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Chance-Constrained Collision Avoidance for MAVs
in Dynamic Environments

Hai Zhu and Javier Alonso-Mora

Abstract—Safe autonomous navigation of micro air vehicles
in cluttered dynamic environments is challenging due to the
uncertainties arising from robot localization, sensing and mo-
tion disturbances. This paper presents a probabilistic collision
avoidance method for navigation among other robots and moving
obstacles, such as humans. The approach explicitly considers
the collision probability between each robot and obstacle and
formulates a chance constrained nonlinear model predictive
control problem (CCNMPC). A tight bound for approximation
of collision probability is developed which makes the CCNMPC
formulation tractable and solvable in real time. For multi-
robot coordination we describe three approaches, one distributed
without communication (constant velocity assumption), one dis-
tributed with communication (of previous plans) and one cen-
tralized (sequential planning). We evaluate the proposed method
in experiments with two quadrotors sharing the space with
two humans and verify the multi-robot coordination strategy in
simulation with up to sixteen quadrotors.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents, Collision Avoidance, Motion and Path Planning.

I. INTRODUCTION

ON-LINE generation of collision free trajectories is of ut-
most importance for safe navigation among other robots

and in human-populated environments. In these crowded and
dynamic scenarios, reasoning about the uncertainties in self-
localization, in estimation of the motion of other agents and in
motion execution becomes increasingly relevant. Furthermore,
tight coordination between the robots becomes essential.

In this paper, we present a probabilistic collision avoidance
method for Micro Aerial Vehicles (MAVs) that accounts for
robot localization and sensing uncertainties, as well as mo-
tion disturbances. The method leverages chance-constrained
nonlinear model predictive control (CCNMPC) to plan a local
trajectory, which ensures that the collision probability between
each robot and obstacle is below a user specified threshold.
By assuming that the uncertainties are Gaussian distributed, we
transform the chance constraints into deterministic constraints
on the robots’ state mean and covariance. Thus, a tractable
constrained optimization problem is obtained and solved in a
receding horizon fashion and on-line.

Furthermore, we discuss and compare three methods for
planning among other robots, a distributed approach where
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Fig. 1: Probabilistic collision avoidance among obstacles.

only the sensed velocity and position of neighboring robots
are used, a distributed approach where previous plans of
other robots are communicated, and a centralized approach for
multi-robot coordination where a sequential planning scheme
is employed.

The main contributions of this work are:
• An on-line collision avoidance method for navigation in

three dimensional dynamic environments, which utilizes
stochastic nonlinear model predictive control to plan safe
trajectories with a specified probability of collision.

• A tighter bound for chance constraints over ellipsoidal
obstacles, which accounts for robot localization, sensing
uncertainties and disturbances.

• Incorporation of collision avoidance chance constraints
into three frameworks for multi-robot motion planning
(sequential, distributed with/without communication).

We evaluate our proposed method in experiments with a
team of quadrotors, see Fig. 1 for an example with two
quadrotors avoiding two walking humans.

II. RELATED WORK

Several approaches exist for collision avoidance in dynamic
environments among other MAVs, which include velocity
obstacles [1], decentralized NMPC [2] and sequential NMPC
[3]. However, these approaches were deterministic and did
not account for uncertainties in perception and motion. The
concept of velocity obstacles was extended to handle motion
uncertainties by using conservative bounding volumes [4]. Yet,
the robot dynamics were not fully modeled and the motion
was limited by planning a constant velocity motion. These
issues can be overcome by using NMPC for planning. [5]
introduced a decentralized NMPC where robot motion uncer-
tainties were taken into account by enlarging the robots with
their 3-σ confidence ellipsoids. However, bounding volumes
can be conservative and lead to infeasible solutions in cluttered
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environments. In this work we explicitly consider the collision
probability and formulate a chance constrained NMPC prob-
lem. A chance constrained MPC problem was formulated by
[6] for systems with linear dynamics and planar motion, where
rectangular regions were computed and overlaps avoided in a
centralized mixed integer program formulation. Our proposed
approach is not centralized and can be applied to robots with
nonlinear dynamics navigating in three-dimensional spaces.

If one assumes set-bounded motion uncertainty models, then
robust MPC can be employed to plan safe trajectories [7],
or a guaranteed trajectory tracking error bound [8] can be
used. However, uncertainties described by Gaussian probabil-
ity distributions, such as those resulting from Kalman �lters,
are unbounded. If we consider Gaussian distributions, then
objects can be approximated by larger bounding volumes that
correspond to sigma hulls [9] which are based on con�dence
levels. With this method collision checking can be performed
very fast. However, the enlarged bounding volumes generally
overestimate the collision probability [10]. Hence, when nav-
igating in cluttered environments, the approach tends to lead
to sub-optimal or infeasible solutions [11].

