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Abstract— This paper presents a fully automated method to
display objects and animations in 3D with a group of aerial
vehicles. The system input is a single object or an animation
(sequence of objects) created by an artist. The first stage is
to generate physical goal configurations and robot colors to
represent the objects with the available number of robots. The
run-time system includes algorithms for goal assignment, path
planning and local reciprocal collision avoidance that guarantee
smooth, fast and oscillation-free motion. The presented algo-
rithms are tested in simulations and verified with real quadrotor
helicopters and scale to large robot swarms.

I. INTRODUCTION

Screens that can display visual content in the third di-

mension and are no longer limited to flat surfaces remain

an interesting challenge. In this paper we present a method

to display visual content with a swarm of aerial vehicles.

In [1] a method and setup to display images and animations

with multiple ground vehicles was presented. We build

on that work and extend it to a 3D display with aerial

vehicles. In this line, [2] proposed a large swarm of micro

helicopters which act as three-dimensional pixels in free

space. The work still appears to be in concept phase, but

the animations demonstrate the exciting potential of flying

displays. Although when using a low amount of robots no

complex objects can be formed, if used for specific purposes

in the right environment, such a flying display can very well

show fascinating effects.

The last five years have seen an increasing research interest

in agile multi-rotor aerial vehicles. An overview of an aerial

vehicle testbed, state of the art methods and challenges is

given in [3]. In [4] a centralized and costly optimization

method was presented to create agile motions for groups

of quadrotors (including obstacle avoidance). In parallel,

[5] presented algorithms to produce choreographic motions

for a group of quadrotors, synchronizing them to music.

In contrast to our objective, in these works, the desired

trajectories are not only precomputed, but also specified

individually for each vehicle, which may not scale well

to large systems. When controlling large groups of aerial

vehicles collision avoidance is of paramount importance, in

particular, [6] presented a method for reciprocal collision

avoidance for simple airplanes. We choose a similar strategy

to guarantee collision-free motions and build on the 3D

extension of [7].
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Like in our experiments, most of the previously mentioned

works rely on an external motion tracking system. In con-

trast, [8] presented an on-board vision based localization

method that could allow for fully autonomous navigation.

Given an input object, both surface and volumetric repre-

sentations are possible. In this work we transform the object,

which is defined through a surface mesh, into a volumetric

representation. This choice is discussed in more detail in

Section III-E. The alternative of using a surface mesh as

direct representation of the surface is common in computer

graphics. Mesh simplification and remeshing operations like

those in [9] and [10] are furthermore based on a tessellation

of the surface. This is related to distributing a group of robots

over a surface mesh, as demonstrated in [11] which applies

a Centroidal Voronoi tessellation for covering surfaces with

a group of climbing robots.

The remainder of the paper is structured as follows.

Section II provides an overview of the system. Section III

describes the goal generation for the object display. In

Section IV the real-time controller is presented, including

goal assignment, path planning and collision avoidance.

The extension from static objects to animated displays is

described in Section V. Section VI contains experimental

results with physical robots and in simulation. Section VII

concludes the paper and indicates future work.

II. SYSTEM OVERVIEW

The presented system extends our work [1] for image and

animation display in 2D to flying displays in 3D. The system

consists of a set of N aerial vehicles, a motion tracking

system, and a central computer that wirelessly sends motion

commands to the robots. Due to the limitations in space and

cost, experiments with a large swarm of robots are provided

in simulation using an identified dynamic model of a real

quadrotor helicopter. Experiments with two real quadrotors

are also presented as proof of concept.

Given an input object and N robots of radius {r1, . . . , rN}
the method is divided into two steps, first goal generation,

followed by a real-time controller that drives the robot to the

goal positions.

Goal generation is the computation of the robot positions

in order to represent a desired object given a specified

number of robots; the algorithm for the goal generation is

described in Section IV. The goal positions for a given object

are computed independently of the current position of the

robots and thus can be pre-computed.

At run time, a real-time controller (described in Section V)

drives the robot pixels to the computed goal positions. In

each time step the following three computations take place.
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(a) (b) (c) (d)

Fig. 1. Goal generation for a dog using 80 agents. (a) Rendered obj-file. (b) Volumetric point cloud. (c) Initial samples using a Poisson distribution. (d)
Goal positions after k-means optimization.

