IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018 1

Chance-Constrained Collision Avoidance for MAVs
in Dynamic Environments

Hai Zhu and Javier Alonso-Mora

Abstract—Safe autonomous navigation of micro air vehicles
in cluttered dynamic environments is challenging due to the
uncertainties arising from robot localization, sensing and mo-
tion disturbances. This paper presents a probabilistic collision
avoidance method for navigation among other robots and moving
obstacles, such as humans. The approach explicitly considers
the collision probability between each robot and obstacle and
formulates a chance constrained nonlinear model predictive
control problem (CCNMPC). A tight bound for approximation
of collision probability is developed which makes the CCNMPC
formulation tractable and solvable in real time. For multi-
robot coordination we describe three approaches, one distributed
without communication (constant velocity assumption), one dis-
tributed with communication (of previous plans) and one cen-
tralized (sequential planning). We evaluate the proposed method
in experiments with two quadrotors sharing the space with
two humans and verify the multi-robot coordination strategy in
simulation with up to sixteen quadrotors.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents, Collision Avoidance, Motion and Path Planning.

I. INTRODUCTION

N-LINE generation of collision free trajectories is of ut-

most importance for safe navigation among other robots
and in human-populated environments. In these crowded and
dynamic scenarios, reasoning about the uncertainties in self-
localization, in estimation of the motion of other agents and in
motion execution becomes increasingly relevant. Furthermore,
tight coordination between the robots becomes essential.

In this paper, we present a probabilistic collision avoidance
method for Micro Aerial Vehicles (MAVs) that accounts for
robot localization and sensing uncertainties, as well as mo-
tion disturbances. The method leverages chance-constrained
nonlinear model predictive control (CCNMPC) to plan a local
trajectory, which ensures that the collision probability between
each robot and obstacle is below a user specified threshold.
By assuming that the uncertainties are Gaussian distributed, we
transform the chance constraints into deterministic constraints
on the robots’ state mean and covariance. Thus, a tractable
constrained optimization problem is obtained and solved in a
receding horizon fashion and on-line.

Furthermore, we discuss and compare three methods for
planning among other robots, a distributed approach where
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Fig. 1: Probabilistic collision avoidance among obstacles.

only the sensed velocity and position of neighboring robots
are used, a distributed approach where previous plans of
other robots are communicated, and a centralized approach for
multi-robot coordination where a sequential planning scheme
is employed.

The main contributions of this work are:

e An on-line collision avoidance method for navigation in
three dimensional dynamic environments, which utilizes
stochastic nonlinear model predictive control to plan safe
trajectories with a specified probability of collision.

o A tighter bound for chance constraints over ellipsoidal
obstacles, which accounts for robot localization, sensing
uncertainties and disturbances.

« Incorporation of collision avoidance chance constraints
into three frameworks for multi-robot motion planning
(sequential, distributed with/without communication).

We evaluate our proposed method in experiments with a

team of quadrotors, see Fig. [I] for an example with two
quadrotors avoiding two walking humans.

II. RELATED WORK

Several approaches exist for collision avoidance in dynamic
environments among other MAVs, which include velocity
obstacles [[1], decentralized NMPC [2] and sequential NMPC
[3]. However, these approaches were deterministic and did
not account for uncertainties in perception and motion. The
concept of velocity obstacles was extended to handle motion
uncertainties by using conservative bounding volumes [4]]. Yet,
the robot dynamics were not fully modeled and the motion
was limited by planning a constant velocity motion. These
issues can be overcome by using NMPC for planning. [5]]
introduced a decentralized NMPC where robot motion uncer-
tainties were taken into account by enlarging the robots with
their 3-0 confidence ellipsoids. However, bounding volumes
can be conservative and lead to infeasible solutions in cluttered
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environments. In this work we explicitly consider the collisioA. Robot Model

probability and formulate a chance constrained NMPC prob- consider a multi-robot system with robots moving in a
lem. A chance constrained MPC problem was formulated Ryared workspacev  R3. We model each robat2 | =