By assuming a constant probability density of the robot
position within the obstacle, the collision probability can
be approximated by the density multiplied by the volume
occupied by the obstacle. [12] uses the probability density
of the center of the obstacle, while [10] uses the maximum
density on the surface of the obstacle to provide an upper
bound of collision probability. Both methods are fast, but
they only work well when the sizes of objects are relatively
very small compared with their position uncertainties. The
collision probability can be computed directly via sampling
[13]. However, this is computationally intensive and thus not
eligible for real time collision avoidance.

Another alternative is to consider convex polygonal obsta-
cles [14], [15]. Under the assumption that object positions
follow Gaussian distributions, the resulting linear chance con-
straints can be transformed directly into deterministic con-
straints of the mean and covariance of the positions. However
polygonal obstacles are ill-posed for online constrained opti-
mization, where smooth shapes are preferred to avoid local
minima. In this paper, we consider spherical robots and ellip-
soidal dynamic obstacles. We locally linearize the nonlinear
collision avoidance constraints and the corresponding chance
constraints are reformulated into deterministic constraints on
the robot's state mean and covariance. Such a linearization
technique was used for deterministic multi-agent collision
avoidance [16]. We mathematically formalize its use in the
context of probability-based stochastic collision avoidance.

III. PRELIMINARIES

Throughout this paper vectors are denoted in bold letters,x ,
matrices in capital,M , and sets in mathcal,A . kxk denotes the
Euclidean norm ofx andkxkQ = xT Qx denotes the weighted
squared norm. A hat̂x denotes the mean of a random variable
x. Pr[�] indicates the probability of an event andp[�] indicates
the probability density function. A superscriptxT denotes the
transpose ofx. The super index�k indicates the value at time
k. The sub index�i indicates robot or obstaclei .

A. Robot Model

Consider a multi-robot system withn robots moving in a
shared workspaceW � R3. We model each roboti 2 I =
f 1; 2; : : : ; ng � N as an enclosing rigidsphereSi with radius
r i . The dynamics of each roboti 2 I are described by a
stochastic nonlinear discrete-time model,

x k+1
i = f i (x k

i ; uk
i ) + ! k

i ; x0
i � N (x̂0

i ; � 0
i ); (1)

where x k
i = [ pk

i ; v k
i ; � k

i ; � k
i ;  k

i ]T 2 X i � Rn x denotes the
state of the robot (position, velocity and orienting) anduk

i 2
Ui � Rn u the control inputs at timek. Xi and Ui are the
state space and control space respectively. The initial state
x0

i is considered as a Gaussian random variable with mean
x̂0

i and covariance� 0
i , which are typically given by a state

estimator (we employ an Unscented Kalman Filter (UKF)).
f i denotes the nonlinear dynamics. We consider uncorrelated
process noise! k

i � N (0; Qk
i ) with diagonal covariance matrix

Qk
i . In this paper, we employ the Parrot Bebop2 quadrotor to

evaluate our method. See Appendix for the dynamics model.

B. Obstacle Model

For each obstacleo 2 I o = f 1; 2; : : : ; nog � N at position
po 2 R3, we model it as a non-rotating enclosingellipsoid So

with semi-principal axes(ao; bo; co) and rotation matrixRo.
Static obstacle positions are assumed to be available for plan-
ning. For dynamic obstacles, as in [17], we assume a constant
velocity model with Gaussian noise! o(t) � N (0; Qo(t)) in
acceleration, i.e.•po(t) = ! o(t). Given measured obstacle's
position data, we estimate and predict their future positions
and uncertainties with a linear Kalman Filter.

C. Collision Chance Constraints

1) Collision Condition: The collision condition of roboti
with respect to robotj at timek is de�ned as

Ck
ij := f x k

i

�
�

 pk

i � pk
j


 � r i + r j g : (2)

Collision checking between a roboti and an obstacleo
requires calculating the minimum distance between a sphere
and an ellipsoid, which can not be performed in closed form
[18]. To this end, we approximate the obstacle with an enlarged
ellipsoid and check if the robot's position is inside it. The
collision condition is

Ck
io := f x k

i

�
�
�

 pk

i � pk
o





 io
� 1g ; (3)

where 
 io = RT
o diag(1=(ao + r i )2; 1=(bo + r i )2; 1=(co +

r i )2)Ro.
2) Chance Constraints:The positions of the robots and

obstacles are random variables described by unbounded prob-
ability distributions. Hence, the collision avoidance constraints
can only be satis�ed in a probabilistic manner, which are
formulated as chance constraints for roboti :