Firstly, the robots are assigned to the goal positions by an

auction algorithm. Secondly, a preferred velocity towards its

assigned goal position is computed for each robot indepen-

dently. Finally, a distributed reciprocal collision avoidance

algorithm finds a collision-free velocity for each robot, taking

its dynamics and the current positions and velocities of its

neighbors into account. The new velocities are close to the

robots’ preferred velocities, and enable a safe motion update.

Although the dynamics of the vehicles are considered in the

collision avoidance algorithm, the robots are treated to be of

spherical shape.

As shown in [12] it is intractable to compute the optimal

motions of N robots interacting in a common workspace

because the search space is exponential in N . Thus a

distributed scheme, like the one that we propose, is needed

for scalability to large swarms of robots.

III. GOAL GENERATION

A. Preprocessing of object files

In computer graphics there exists a variety of formats on

how to represent an object in 3D space. Most of them use

vertices, edges and faces to describe the surface of an object

and do not include details about the volume inside, since it

is not needed for rendering. In this work, the input object

is given in the wavefront obj-file format, which is relatively

widespread and available as an import/export option in most

3D design programs. In this format, an object is given by

vertices and faces forming a surface mesh. Furthermore,

texture coordinates can be stored.

The first step of the method is to convert the surface

representation of the object into a uniformly distributed point

cloud of its volume (see Figure 1 (a) and (b)). This is done

by generating a grid of points and keeping those points that

lie inside the volume enclosed by the object’s surface mesh.

The generated volumetric point cloud V is then used to obtain

the goal positions of the robots.

B. Initial samples

To obtain the goal positions, an iterative optimization is

used (see following section). This optimization distributes

the goal positions in the volume by converging to a local

optimum. Therefore a near-optimal distribution of initial

samples is vital to obtain a balanced representation of the

object upon convergence of the iterative optimization. Initial

goal positions are sampled within the volumetric point cloud

following a Poisson distribution [13].

We compared this method with random, farthest first and

subset initialization [14] and in all cases Poisson sampling

provides the best results, both, visually and in computational

time (see Figure 1 (c), and Table I for the case of the

dog object). The grid to generate the point cloud for this

experiments has dimensions 20 x 80 x 60, 80 goal positions

are computed, the methods are repeated 200 times and

the average computational time and cost W of the final

distribution are obtained. See Section III-C for details.

C. Iterative optimization

Given the initial goal positions and the volumetric point

cloud, the final goal positions for good representation of the

input object are found by an optimization using a k-means

clustering algorithm [13] (see Figure 1 (d)). The algorithm

iteratively performs the following two steps. First, the point

cloud is clustered with respect to the current goal positions

and second, goal positions are updated to the centroids

of each one of the clusters. This method asymptotically

converges to a local optima of the cost measure

W =
N∑

i=1

∑

z∈Ti

‖gi − z‖2, (1)

where gi are the goal positions and Ti ⊂ V are the clusters

of a partition of V given by

Ti = {z ∈ V | ||z − gi|| ≤ ||z − gj ||, j ∈ [1, N ], j 6= i}. (2)

This method is equivalent to the Voronoi coverage method

used in [1] to distribute N robots in a planar image.

D. Post-processing of goal positions

First, the resulting goal positions are rescaled to ensure a

minimal distance between them.

Second, color can be added. In object files the color of the

surface mesh is given by a texture. In our implementation,

for each goal position its color is selected equal to that of

1079



Initialization Init. [s] Optim. [s] W/Wmax Iterations

Random < 0.01 2.03 0.969 91.2
k-means++ 0.09 1.51 0.967 75.6

Farthest first 0.27 2.18 0.972 101.0
20 subsets 0.9273 2.08 1.000 35.7

TABLE I

COMPARISON OF THE COMPUTATION TIME, COST AND NUMBER OF

ITERATIONS FOR VARIOUS INITIALIZATION METHODS.

the closest surface point. This adds an extra cue to identify

an object represented with a low number of robots.

