determined by the total travel
time to serve all passengers following the shortest path. This
pooling step leads to a total of 4,255 pooled transportation
tasks or trips starting within 1 hour. Figure 13 in Appendix
E shows distributions of the starting times, trip duration,
ending times of the tasks, as well as the number of passengers
per task. As the operational environment, Manhattan’s road
network is represented by a graph, and travel times are
estimated for each road segment. These travel times are
used for transporting passengers and empty relocation. The
graph was obtained following the method described in [33].
Thereby the travel times of the graph are estimated based
on the departure and arrival times of the recorded trips and
averaged over a day. The average relative error of the actual
travel times to the estimated travel times is minimized.
We run the above-proposed method for the Manhattan
instance of the FSD problem with the following settings. For
the cost function, we set Mfix = 2, 500 and Mϕ = Mρ = 1.
Based on the heuristic analysis for Gridworld (Section
V-B.4), we applied, the heuristic capping the maximum
relocating time, which we set to τmax = 800 seconds.
We do not apply the “NoDuplicates”-heuristic and the
heuristic selecting chaining options based on cost. For the
maximum delay of all trips, we analyze three scenarios
of σ ∈ [60, 120, 180] seconds, which is at the core of this
work. All results are visualized in Figure 10 and listed in
Table IV in Appendix B.

Each extra minute of allowed delay reduces the minimum re-
quired fleet size by about 50 vehicles (52/54/47); in percent-
age, this is a decrease of around 3% (3.12%/3.34%/3.01%).
Added delay and relocating time increase, whereby the
stronger changes are within the added delay. If 1 minute
of maximum added delay is allowed an average delay of 3.2
seconds per task is added. For 2 and 3 minutes of maximal
delay, this equals 10.7 and 22.37 seconds per task. This
equals 8.41/29.2/62.78 seconds of delay for each vehicle over
its entire day.
To conclude, introducing the option of delaying tasks is a
way to reduce the number of required vehicles. A slight
modification, consisting of the introduction of 1 minute
of maximum delay, already allows decreasing the fleet by
3.12% at the mild cost of an average delay of 12 seconds
per trip. The proposed method allows stressing this trade-
off significantly further, allowing up to 3 minutes of delay,
decreasing the required fleet by 9.17% compared to not
allowing delays.

9The used data was recorded on 29.05.2013 between 1 p.m. and 2 p.m.

Fig. 10: Main results of fleet sizing of one hour of pooled taxi
rides in Manhattan, in regards to fleet size, average relocation
time, and average added delay, are displayed. For higher
maximal allowed delay the required fleet sizes decrease,
accompanied by an increase in total relocation time and
added delay.

VI. CONCLUSION

In this work, we have posed the problem of fleet sizing
with delays. It extends the question of “How many vehicles
are needed to perform a set of tasks?” by allowing short
delays before the beginning of each task, noting that such
delays are commonly observed in real-life applications. We
proved that the new problem is NP-Hard, and proposed a
formulation of the FSD as a MILP. The formulation used is
general, and as such, the methods and findings have wide
applicability. First, we studied a general case (Gridworld)
followed by a real-world case of shared taxis rides in
Manhattan.
For Gridworld, we showed that it is beneficial to consider
delays within fleet sizing, lower costs are achieved in direct
comparison to not considering them. We further showed that
delays allow a decrease in fleet size beyond previous limits.
If a small fleet is the highest priority, we find that fleets
can be decreased by 50% compared with the minimal fleet
without delay, while still respecting small limits of maximal
delay per task. Additionally, in this paper, various heuristics
are proposed and analyzed. The work is concluded with a
real-life case study of taxi rides in Manhattan. Results show
the same nature and potential. By adding a maximum of
3 minutes of additional delay per ride, the required fleet
size can be decreased by about 9% in comparison to the
minimal fleet without delays, at the cost of fewer than 23
seconds of average delay per task.

In summary, using delays improves solutions and increases
the option space for potential trade-offs. It allows a reduction
of the number of vehicles used strongly.
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Future work includes the introduction of delays into other
types of approaches, the application of the proposed general
method to specific fields and cases, other than the mobility
of people, and the development of potent heuristics, such as
a local search algorithm or tabu search.
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APPENDIX

A. Notation

Notation Explanation
G Graph, encoding the environment
V Set of vertices of the graph, each vertex represents

a location, customers order to
E Set of edges connecting the vertices of the graph
c(e) Costs (time) required to traverse edge e
T Set of all tasks
T a single task T = (lstartT , lend

T , tstartT , αT , σT )
tstartT Starting time of task T
tend
T Finishing time of task T
αT Duration of a task T
lstartT Starting location of task T
lend
T Ending location of task T
Λ Ending time of the operation, tstartT ≤ Λ
σT Maximum slack of task T
ρT Time task T is delayed
tstart,ρT Starting time of the delayed task T

tend,ρ
T Ending time of of the delayed task T
gi Trajectory i, which is defined as an ordered set of

tasks gi = (Ti,1, Ti,2, ..., Ti,k)
ω Set of trajectories
Ω Set of all feasible sets of trajectories
c(ω) Cost function
X Set of all pairs of tasks (i, j), which are chainable
xi,j Binary decision variable, whether tasks i and j are

chained
Mfix Constant in the objective function awarded for chain-

ing two tasks
Mρ Weight in cost function to weigh the total delay
Mc Weight in cost function to weigh the total relocation

time
ϕ(g) Sum of times traveled by an vehicle between tasks

of trajectory g
τi,j Relocation time from task i to task j
Ai,j Auxiliary variable to linearize Equation 7
Bi,j Auxiliary variable to linearize Equation 7
ρmax Artificial maximum delay
τmax Artificial maximum relocation time
z Tuneable parameter for selecting the z best edges

per task
n Side length (in number of vertices) of the squared

experimental environment Gridworld
b Distance in seconds between two connected vertices

of the experimental environment Gridworld

TABLE I: Table summarizing the complete notation used
throughout this work.