Pr(x k
i =2 Ck

ij ) � 1 � � r ; 8j 2 I ; j 6= i (4)

Pr(x k
i =2 Ck

io ) � 1 � � o; 8o 2 I o (5)

where� r ; � o are the probability thresholds for inter-robot and
robot-obstacle collision respectively.
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D. Problem Formulation

We formulate a distributed collision avoidance problem.
For each roboti 2 I , we formulate a discrete time chance
constrained optimization problem withN time steps and
planning horizon� = N � t, where� t is the time step.

Problem 1. (Probabilistic Collision Avoidance with Chance
Constraints) For roboti , given the position distributionsp0:N

j
of other robotsj 2 I ; j 6= i and position distributionsp0:N

o
of obstacleso 2 I o, the initial state x̂0

i with uncertainty
covariance� 0

i , the goal positionp ig , and the collision prob-
ability thresholds� r ; � o, the objective is to compute optimal
trajectories and control inputs for the robot to progress from its
initial state to its goal while the collision probability with each
obstacle and robot is below given thresholds. The resulting
optimization problem is

min
x̂ 1: N

i ;u 0: N � 1
i

N � 1X

k=0

J k
i (x̂ k

i ; uk
i ) + J N

i (x̂N
i ) (6a)

s.t. x0
i = x̂ i (0); x̂ k

i = f i (x̂ k � 1
i ; uk � 1

i ); (6b)

Pr(x k
i =2 Ck

ij ) � 1 � � r ; 8j 2 I ; j 6= i (6c)

Pr(x k
i =2 Ck

io ) � 1 � � o; 8o 2 I o (6d)

uk � 1
i 2 Ui ; x̂ k

i 2 X i ; (6e)

8k 2 f 1; : : : ; N g:

whereJ k
i denotes the cost term of the robot at timek andJ N

i
denotes the terminal cost.

Remark 1. The positions of other robots and obstaclesp0:N
j ,

p0:N
o are assumed to follow a Gaussian distribution.

Remark 2. In Sec. V, we describe several assumptions to
obtain the predicted positionsp0:N

j of other robots.

E. Approximate Uncertainty Propagation

Evaluating the chance constraints (6c) and (6d) requires
calculating the uncertainty covariance at each time step, i.e.
uncertainty propagation. There are many methods to perform
uncertainty propagation for nonlinear systems, for example the
unscented transformation [19] and polynomial chaos expan-
sions [20]. The readers can refer to [21] to get a comprehensive
review. However, these methods are mostly computationally
intensive and only outperform linearization methods when
the propagation time is very long. In our case where the
planning horizon is short, to achieve real time performance, we
propagate uncertainties using a EKF-type update, i.e.� k+1

i =
F k

i � k
i F k

i
T

+ Qk
i , where� k

i is the state uncertainty covariance
at time k, Qk

i is the process noise andF k
i = @f i

@x i

�
�
�
x̂ k � 1

i ;u k
i

is

the state transition matrix of the robot. We further denote by
� k

i the 3x3 covariance matrix of the positionpk
i , extracted

from � k
i .

Remark 3. The covariance dynamics are dependent on the
robot state and control inputs. Hence, it requiresN

2 (n2
x +

nx ) additional variables in the optimization Problem 1, which
can increase the computation time greatly. In this paper, to
avoid the need of additional variables, and similar to [22],

we propagate the robot uncertainties based on its last-loop
trajectory and control inputs.

Remark 4. If the initial state uncertainty is Gaussian, the
predicted state uncertainties are Gaussian distributed when
propagated using the linearized update withF k

i computed
from the last-loop trajectory and control inputs.

IV. CHANCE CONSTRAINTSFORMULATION

We now present the method to address the chance con-
straints of Eq. (6c) and (6d). The basic idea is to �rst linearize
the collision conditions of Eq. (2) and (3) to get linear chance
constraints and then reformulate them into deterministic con-
straints on the mean and covariance of the robot states.

A. Linear Chance Constraints

Consider a linear chance constraint in the form Pr(aT x �
b) � � , wherex 2 Rn x is a random variable,a 2 Rn x ; b 2 R
are constants and� is the level of con�dence. Assuming that
x follows a Gaussian distribution, the chance constraint can
be transformed into a deterministic constraint [14].