E. Volumetric vs. surface representation

Objects can be displayed either by their surface or their

volume. Given enough robots, an object may be displayed

more accurately if the points are placed on the surface

manifold since inner points are not necessary to define the

shape. Nevertheless, consider now representing long and thin

objects (such as the rod of Figure 2) with a low number of

robots, due to cost limitations for instance. In this case, if the

robots are distributed on the surface manifold, their positions

are not aligned, leading to a bad representation, as shown in

the right of Figure 2. On the other hand, if the robots are

distributed over the volume, a clear representation of the long

and thin object can be obtained, as shown in the middle of

Figure 2. Arbitrary objects in general include long and thin

parts, such as legs like the ones of the dog in Figure 1. For

this reason and the limitation in the number of robots, the

volumetric representation is used.

IV. REAL-TIME CONTROL

A real-time controller that scales well with the number

of robots is implemented to drive the robots to the set

of goal positions representing the input object. In each

iteration the robots are first uniquely assigned to the goal

positions; secondly, a preferred velocity is computed without

taking the other vehicles into account; thirdly, a collision-

free velocity is computed via a distributed local collision

avoidance method. The collision-free velocity is then tracked

by a controller that is based on an identified model of the

vehicle dynamics. This method is an extension to aerial

vehicles of the method presented in [1] for image display.

Therefore we refer to [1] for some more details.
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Fig. 2. Comparison between representation methods by the example
of a rod using 5 robots. Left: Rendered obj-file. Middle: Volumetric
representation. Right: Surface representation

A. Goal assignment

In order to minimize the convergence time, the robots

at current position pi are uniquely assigned to the goal

positions gj by minimizing the sum of squared distances

||pi − gj ||
2. This minimization is solved via the auction

algorithm presented in [15] and previously used in [1], which

scales very well with the number of robots.

B. Preferred velocity

For each vehicle, a preferred velocity v
p
i is given by

the vector pointing towards its goal position (gj − pi) and

with magnitude proportional to the distance. This preferred

velocity is saturated to the preferred speed Vpref of the

vehicle.

C. Reciprocal collision avoidance

The reciprocal collision avoidance algorithm is fully dis-

tributed. All vehicles are considered to have spherical shape.

For each robot, given its preferred velocity v
p
i and the

current velocities vj and positions pj of its neighbors, a

new collision-free velocity vi is computed. In order to avoid

collisions while guaranteeing smooth motions in the case of

complex dynamics, the optimal reciprocal collision avoid-

ance (ORCA) method presented in [7] is extended. ORCA is

an optimization with linear constraints (one per neighboring

robot) based on velocity obstacles [16] and exploits the fact

that all controlled robots in the environment react following

the same scheme, thus avoiding oscillations. This method

guarantees oscillation-free and smooth motions in multi-

robot scenarios but assumes the robots to be holonomic

and does not take acceleration constraints into consideration.

Following the line of thought of [17], we extend it to verify

the dynamics of the aerial vehicles used in our experiments.

1) Idea: For each vehicle and at each time step, a straight-

line constant-velocity reference trajectory (given by vnewj )

is computed as if the robot was holonomic following [7].

In this optimization, an extra constraint is added (IV-C.3)

to account for the kino-dynamic capabilities of the vehicle.

Furthermore, the radius of the vehicle is enlarged (IV-C.4)

to account for the tracking error of the reference trajectory

when using the specified controller (IV-D).

2) Reachable velocities: For simplicity (although not re-

quired for our method), we consider a maximum acceler-

ation equal in all directions and independent of the initial

conditions of the vehicle. For the identified model of the

quad-rotor used in the experiments, this was a reasonable

assumption. We further consider a maximum time δ to reach

the desired velocity and we obtain the sphere

Svi = {v | ||v − vi|| < δamax}. (3)

3) Tracking error: The space of feasible states and reach-

able velocities is discretized. The trajectory of the quad-

rotor is simulated (note the symmetries) using an identified

model and the LQR trajectory tracker for the quad-rotor

(which is also used in the experiments) of Section IV-D.

The maximum tracking errors are computed and for each

set of initial conditions, the inner-sphere Svi,E ⊂ Svi of the
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velocities with tracking error lower than E is stored. This

can be precomputed for the dynamics of the robot.

4) Extended radius: If the radius of the robots is extended

by E and the constraint vnewi ∈ Svcurrent

i
,E is added to the

optimization with linear constraints, the trajectories of the

robots are collision-free, for the identified model and design

trajectory tracker. Note that E is variable and may decrease

if two robots are close to each other.