B. Result Tables

Have a look at Tables 2 to 4.

C. Plots of Heuristic Experiments

Have a look at Figures 11 and 12.

Fig. 11: Visualization of the effect of restricting the max-
imum number of chaining options per trip on fleet size,
delay plus total relocation time, run time, and the number
of chaining options X , all presented as percentages of the
run without any heuristics.

Fig. 12: Visualization of applying the “NoDuplicates”-
heuristic on fleet size, delay plus total relocation time, run
time, and the number of chaining options X , all presented
as percentages of the run without any heuristics.

D. Details on Vehicle Group Assignment for Pooling

To create the set of tasks or rides T used within the case
study of Manhattan, the individual transportation requests
within Manhattan have been pooled into tasks T ∈ T first.
This pooling step was done leveraging a method close to
the Vehicle Group Assignment method (VGA) [32]. VGA
is a receding horizon approach. Each time step, all potential
trajectories, for a set of given vehicles, are calculated. A
trajectory defines which requests one vehicle serves and in
which order, also determining its path. From this set of
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Mfix Max Delay σ [sec] Fleet Size Total Reloc. Time [h:min:sec] Total Added Delay [h:min:sec] Costs
800 480 58.2 ± 1.47 15:33:04 ± 0:05:59 0:14:46 ± 0:02:51 -1176569.4 ± 910.13
800 0 59.2 ± 1.83 15:49:08 ± 0:13:01 0:00:00 ± 0:00:00 -1175692.0 ± 932.98
600 480 65.2 ± 1.17 14:15:46 ± 0:08:16 0:11:16 ± 0:02:02 -868857.2 ± 660.19
600 0 67.2 ± 1.47 14:17:00 ± 0:06:47 0:00:00 ± 0:00:00 -868260.0 ± 666.84
400 480 79.4 ± 1.36 12:24:38 ± 0:08:36 0:05:50 ± 0:00:59 -563211.2 ± 524.8
400 0 80.4 ± 1.2 12:28:56 ± 0:10:21 0:00:00 ± 0:00:00 -562904.0 ± 474.7

TABLE II: Comparison of the fleet sizing problem allowing delays and not doing so. These results are visualized in Figure
5. We list the total delay instead of the average delay per task here as the averages are all less than one second.

Mfix Max Delay σ [sec] Fleet Size Total Reloc. Time [h:min:sec] Total Added Delay [h:min:sec]
6000 480 28.6 ± 0.49 1 day, 4:04:40 ± 0:07:56 4:19:54 ± 0:19:30
5000 480 29.8 ± 0.4 1 day, 3:21:56 ± 0:20:36 3:16:15 ± 0:18:07
4000 480 31.8 ± 0.4 1 day, 1:45:28 ± 0:15:27 2:31:02 ± 0:16:03
3000 480 34.4 ± 0.8 1 day, 0:05:00 ± 0:08:08 1:26:02 ± 0:07:55
2000 480 39.2 ± 0.75 21:33:02 ± 0:27:54 0:42:19 ± 0:09:07
1000 480 52.6 ± 1.02 16:49:20 ± 0:12:52 0:20:33 ± 0:03:05
800 0 59.2 ± 1.83 15:49:08 ± 0:13:01 0:00:00 ± 0:00:00

TABLE III: Results table for all experiments using values of Mfix greater than 800, and for comparison the scenario
achieving a minimal fleet for no delays. These results are visualized in Figure 6.

Mfix Max Delay
ρmax [sec]

Max Reloc. T.
τmax [sec]

z best “NoDuplicates” Fleet Size Avg. Reloc.
Time per Trip
[min:sec]

Avg. Added
Delay per Trip
[min:sec]

Runtime
[h:min:sec]

Chaining
Options |X |

2,500 0 800 x ✓ 1,669 0:49 0:00 0:00:26 1,312,052
2,500 60 800 x ✓ 1,617 0:50 0:03 0:01:10 1,371,178
2,500 120 800 x ✓ 1,563 0:54 0:10 0:08:05 1,432,028
2,500 180 800 x ✓ 1,516 0:56 0:22 47:05:04 1,494,541

TABLE IV: Results table containing all results for the scenarios analyzed in the case study of taxi rides in Manhattan.

potential trajectories, the best, according to a given objective
function, are selected by means of an assignment problem,
solved as an integer linear problem. For our purpose, VGA is
altered to overcome the assumption of a fixed set of vehicles.
When calculating all potential trajectories. It is assumed that
each request has its own hypothetical vehicle available at
its starting location. If a vehicle is not assigned to be used
during the assignment step, it is omitted. This procedure was
proposed in [34], more details can be found there. The tasks
are defined as the trajectories the used vehicles take, their
first request defines the task’s start and the last request the
task’s end.

E. Details on the Manhattan Dataset

Figure 13 shows four histograms all describing the set of
trips used for the Manhattan Case study. They illustrate the
starting time of the trips (top left), their duration (top right),
the resulting ending times (bottom left) and their total size
(bottom right).
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