Lemma 1. Given a multivariate random variablex �
N (x̂ ; �) , then

Pr(aT x � b) =
1
2

+
1
2

erf
�

b� aT x̂
p

2aT � a

�
;

whereerf(�) is the standard error function de�ned aserf(x) =
2p
�

Rx
0 e� t 2

dt.

Lemma 2. Given a multivariate random variablex �
N (x̂ ; �) and a probability threshold� 2 (0; 0:5), then

Pr(aT x � b) � � () aT x̂ � b � c;

wherec = erf� 1(1 � 2� )
p

2aT � a.

Given the level of con�dence, the corresponding error
function and its inverse can be obtained by table look-up or
using series approximation techniques.

B. Inter-robot Collision Avoidance Chance Constraints

We now consider the inter-robot collision avoidance con-
straints, Eq. (6c). For simplicity, we omit the superscript�k

in this section. Given positions and uncertainty covariances
of the two robotsp i � N (p̂ i ; � i ), p j � N (p̂ j ; � j ), the
instantaneous collision probability of roboti with robot j is

Pr(x i 2 Cij ) =
Z

R3
I C (p i ; p j )p(p i )p(p j )dp i dp j ; (7)

whereI C is the indicator function

I C (p i ; p j ) =

(
1; if kp i � p j k � r i + r j ;
0; otherwise:

We assume thatp i and p j are independent Gaussian dis-
tributions, thenp i � p j is also a Gaussian distribution, i.e.
p i � p j � N (p̂ i � p̂ j ; � i +� j ). Hence, the collision probability
de�ned by Eq. (7) can be written as

Pr(x i 2 Cij ) =
Z

kp i � p j k� r i + r j

p(p i � p j )d(p i � p j );
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(a) Spherical region (b) Linearization of (a) (c) Ellipsoidal region (d) Linearization of (c)

Fig. 2: Chance constraints linearization. Red: collision region. Blue: con�dence ellipsoid representation of the Gaussian
distributed robot-robot/obstacle relative position. (a) Collision constraint with a sphere region; (b) Linearization with a half
space; (c) Collision constraint with an ellipsoid region; (d) Transformation into a unit sphere region and linearization.

which is an integral of a multivariate Gaussian probability
density function over a sphere, as illustrated in Fig. 2a.

However, there is no closed form to calculate the collision
probability. But we can obtain an approximated upper bound
by linearizing the collision condition. As shown in Fig. 2b,
we enlarge the spherical collision regionCij into a half space
~Cij , which is de�ned as

~Cij :=
�

x
�
�aT

ij (p i � p j ) � bij
	

;

whereaij = ( p̂ i � p̂ j )=kp̂ i � p̂ j k andbij = r i + r j .
It is apparent thatCij � ~Cij , thus Pr(x i 2 Cij ) � Pr(x i 2

~Cij ). Hence, following Lemma 1, we can obtain an upper
bound of the collision probability between two robots:

Pr(x i 2 Cij ) �
1
2

+
1
2

erf

0

@ bij � aT
ij (p̂ i � p̂ j )

q
2aT

ij (� i + � j )aij

1

A : (8)

Following Lemma 2, the collision chance constraint of Eq.
(6c) can be transformed into a deterministic constraint,

aT
ij (p̂ i � p̂ j ) � bij � erf� 1(1 � 2� r )

q
2aT

ij (� i + � j )aij :
(9)

C. Robot-obstacle Collision Chance Constraints

For the collision avoidance constraints of Eq. (6d), by
assuming that the positions of the robot and obstacle are
independent random variables, the collision probability is

Pr(x i 2 Cio ) =
Z

kp i � p o k 
 io
� 1

p(p i � po)d(p i � po); (10)

where the collision regionCio described by
 io is an ellipsoid
instead of a sphere, as shown in Fig. 2c.

To linearize the collision condition, we �rst do the af�ne
coordinate transformation~y = 


1
2
io y . Then the collision region

is transformed into a unit sphere~Cio , as illustrated in Fig.
2d. The robot and obstacle positions are transformed to new
Gaussian distributions, i.e.~p i � N ( ~̂p i ; ~� i ), ~po � N ( ~̂po; ~� o),
where

~̂p i = 

1
2
io p̂ i ; ~� i = 


1
2 T
io � i 


1
2
io ;

~̂po = 

1
2
io p̂o; ~� o = 


1
2 T
io � o


1
2
io :

(11)