[6] for systems with linear dynamics and planar motion, whekg: o::-:-ng N as an enclosing rigigphereS; with radius
rectangular regions were computed and overlaps avoided ip. 2 The dynamics of each robét2 | are described by a

centralized mixed integer program formulation. Our proposegychastic nonlinear discrete-time model,
approach is not centralized and can be applied to robots with

nonlinear dynamics navigating in three-dimensional spaces. = fdGu) s P N @Y D) @
If one assumes set-bounded motion uncertainty mOdels'”WIrl‘erexik = [pkivk: ko ko KT 2 X, R™ denotes the

robust MPC can be employed to plan safe trajectolies [Gte of the robot (position, velocity and orienting) arfd2

or a guaranteed traject.ory tracklng error bound.[8] can lﬁa R™ the control inputs at timé. X; and U, are the
used. However, uncertainties described by Gaussian probajlye gpace and control space respectively. The initial state
ity distributions, such as those resulting from Kalman Iters,o is considered as a Gaussian random variable with mean
are unbounded. If we consider Gaussian distributions, thgh and covariance ©, which are typically given by a state
objects can be approximated by larger bounding volumes tl&rtimator (we emplloy an Unscented Kalman Filter (UKF)).

correspond to sigma hull5][9] which are based on con denge yengtes the nonlinear dynamics. We consider uncorrelated
levels. With this method collision checking can be perform:@k

X ocess noiseX N (0; QK) with diagonal covariance matrix
very fast. However, the enlarged bounding volumes generai | his paper, we employ the Parrot Bebop2 quadrotor to
overestimate the collision probability [10]. Hence, when nayg o ate our method. See Appendix for the dynamics model.
igating in cluttered environments, the approach tends to lead
to sub-optimal or infeasible solutions J11].

By assuming a constant probability density of the rob(ﬁ' Obstacle Model
position within the obstacle, the collision probability can For each obstacle 21, = f1;2;:::;n,g N at position
be approximated by the density multiplied by the volumBo 2 R®, we model it as a non-rotating enclosiatiipsoid S,
occupied by the obstacle, [12] uses the probability densityith semi-principal axega,;y;c,) and rotation matrixR,.
of the center of the obstacle, while [10] uses the maximuffatic obstacle positions are assumed to be available for plan-
density on the surface of the obstacle to provide an upp@ng. For dynamic obstacles, as in [17], we assume a constant
bound of collision probability. Both methods are fast, butelocity model with Gaussian noide,(t) N (0; Qo(t)) in
they only work well when the sizes of objects are relativel§cceleration, i.epo(t) = !,(t). Given measured obstacle's
very small compared with their position uncertainties. Theosition data, we estimate and predict their future positions
collision probability can be computed directly via sampling@nd uncertainties with a linear Kalman Filter.
[13]. However, this is computationally intensive and thus not
eligible for real time collision avoidance. C. Collision Chance Constraints

Another alternative is to consider convex polygonal obsta- 1y cjlision Condition: The collision condition of robot

cles [14], [15]. Under the assumption that object positiongii, respect to roboj at timek is de ned as
follow Gaussian distributions, the resulting linear chance con-

straints can be transformed directly into deterministic con- Ci =fxi pf pf ri+rg: (2)
straints of the mean and covariance of the positions. HoweverCollision checking between a robatand an obstacl®

pqugpnal obstacles are ill-posed for online constraine_d OPsquires calculating the minimum distance between a sphere
mization, where smooth shapes are preferred to avoid Io% d an ellipsoid, which can not be performed in closed form

minima. In th|§ paper, we consider sph_erlcal_ robots and _eII| 18]. To this end, we approximate the obstacle with an enlarged
soidal dynamic obstacles. We locally linearize the nonline Tlipsoid and check if the robot's position is inside it. The
collision avoidance constraints and the corresponding Char}:‘iﬁlision condition is

constraints are reformulated into deterministic constraints on

the robot's state mean and covariance. Such a linearization Ci'é, = fX!‘ pik
technique was used for deterministic multi-agent collision o _ Al o al
avoidance [[16]. We mathematically formalize its use in th\é(hzere o = Rodiagl=(a, + ri)% 15k + ri)%15(co +

context of probability-based stochastic collision avoidance. ri)9)Ro. ) »
2) Chance ConstraintsThe positions of the robots and

[1l. PRELIMINARIES obstacles are random variables described by unbounded prob-
Throughout this paper vectors are denoted in bold letiers ability distributions. Hence, the collision avoidance constraints

matrices in capitalM , and sets in mathcah . kxk denotes the can only be satised in a pr_obabilistic manner, which are
Euclidean norm ok andkxk_ = xT Qx denotes the weighted formulated as chance constraints for robot

sqLILareq r(;(_)m:. Atrk:aft del;ott)(e_?tthefmean ofta ratr;]d.or; vatriable Pr(x!‘ 2 ci'j<) 1 ; 8 21;j6i (4)

X. indicates the probability of an event apfl] indicates

the rl)[rznbability densitg functiorzl. A superscri}pfpdenotes the Prixf 2C5) 1 o 8021, )
transpose ok. The super index indicates the value at time where ,; , are the probability thresholds for inter-robot and
k. The sub index; indicates robot or obstacie robot-obstacle collision respectively.

ps  1g; ©)

io
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D. Problem Formulation we propagate the robot uncertainties based on its last-loop

We formulate a distributed collision avoidance problenfr@iectory and control inputs.

For each roboi 2 I, we formulate a discrete time chancékemark 4. If the initial state uncertainty is Gaussian, the
constrained optimization problem witN time steps and predicted state uncertainties are Gaussian distributed when
planning horizon = N t, where t is the time step. propagated using the linearized update wi{ computed

Problem 1. (Probabilistic Collision Avoidance with Chance (™M the last-loop trajectory and control inputs.

Constraints) For robot, given the position distributiong®N
of other robotsj 2 1 ;j 6 i and position distributiongpd'N IV. CHANCE CONSTRAINTS FORMULATION

of obstacleso 2 | ,, the initial state®? with uncertainty =~ We now present the method to address the chance con-
covariance ?, the goal positiorpiy, and the collision prob- straints of Eq. (6¢) and (6d). The basic idea is to rst linearize
ability thresholds ,; o, the objective is to compute optimalthe collision conditions of Eq. (2) and (3) to get linear chance
trajectories and control inputs for the robot to progress from itgonstraints and then reformulate them into deterministic con-
initial state to its goal while the collision probability with eachstraints on the mean and covariance of the robot states.
obstacle and robot is below given thresholds. The resulting

optimization problem is A. Linear Chance Constraints
Iy 1 Consider a linear chance constraint in the fornjaPx
min \]ik(k:(; UF) + JiN (giN) (6a) b , wherex 2 R"x is a random variablea2 R"x ;b2 R
REN UMt are constants and is the level of con dence. Assuming that

st x%=2,(0); &K=& Luk ), (6b) X follows a Gaussian distribution, the chance constraint can

I . T .
Pr(xik > Cilj() 1 82161 (60) be transformed into a deterministic constraint [14].

Pr(xik 2Ci'f)) 1 8021, (6d) Lemma 1. Given a multivariate random variable
K 1 ‘ N (%; ) , then

u; 2 Ui; ki 2 Xi; (68) 1 1 b Ta

8k2fl:::;Ng: Pla"x b= =+ Zerf a

2 2 2a” a

K .
whereJ denotes the cost term of the robot at tiknand JN whegeerf( ) is the standard error function de ned asf(x) =

denotes the terminal cost. 2 T 2

N . p= e Udt
Remark 1. The positions of other robots and obstach.f’s“ ,  Lemma 2. Given a multivariate random variable
pIN are assumed to follow a Gaussian distribution. N (%;) and a probability threshold 2 (0;0:5), then
Remark 2. In Sec. V, we describe several assumptions to Pa"x b 0 a™® b c

obtain the predicted positions”" of other robots. p
wherec=erf }(1 2) 2aT a.