In the new coordinate framework, let

Pr(~x i 2 ~Cio ) =
Z

k ~p i � ~p o k� 1
p(~p i � ~po)d(~p i � ~po);

then we have Pr(x i 2 Cio ) = Pr(~x i 2 ~Cio ).
Now, we can use the same linearization method as for the

sphere region withaio = ( ~̂p i � ~̂po)=jj ~̂p i � ~̂pojj and bio =
1. The collision chance constraint of Eq. (6d) can thus be
transformed into a deterministic constraint:

aT
io 


1
2
io (p̂ i � p̂ j ) � bio � erf� 1(1 � 2� o)

�
q

2aT
io 


1
2
io (� i + � j )


1
2 T
io aio :

(12)

D. Comparison to Other Methods

We compare our method with several state-of-the-art col-
lision probability approximation algorithms using a robot-
obstacle proximity example. A point robot at position mean
(0:7; 0:7; 0:8) m with covariance diag(0.04,0.04,0.01) m2 is
close to an ellipsoid obstacle at origin with semi-principle
axes(0:6; 0:6; 2:2) m. See Table I for the collision probability
computation results. The numerical integration result is the
exact collision probability and gives a collision probability
of 0:011. If we de�ne the collision probability threshold to
be � = 0 :03 (thus con�dence level0:97), which corresponds
to the 3� con�dence ellipsoid [23], then this con�guration
is feasible. However, when employing the enlarged bounding
volume method [24], or the cube approximation [11], the
con�guration would be deemed infeasible. The center point
PDF approximation approach [12] can give feasible checking
results, but the resulting collision probability is signi�cantly
smaller than the real value, which may lead to unsafe trajectory
planning. Our method thus provides a tighter bound.

V. L OCAL PLANNING

We now present a tractable MPC formulation for each
robot, followed by three approaches to obtain future position
information of other robots and a theoretical discussion.

TABLE I: Comparison of collision probability algorithms

Algorithms Collision
probability

Computation
time (ms)

Feasible?

Numerical integral 0.011 258.665 Yes

Bounding volume [5] 1 0.011 No

Center point [12] 3.6E-18 0.016 Yes

Cube approx. [11] 0.100 0.044 No

Our method 0.017 0.011 Yes
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A. Deterministic MPC Formulation

Let p ig be the goal position of roboti , we minimize the
displacement between its terminal position at the planning
horizon and its goal. To this end, the terminal cost is

J N
i (x̂N

i ) = lN
i


 p ig � p̂N

i


 =


 p ig � p̂0

i


 ; (13)

wherelN
i is the weight coef�cient.

The stage cost is to minimize the robot control inputs

J k
i;u (uk

i ) = lk
i;u


 uk

i


 ; k = f 0; 1; : : : ; N � 1g; (14)

wherelk
i;u is the weight coef�cient.

We also introduce a potential �eld cost to increase the
separation between robots and obstacles. Denote bydij =
kp̂ i � p̂ j k
 ij

the distance between roboti and robot/obstacle
j . For time stepk the potential �eld cost isJ k

i;c (x̂ k
i ) =P

j 2I[I o ;j 6= i J k
i;j;c (x̂ k

i ), with J k
i;j;c (x̂ k

i ) = lk
i;c (dsafe

ij � dij ) if
dij < d safe

ij or J k
i;j;c (x̂ k

i ) = 0 otherwise, wheredsafe
ij is the safe

potential �eld distance andlk
i;c is the weight coef�cient.

By transforming the chance constraints into the determinis-
tic constraints presented in Sec. IV and utilizing the above cost
terms, the following tractable deterministic MPC formulation
for Problem 1 can be derived:

min
x̂ 1: N

i ;u 0: N � 1
i

J N
i (x̂N

i ) +
N � 1X

k=0

J k
i;u (uk

i ) +
NX

k=1

J k
i;c (x̂ k

i )

s.t. x0
i = x̂ i (0); x̂ k

i = f i (x̂ k � 1
i ; uk � 1

i );

gk
ij (x̂ k

i ; p̂k
j ; � k

i ; � k
j ; � r ) � 0;

gk
io (x̂ k

i ; p̂k
o ; � k

i ; � k
o ; � o) � 0;

uk � 1
i 2 Ui ; x̂ k

i 2 X i ;

8j 6= i 2 I ; 8o 2 I o; 8k 2 f 1; : : : ; N g:

(15)

wheregk
ij and gk

io denote the deterministic constraints of Eq.
(9) and (12) for probabilistic inter-robot and robot-obstacle
collision avoidance respectively, and the position uncertainty
covariances� k

i are computed as discussed in Remark 3.

B. Multi-robot Planning

In the CCNMPC formulation the position distribution for
all other robotsj 6= i , given by p̂0:N

j and � 0:N
j , is assumed

known. Next we discuss three methods to obtain these values,
but the CCNMPC formulation is general and other coordina-
tion approaches could be devised.