E. Approximate Uncertainty Propagation Given the level of condence, the corresponding error

Evaluating the chance constraints (6¢) and (6d) requirggjction e_md its invgrse can be qbtained by table look-up or
calculating the uncertainty covariance at each time step, i4$iNg series approximation techniques.
uncertainty propagation. There are many methods to perform
uncertainty propagation for nonlinear systems, for example tBe Inter-robot Collision Avoidance Chance Constraints
unscented transformation [19] and polynomial chaos expan-We now consider the inter-robot collision avoidance con-
sions [20]. The readers can refer to [21] to get a comprehensiteaints, Eq. (6¢). For simplicity, we omit the superscript
review. However, these methods are mostly computationally this section. Given positions and uncertainty covariances
intensive and only outperform linearization methods whesf the two robotsp; N (Pi; i), pj N (Bj; j), the
the propagation time is very long. In our case where thestantaneous collision probability of robbtwith robotj is
planning horizon is short, to achieve real time performance, we z
propagate uncertainties using a EKF-type update, {(& = Pr(x; 2 Cj) = . Lc(pi;pj)p(Pi)p(p; )dpidp;;  (7)

Fk kEKT + Qk, where K is the state uncertainty covariance _ . _
. K . K _ @ wherel ¢ is the indicator function
at timek, Q{ is the process noise arfg] = Z-

@xi k!( 1;u!< . H . . . -
the state transition matrix of the robot. We further denote by lc(pispj) = L it kpi . Pk ri+p;
K the 3x3 covariance matrix of the positigrf, extracted 0; otherwise
k . . .
from . We assume thap; and p; are independent Gaussian dis-

Remark 3. The covariance dynamics are dependent on ti{ibutions, thenp;  p; is also a Gaussian distribution, i.e.
robot state and control inputs. Hence, it requirds(n2 + Pi Pj N (pi Pj; i+ ). Hence, the collision probability
ny) additional variables in the optimization Problem 1, whictfl€ ned by Eq. (7)ann be written as

can increase the computation time greatly. In this paper, to

avoid the need of additional variables, and similar to [22], Pi(xi 2 Gy ) = Koy prk rieT p(pi py)d(pi  pj);
i j i j
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(a) Spherical region (b) Linearization of (a) (c) Ellipsoidal region (d) Linearization of (c)

Fig. 2: Chance constraints linearization. Red: collision region. Blue: con dence ellipsoid representation of the Gaussian
distributed robot-robot/obstacle relative position. (a) Collision constraint with a sphere region; (b) Linearization with a half
space; (c) Collision constraint with an ellipsoid region; (d) Transformation into a unit sphere region and linearization.

which is an integral of a multivariate Gaussian probabilitthen we have Fk; 2 Ci,) = Pr(%; 2 Cjp).
density function over a sphere, as illustrated in Fig. 2a. Now, we can use the same linearization method as for the
However, there is no closed form to calculate the collisicsphere region wittei, = (Bi  Po)TjiPi  Poii andhbe =

probability. But we can obtain an approximated upper bourdd The collision chance constraint of Eq. (6d) can thus be
by linearizing the collision condition. As shown in Fig. 2btransformed into a deterministic constraint:

we enlarge the spherical collision regi@ into a half space 1

Cij , which is de ned as ac o0 Bj) qho erf Y1 2,)
ZaI) %( it

10

(12)

Cij = X a{ (pi
Whereaij = (P B )=Kp;i B; k and hj =rp+r;.

It is apparent thaCj Cj, thus P(x; 2 Cj) Prx; 2
Cij ). Hence, following Lemma 1, we can obtain an upper We compare our method with several state-of-the-art col-
bound of the collision probability between two robots: lision probability approximation algorithms using a robot-

0 . obstacle proximity example. A point robot at position mean
. 1erf@“bj aj (B Bi) 4. 8 (07:07,08) m with covariance diag(0.04,0.04,0.01) ris
= g .
2 2af (i + )

pj) by

D. Comparison to Other Methods

1

Pr(xi 2 Cij ) E

close to an ellipsoid obstacle at origin with semi-principle
axes(0:6; 0:6; 2:2) m. See Table | for the collision probability
Following Lemma 2, the collision chance constraint of Eqsomputation results. The numerical integration result is the
(6¢) can be transformed into a deteaministic constraint,  exact collision probability and gives a collision probability
] of 0:011 If we de ne the collision probability threshold to
aj (b py) by erf N1 20) 2af( i+ )y be = 0:03 (thus con dence leveD:97), which corresponds
(9) to the3 condence ellipsoid [23], then this con guration
L ) is feasible. However, when employing the enlarged bounding
C. Robot-obstacle Collision Chance Constraints volume method [24], or the cube approximation [11], the
For the collision avoidance constraints of Eq. (6d), byon guration would be deemed infeasible. The center point
assuming that the positions of the robot and obstacle @®F approximation approach [12] can give feasible checking
independent ran%om variables, the collision probability is results, but the resulting collision probability is signi cantly
smaller than the real value, which may lead to unsafe trajectory
Pr(xi 2 Cio) = ) PP Po)d(Pi  Po); (10)  planning. Our method thus provides a tighter bound.

kpi pok "
where the collision regiof;j, described by j, is an ellipsoid
instead of a sphere, as shown in Fig. 2c.

To linearize the collision colndition, we rst do the afne
coordinate transformatiop = 2 y. Then the collision region
is transformed into a unit sphef@j,, as illustrated in Fig.
2d. The robot and obstacle positions are transformed to new
Gaussian distributions, i.¢; N (Fi; ~i), Po N (Po; ~o), TABLE I: Comparison of collision probability algorithms

V. LOCAL PLANNING

We now present a tractable MPC formulation for each
robot, followed by three approaches to obtain future position
information of other robots and a theoretical discussion.

where A 1 - it i Algorithms Collision Computation| Feasible?

Pi= oPii TiT o i (11) probability | time (ms)

b 3 Bo: o= 3T 3. Numerical integral 0.011 258.665 Yes
io M0 o™ o 0O io- -
. Bounding volume [5] | 1 0.011 No
In the new coordlgate framework, let Center point [12] 3.6E-18 0,016 Yes
— . Cube approx. [11] 0.100 0.044 No
Pr(x; 2 C) = i d(p; ;

r( I IO) kpi pok 1 p(|&. ISO) (Fh pO) Our method 0.017 0.011 Yes
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. . . | tl .

A. Deterministic MPC Formulation where the state transition matif = 03 | 3 tisthe
3

_Let pjg be the goal position of robat, we minimize the ime step for predictionQk,, is the additive process noise
displacement between its terminal position at the plannng)g the model. The positio’n uncertainty covariance |§ _

horizon and its goal. To this end, the terminal cost is k (1:31:3)
jpy A2 -9 L - 9
NN = IV py Y =pg PO (13) 2) Sequential planning with communicatiofif the team
P ' ' ' of robots is centrally controlled, or a fast communication
wherelN is the weight coef cient. channel is available, higher coordination can be achieved

The stage cost is to minimize the robot control inputs by planning trajectories sequentially, i.e., each robot plans a
Ko ks . U . trajectory that avoids the trajectories of all other robots and

Jiu (UP) =iy ui 5 k=1f0L5N 1g; (14)  then communicates its trajectory (given p§N and ON).

Denote byT;' = fpON; ONgj the trajectory for robot

lanned at time. At the initial timet = O roboti avoids only

e plans'l'jO of other robots withj <i , in a priority scheme.

In subsequent time steps, robioplans a trajectoryl;! that

_ _ _ Tk reks _avoidsT! forallj<i andT! 'forallj>i .

p For time s&epk kthe potenkual f'd Coft 'Sin:c (RY) = 3) Distributed planning with communicatiorRobots com-
a0 jeiJijc (&), with Iy (_*i) = lic (dﬁa? di ) i municate their planned trajectories. At every time step, every

dj <df®or Jif. (&) =0 otherwise, wherelf**®is the safe ohot avoids the planned trajectories of all other robots in the

potential eld distance and; is the weight coef cient. previous time-step. That is, at tinieroboti plans a trajectory
By transforming the chance constraints into the determinig that avoids'l'jt Yforallj&i2l.

tic constraints presented in Sec. IV and utilizing the above cost

terms, the following tractable deterministic MPC formulatiore:_ Theoretical Discussion

for Problem 1 can be derived:

wherel¥, is the weight coef cient.
We also introduce a potential eld cost to increase tht

separation between robots and obstacles. Denoteljby=

kpi Pk n the distance between robibaind robot/obstacle

L 1) Collision avoidance:Our formulation imposes, by con-
X X struction, that the probability of collision with respect to