1) Constant velocity model without communication:By
regarding all other robots as dynamic obstacles and employing
a constant velocity model, one robot can predict other robots
future behaviors based on onboard measurements. Hence, each
robot can plan its own trajectory independently and without
communication, which leads to a distributed planning scheme
for multi-robot collision avoidance.

Given the current position and velocity distributionp̂0
j ; v̂ 0

j
and � 0

j;pv of robot j , we compute

[p̂k
j ; v̂ k

j ]T = F k
j [p̂k � 1

j ; v̂ k � 1
j ]T ;

� k
j;pv = F k

j � k � 1
j;pv F k

j
T

+ Qk
j;pv ;

(16)

where the state transition matrixF k
j =

�
I 3 � tI 3

O I 3

�
, � t is the

time step for prediction,Qk
i;pv is the additive process noise

of the model. The position uncertainty covariance is� k
j =

� k
j;pv (1 : 3; 1 : 3).
2) Sequential planning with communication:If the team

of robots is centrally controlled, or a fast communication
channel is available, higher coordination can be achieved
by planning trajectories sequentially, i.e., each robot plans a
trajectory that avoids the trajectories of all other robots and
then communicates its trajectory (given byp̂0:N

i and � 0:N
i ).

Denote byT t
i = f p̂0:N

i ; � 0:N
i gjt the trajectory for roboti

planned at timet. At the initial timet = 0 robot i avoids only
the plansT 0

j of other robots withj < i , in a priority scheme.
In subsequent time steps, roboti plans a trajectoryT t

i that
avoidsT t

j for all j < i andT t � � t
j for all j > i .

3) Distributed planning with communication:Robots com-
municate their planned trajectories. At every time step, every
robot avoids the planned trajectories of all other robots in the
previous time-step. That is, at timet, roboti plans a trajectory
T t

i that avoidsT t � � t
j for all j 6= i 2 I .

C. Theoretical Discussion

1) Collision avoidance:Our formulation imposes, by con-
struction, that the probability of collision with respect to
each obstacle and at every stage of the plan is less or equal
than � o under a constant velocity assumption for moving
obstacles (Sec. III-B) and a simpli�ed propagation model (Sec.
III-E). For collision avoidance with other robots in the team,
guarantees vary according to the coordination methods (and
the associated assumptions) described in Sec. V-B.

2) Probability of collision with any given obstacle:From
V-C1, the probability of collision of roboti at time stepk with
respect toany given obstacle can be bounded by

Pr(x k
i 2

n o[

o=1

Ck
io ) �

n oX

o=1

Pr(x k
i 2 Ck

io ) = no� o;

where no is the number of obstacles. By choosing� o =
� all =no, one may specify a joint threshold of collision� all .

3) Probability of collision for the planned trajectory:From
V-C1, at all stages the probability of collision with any given
obstacle is less or equal than the speci�ed threshold� o. The
probability of collision for the whole trajectory of roboti with
respect to each obstacle can be bounded by

Pr(
N_

k=1

(x k
i 2 Ck

io )) �
NX

k=1

Pr(x k
i 2 Ck

io ):

In our case this bound would beN� o, but it is over
conservative in practice. We argue that, in the context of
online receding horizon planning it is bene�cial to impose a
probability of collision of� o for each individual stage - instead
of for the whole trajectory - thanks to the fast re-planning and
relatively small displacement between stages.

Furthermore, our formulation is consistent with a stochastic
formulation of the MPC problem where the chance constraint
is de�ned as a discounted sum of violation probabilities in
the �nite horizon, as proposed for example by [25]. The
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rationality with this formulation is also that by penalizing
violation probabilities close to the initial time and relaxing the
penalty of violation probabilities in the far future, feasibility
of the online optimization is enabled.

The discounted chance constraint with respect to an obsta-
cles is de�ned as:

NX

k=1

( )k Pr(x k
i 2 Ck

io ) � � o; (17)

where 2 (0; 1) is the discounting factor.

Lemma 3. Our formulation provides an upper bound in
the discounted probability of collision, i.e. Equation (17) is
satis�ed, if the discounting factor < 0:5.

Proof. Our formulation guarantees that Pr(x k
i 2 Ck

io ) �
� o; 8k = 1 ; � � � ; N . Hence, the discounted probability of
collision satis�es

NX

k=1

( )k Pr(x k
i 2 Ck

io ) � � o

NX

k=1

( )k =
 (1 �  N )

1 � 
� o:

Given < 0:5, we have (1�  N )� (1�  ) = 2  � 1�  N +1 <
0. Thus,  (1 �  N )

1�  < 1. Hence,
P N

k=1 ( )k Pr(x k
i 2 Ck

io ) �
� o.