; N N k k k k
kl;NTJ'QN , PR+ Jiu (Ui) + Jic (A7) each obstacle and at every stage of the plan is less or equal

L k=0 k=1 than , under a constant velocity assumption for moving
st x?=2(0); &= fiR Huf h; imoli :
R ANZE i AN R obstacles (Sec. 11I-B) and a simpli ed propagation model (Sec.
go@REpS K koo (15)  1I-E). For collision avoidance with other robots in the team,
gilé (*:(J pg; Ik 5; 5 O guarantees vary according to the coordination methods (and

K1oy- #kox.. the associated assumptions) described in Sec. V-B.
uj S i " 2) Probability of collision with any given obstaclézrom
8 6i21;8021,8k2f1:::;Ng: V-C1, the probability of collision of robait at time stegk with

N . respect toany given obstacle can be bounded b
Wheregi‘j‘ andgX denote the deterministic constraints of Eq. P y v u y

(9) and (12) for probabilistic inter-robot and robot-obstacle
collision avoidance respectively, and the position uncertainty
covariances K are computed as discussed in Remark 3.

o Xo
Pr(x|‘ 2 : Co) Pr(xi 2 C§) = no o;
o=1 o=1
where n, is the number of obstacles. By choosing =
all =No, ONe may specify a joint threshold of collisiogy .
B. Multi-robot Planning 3) Probability of collision for the planned trajectoryerom
In the CCNMPC formulation the position distribution forV-C1, at all stages the probability of collision with any given
all other robotsj & i, given byp®N and N, is assumed obstacle is less or equal than the speci ed threshgldThe
known. Next we discuss three methods to obtain these valuggbability of collision for the whole trajectory of robowith
but the CCNMPC formulation is general and other coordin&espect to each obstacle can be bounded by
tion approaches could be devised. N
1) Constant velocity model without communicatioBy P~ (xk2CK)) Pr(x 2 CK):
regarding all other robots as dynamic obstacles and employing k=1 k=1
a constant velocity model, one robot can predict other robots|n our case this bound would bl o, but it is over
future behaviors based on onboard measurements. Hence, @a¢f3ervative in practice. We argue that, in the context of
robot can plan its own trajectory independently and withogjine receding horizon planning it is bene cial to impose a
communication, which leads to a distributed planning schergobability of collision of , for each individual stage - instead

for multi-robot collision avoidance. , Oof for the whole trajectory - thanks to the fast re-planning and
Given the current position and velocity dlstnbutmlﬁ;oj relatively small displacement between stages.
and f,, of robotj, we compute Furthermore, our formulation is consistent with a stochastic

formulation of the MPC problem where the chance constraint
(16) is de ned as a discounted sum of violation probabilities in
the nite horizon, as proposed for example by [25]. The

[0 911" = Filpf o T

kK _ gk k 1kT k.
iv = B e B+ Qipy s
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rationality with this formulation is also that by penalizingWe rely on the solver Forces Pro [26] to generate optimized
violation probabilities close to the initial time and relaxing thédMPC code. The collision probability thresholds are set to
penalty of violation probabilities in the far future, feasibility . = 0:03 and , = 0:03. By default, the time step used in

of the online optimization is enabled. the NMPC is t = 0:05 s and the total number of steps is
The discounted chance constraint with respect to an obgth-= 20. This planning horizon, of one second, is based on
cles is de ned as: the experience and analysis of our previous work [3], [17] and
works well in practice in our scenarios.
()Prxf2CE) o (17) _ , ,
k=1 B. Trajectory Safety and Ef ciency Comparisons
where 2 (0;1) is the discounting factor. In this scenario, we compare our method with a bounding

volume MPC approach [5] and a deterministic MPC approach
[3]. For all three methods we compute trajectories sequentially
And the only difference is the way in which the uncertainties
are treated. In the experiment, two quadrotors, initially at

Lemma 3. Our formulation provides an upper bound in
the discounted probability of collision, i.e. Equation (17) i
satis ed, if the discounting factor< 0:5.

Proof. Our formulation guarantees that (Rf 2 CK) ( 1:6;0;1:2) m and(1:6; 0; 1:2) m, are required to swap their
0;8k = 1; ;N. Hence, the discounted probability ofpositions. For each approach, we performed the experiment
collision satis es 50 times under three levels of measurements ndise:,

W N and4 . The corresponding average state estimation error for
o ()= a ) o: the position, i.ekp pk, was 0.03 m, 0.05 m and 0.09 m
1 respectively. We measured the minimum distance between the
) two quadrotors as a safety metric and the total trajectory length
Given < O5,wehave (1 M), (1 )=2 1 "™ < 444 qyration as ef ciency metrics.
0. Thus, -&—) < 1. Hence, |, ( )*Pr(xk 2 CK) The results of the three approaches are shown in Table
0 L) 1. Under measurements noise of the purely deterministic
In this proof we also employ the conservative bound 0waproach sqcceeded in 64% of th_e trials. With the larger noise
the joint probability of collision. Future works should look a{evel of4 its performance. _de_tenorated 10 a success rate of
only 36%. The two probabilistic approaches succeeded in all

obtaining tighter bounds on the joint probability of collision : -
over thegwr?ole trajectory. : P y runs. However, thanks to a tighter bound for the collision

4) Feasibility: Due to unmodeled dynamics, disturbancegrobability approximation, our method achieves the same level

or deviations from the simplifying assumptions, the optimizaef safety as [5] but with more ef cient collision avoidance, i.e.,

tion problem may become infeasible. In those rare situatiorgg,emt(;?ée;torgrf:tgthhgﬁhiuL?ggn ?;ing?rtig'-r:l's T“;C'Z}?Cg
our approach is to command the MAVs to decelerate. Tydf—. bp w s S Noise IS larger, €.9.

cally, the problem becomes feasible again after a small num I‘h covariancet .
of steps (below half a second, see Section VI-C).

()Pr(x{ 2 CF)
k=1 k=1

C. Collision Avoidance in Dynamic Environments

V]. RESULTS Fig. 1 showed a snapshot from our experiment. In Fig.

. . . . ) 3a we cumulate the distance between the two drones. They
In this section we describe our implementation of the Preqaintained a safe distance of 0.6 m over the entire run.

posed method and evaluate it in experiments and simulation.f,.Fig_ 3b we cumulate the distance between each drone
A video demonstrating the results accompanies this paper ¢an oach moving human. The distance is computed as the
be found at https://youtu.be/P7SUFEKUP9Q. closest distance between the quadrotor's position and the

ellipsoid's surface. In all instances a minimum safe separation
A. Experimental Setup of 0.3 m was achieved. Close distances between robots and

Our experimental platform is the Parrot Bebop 2 quadr@Pstacles are observed, since they share a quite con ned
tor. The radius of each quadrotor is set &8 m. An SPace. In Fig. 3c we show the computation time of each

external motion capture system (OptiTrack) is used NMPC solver and the central sequential planning framework.

measure the pose of each quadrotor, which is regardE® mean computation time of the NMPC solver is 14.3 ms
as the “real” pose. We then add Gaussian noise to tARd that of the total framework is 71.3 ms. The framework

data to simulate the localization uncertainties. The addéifludes state estimation, uncertainty propagation, obstacles'
measurements noise is zero mean with covariance prediction, communication and solving both NMPC problems.
diag(0:06 m; 0:06 m; 0:06 m; 0:4 deg 0:4 deg?. Taking the Am_ong a!l NMPC s_olutions over the entire run, the pe_rcentgge
noisy measurements as inputs, an UKF is employed to estim3tgnféasible solutions was 2.8% and the longest infeasible
the state of quadrotors. Based on our experimental data, B§§0d was 9 time steps (corresponding to 0.45 s).

average resulted state estimation errokfis pk = 0:05 m

in terms of the quadrotors' position. We use an Intel - Comparison of Multi-robot Planning Strategies
CPU@2.6GHz computer for the planner and use Robot Op-We evaluate our method in simulation with multiple quadro-
erating System (ROS) to send commands to the quadrotdms exchanging their initial positions, and compare the three
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TABLE II: Trajectory safety and ef ciency comparisons of planning algorithms with different levels of measurements noise.
The values are computed only from successful rudgi, ¢ average minimum distance (n}; average trajectory length (m);
T: average trajectory duration (r: success rate.)