In this proof we also employ the conservative bound on
the joint probability of collision. Future works should look at
obtaining tighter bounds on the joint probability of collision
over the whole trajectory.

4) Feasibility: Due to unmodeled dynamics, disturbances,
or deviations from the simplifying assumptions, the optimiza-
tion problem may become infeasible. In those rare situations,
our approach is to command the MAVs to decelerate. Typi-
cally, the problem becomes feasible again after a small number
of steps (below half a second, see Section VI-C).

VI. RESULTS

In this section we describe our implementation of the pro-
posed method and evaluate it in experiments and simulations.
A video demonstrating the results accompanies this paper can
be found at https://youtu.be/P7SUFEKUP9Q.

A. Experimental Setup

Our experimental platform is the Parrot Bebop 2 quadro-
tor. The radius of each quadrotor is set as0:3 m. An
external motion capture system (OptiTrack) is used to
measure the pose of each quadrotor, which is regarded
as the “real” pose. We then add Gaussian noise to the
data to simulate the localization uncertainties. The added
measurements noise is zero mean with covariance� =
diag(0:06 m; 0:06 m; 0:06 m; 0:4 deg; 0:4 deg)2. Taking the
noisy measurements as inputs, an UKF is employed to estimate
the state of quadrotors. Based on our experimental data, the
average resulted state estimation error iskp̂ � pk = 0 :05 m
in terms of the quadrotors' position. We use an Intel i7
CPU@2.6GHz computer for the planner and use Robot Op-
erating System (ROS) to send commands to the quadrotors.

We rely on the solver Forces Pro [26] to generate optimized
NMPC code. The collision probability thresholds are set to
� r = 0 :03 and � o = 0 :03. By default, the time step used in
the NMPC is� t = 0 :05 s and the total number of steps is
N = 20. This planning horizon, of one second, is based on
the experience and analysis of our previous work [3], [17] and
works well in practice in our scenarios.

B. Trajectory Safety and Ef�ciency Comparisons

In this scenario, we compare our method with a bounding
volume MPC approach [5] and a deterministic MPC approach
[3]. For all three methods we compute trajectories sequentially
and the only difference is the way in which the uncertainties
are treated. In the experiment, two quadrotors, initially at
(� 1:6; 0; 1:2) m and(1:6; 0; 1:2) m, are required to swap their
positions. For each approach, we performed the experiment
50 times under three levels of measurements noise:1=4� , �
and4� . The corresponding average state estimation error for
the position, i.e.kp̂ � pk, was 0.03 m, 0.05 m and 0.09 m
respectively. We measured the minimum distance between the
two quadrotors as a safety metric and the total trajectory length
and duration as ef�ciency metrics.

The results of the three approaches are shown in Table
II. Under measurements noise of� , the purely deterministic
approach succeeded in 64% of the trials. With the larger noise
level of 4� its performance deteriorated to a success rate of
only 36%. The two probabilistic approaches succeeded in all
runs. However, thanks to a tighter bound for the collision
probability approximation, our method achieves the same level
of safety as [5] but with more ef�cient collision avoidance, i.e.,
the trajectory length and duration are shorter. This ef�ciency
is more apparent when the measurements noise is larger, e.g.
with covariance4� .

C. Collision Avoidance in Dynamic Environments

Fig. 1 showed a snapshot from our experiment. In Fig.
3a we cumulate the distance between the two drones. They
maintained a safe distance of 0.6 m over the entire run.
In Fig. 3b we cumulate the distance between each drone
and each moving human. The distance is computed as the
closest distance between the quadrotor's position and the
ellipsoid's surface. In all instances a minimum safe separation
of 0.3 m was achieved. Close distances between robots and
obstacles are observed, since they share a quite con�ned
space. In Fig. 3c we show the computation time of each
NMPC solver and the central sequential planning framework.
The mean computation time of the NMPC solver is 14.3 ms
and that of the total framework is 71.3 ms. The framework
includes state estimation, uncertainty propagation, obstacles'
prediction, communication and solving both NMPC problems.
Among all NMPC solutions over the entire run, the percentage
of infeasible solutions was 2.8% and the longest infeasible
period was 9 time steps (corresponding to 0.45 s).