Measure noise| 1= 4
Algorithm dmin I T sr dmin I T Sr dmin | T Sr
Our method 0.74 6.77 263 100% 0.81 7.08 2.72 100% 0.86 7.21 3.06 100%
Bounding volume [5] 074 6.84 2091 100% 0.87 7.09 2095 100% 1.10 8.18 3.13 100%
Deterministic MPC [3] 0.63 6.75 2.60 68% | 0.64 6.74 263 64% | 0.61 6.88 2.62 36%
(a) Measured inter-drone distance (b) Distance to moving obstacles (c) NMPC and framework loop time

Fig. 3: Experimental results of two quadrotors following prede ned paths while avoiding two walking humans.

multi-robot coordination strategies described in Section V-Bys for four robots, 16.2 ms for six robots and 24.7 ms for
with a noise level of . Figures 4a-4c show the trajectories obixteen robots. This indicates that the DC approach scales well
six quadrotors, where the only difference is the coordinatiamith the number of robots.

strategies. Table Il shows the minimum distance among

quadrotors and statistics of their trajectories. We report the VII. CONCLUSION

average computation time and the trajectory length for all six In this paper we showed that robust probabilistic collision
guadrotors (minimum, maximum, mean value and standaagoidance among robots and obstacles can be achieved via
deviation to compare cooperativeness). chance constrained nonlinear model predictive control when

We observe that the minimum distance when using tilee obstacles are modeled as ellipsoids. By assuming that the
constant velocity model (0.56 m) is smaller than the safthcertainties are Gaussian distributed, we developed a tight
distance (0.6 m). Thus, collisions happened due to the miaund for approximation of collision probability between each
match between the predicted trajectories (constant velocit@Pot and obstacle. In experiments with two quadrotors we
and the executed trajectories by the quadrotors. This indicafé®wed that our method can generate more ef cient trajecto-
that the 97% con dence level is not enough when the confies for the robots while maintaining the same level of safety
stant velocity model is employed and should be increasé@mpared with the bounding volume approach. In simulations
Instead, sequential planning (SP) and distributed planning wiith six quadrotors we showed that the strategies where the
communication (DC) can achieve safe navigation. While gpanned trajectories are exchanged outperform the constant
showed better performance, it suffers from a ComputatiMQlOCity model. Furthermore, while distributed planning with
burden due to its centralized scheme (the computational c68fnmunication is less cooperative than sequential planning, it

grows |inear|y with the number of robots). The DC approa&pales well with the number of robots. Future works shall ex-
performs well at a much lower computational cost. plore more elaborated approaches for multi-robot coordination

Since the DC approach is scalable, in Fig. 4d we shafind deadlock avoidance, which may occur since the method is

the trajectories of sixteen quadrotors exchanging antipod@fal- By combining our method with a global planner these
positions on the circle. We note that the computational tinf§oPlems might be resolved.

of solving the CCMPC for each robot does increase with the
number of obstacles and robots, due to the larger number o .
constraints. In our experiments, the average computation tim ased on the Parrot Bebop2 SDK, the control inputs to the

B - .. . T 4
of a CCMPC planning step was 14.3 ms for two robots, 149padrotor are given byl = c; ci Ve : = 2 R, yvhere
¢ and . are commanded roll and pitch angles, is the

commanded velocity in verticat direction and - is the

APPENDIX

TABLE |Il: Statistics for coordination strategies with Sixcommganded angular velocity around theody axis. The state
drones. CV: constant velocity model; SP: sequential planning;2 R” was de ned in Sec. Ill-A. We use a rst order low-pass
DC: distributed planning with communication. Euler approximation of the quadrotor dynamics [27], where
. i i the dynamics of the state veloci%/ vector are

Coordinatior} Min. Trajectory length (m) Av.comp. 8" # " " #

strategies dist (m) [ min. | max. [ av. std time (ms) V. tan V.

CcV 0.56 482 | 7.09 | 572 | 0.89 | 152 2 Rz( ) g ko ©;

SP 0.70 431 | 454 | 443 | 0.09 | 1153 > W tan Vy

DC 0.70 418 | 480 | 451 | 0.24 | 16.2 : -

Vz %Z(kvz VZc VZ);
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