D. Comparison of Multi-robot Planning Strategies

We evaluate our method in simulation with multiple quadro-
tors exchanging their initial positions, and compare the three
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TABLE II: Trajectory safety and ef�ciency comparisons of planning algorithms with different levels of measurements noise.
The values are computed only from successful runs. (dmin : average minimum distance (m);l : average trajectory length (m);
T: average trajectory duration (s);sr : success rate.)

Algorithm
Measure noise 1=4� � 4�

dmin l T sr dmin l T sr dmin l T sr
Our method 0.74 6.77 2.63 100% 0.81 7.08 2.72 100% 0.86 7.21 3.06 100%
Bounding volume [5] 0.74 6.84 2.91 100% 0.87 7.09 2.95 100% 1.10 8.18 3.13 100%
Deterministic MPC [3] 0.63 6.75 2.60 68% 0.64 6.74 2.63 64% 0.61 6.88 2.62 36%

(a) Measured inter-drone distance (b) Distance to moving obstacles (c) NMPC and framework loop time

Fig. 3: Experimental results of two quadrotors following prede�ned paths while avoiding two walking humans.

multi-robot coordination strategies described in Section V-B,
with a noise level of� . Figures 4a-4c show the trajectories of
six quadrotors, where the only difference is the coordination
strategies. Table III shows the minimum distance among
quadrotors and statistics of their trajectories. We report the
average computation time and the trajectory length for all six
quadrotors (minimum, maximum, mean value and standard
deviation to compare cooperativeness).

We observe that the minimum distance when using the
constant velocity model (0.56 m) is smaller than the safe
distance (0.6 m). Thus, collisions happened due to the mis-
match between the predicted trajectories (constant velocity)
and the executed trajectories by the quadrotors. This indicates
that the97% con�dence level is not enough when the con-
stant velocity model is employed and should be increased.
Instead, sequential planning (SP) and distributed planning with
communication (DC) can achieve safe navigation. While SP
showed better performance, it suffers from a computation
burden due to its centralized scheme (the computational cost
grows linearly with the number of robots). The DC approach
performs well at a much lower computational cost.

Since the DC approach is scalable, in Fig. 4d we show
the trajectories of sixteen quadrotors exchanging antipodal
positions on the circle. We note that the computational time
of solving the CCMPC for each robot does increase with the
number of obstacles and robots, due to the larger number of
constraints. In our experiments, the average computation time
of a CCMPC planning step was 14.3 ms for two robots, 14.4

TABLE III: Statistics for coordination strategies with six
drones. CV: constant velocity model; SP: sequential planning;
DC: distributed planning with communication.

Coordination
strategies

Min.
dist (m)

Trajectory length (m) Av.comp.
time (ms)min. max. av. std

CV 0.56 4.82 7.09 5.72 0.89 15.2
SP 0.70 4.31 4.54 4.43 0.09 115.3
DC 0.70 4.18 4.80 4.51 0.24 16.2

ms for four robots, 16.2 ms for six robots and 24.7 ms for
sixteen robots. This indicates that the DC approach scales well
with the number of robots.

VII. C ONCLUSION

In this paper we showed that robust probabilistic collision
avoidance among robots and obstacles can be achieved via
chance constrained nonlinear model predictive control when
the obstacles are modeled as ellipsoids. By assuming that the
uncertainties are Gaussian distributed, we developed a tight
bound for approximation of collision probability between each
robot and obstacle. In experiments with two quadrotors we
showed that our method can generate more ef�cient trajecto-
ries for the robots while maintaining the same level of safety
compared with the bounding volume approach. In simulations
with six quadrotors we showed that the strategies where the
planned trajectories are exchanged outperform the constant
velocity model. Furthermore, while distributed planning with
communication is less cooperative than sequential planning, it
scales well with the number of robots. Future works shall ex-
plore more elaborated approaches for multi-robot coordination
and deadlock avoidance, which may occur since the method is
local. By combining our method with a global planner these
problems might be resolved.

APPENDIX

Based on the Parrot Bebop2 SDK, the control inputs to the
quadrotor are given byu = [ � c; � c; vzc ; _ c]T 2 R4, where
� c and � c are commanded roll and pitch angles,vzc is the
commanded velocity in verticalz direction and _ c is the
commanded angular velocity around thez-body axis. The state
x 2 R9 was de�ned in Sec. III-A. We use a �rst order low-pass
Euler approximation of the quadrotor dynamics [27], where
the dynamics of the state velocity vector are

8
><

>:

"
_vx

_vy

#

= RZ ( )

"
tan �

� tan �

#

g � kD

"
vx

vy

#

;

_vz = 1
� v z

(kvz vzc � vz );
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