5) Avoiding deadlocks due to symmetry: The method

presented in [7] can lead to deadlocks in symmetric and ideal

cases (for example when two robots are in direct collision

course in a noise-free scenario), this can be avoided by

adding an inner cone of aperture α to the Velocity Obstacle

formed by two vehicles preventing the linear constraint to be

perpendicular to the axis of the cone, which would have led

to an asymptotic decrease in speed to zero in this particular

case.

D. Trajectory tracking

In our simulated experiments we use an identified second

order model of the dynamics of the AscTec Hummingbird

quadrotor [18]. Both a PID and an LQR trajectory controller

were derived in [18] for the aforementioned vehicle. These

controllers guarantee smooth convergence to the desired

trajectory, in our case given by the velocity vi. In the

experiments presented in this paper, the LQR controller is

used.

V. ANIMATION DISPLAY

The previous sections describe a method to display a single

object with multiple aerial robots. This section extends the

method to display 3D animations specified by a sequence of

input object files or keyframes. Modifications of the methods

of Sections III and IV are described below.

For each frame (given by an object file) of the animation,

a set of goal positions is obtained using the method in

Section III. In parts of the animation where there is sufficient

correlation, the goal positions computed in the previous

frame serve as initial positions for the computation of the

goal positions in the current frame, replacing the Poisson

sampling described in Section III-B. This initialization re-

duces computation time and disparities between consecutive

goal sets.

The controller of Section IV drives the robots through the

given goal positions, representing the frames in sequence at

given time-instances with Kf∆t separation. Kf ∈ N is a

design constant and ∆t is the time-step of the controller.

In order to achieve smoother motions, the velocities of the

robots are synchronized when the set of goal positions is

changed

||vp,fi || = min(Vmax, ||pi − g
f
i ||/(Kf∆t)), (4)

where v
p,f
i and g

f
i are the preferred velocity and goal

position of robot i at frame f .

With this method, an artist can create an animation with

standard software and export the keyframes as object files

that are imported in our framework.

VI. EXPERIMENTAL RESULTS

In this section we present experiments of object and

3D animation display with a simulated swarm of quad-

rotors. We further verify the algorithms in experiments with

two real quad-rotors. A video containing the experiments

accompanies this paper.

A. Experimental setup

AscTec Hummingbird quad-rotors1 are used in the experi-

ments. The quad-rotors communicate via XBee modules1b

with a central computer. A commercial motion tracking

setup1c is used to accurately localize the vehicles. In the

simulations, a second order identified model of the AscTec

Hummingbird quad-rotor is used (see [18]).

Given the input object files, the goal positions are pre-

computed using the algorithms of Section III. The control

loop explained in Section IV is performed at 25Hz and an

internal rate controller2 on the quad-rotors is further used.

Due to the reduced size of the experimental space (5.5m
x 5m x 2.5m), the maximum velocity of the quad-rotors

is limited and the walls of the room are added as linear

constraints in the local collision avoidance.

In the simulations, the aerial vehicles are displayed as

spheres able to change color, although their behavior follows

the same dynamics of the quad-rotors used in the experi-

ments.

The following parameters are used: radius of the quad-

rotor r = 0.3m, desired radius enlargement E = 0.2m,

maximum speed Vmax = 3m/s, preferred speed Vpref =
2.4m/s, maximum acceleration amax = 2.5m/s2, time to

reach a new velocity δ = 0.3s.

B. Object display

The object display is demonstrated with three different

object files: a star, an ant and a dog (see Figure 3 top and

middle right and in Figure 1). In the first experiment, eleven

simulated quad-rotors lift off from ground and display a star.

In the second experiment, 80 simulated quad-rotors display

the ant starting from the dog. The vehicles’ trajectories are

depicted on the right-most images. In the third experiment

(bottom row), 80 simulated quad-rotors lift off the ground

and display the dog. The minimum distance between vehicles

is displayed in the right-most graphic. Note that although

robots may come close (due to their dynamics) no collisions

happen.

C. Animation display

This method allows an artist to design a 3D animation that

is then displayed by aerial vehicles in a fully automated way.

In Figure 4 we present an experiment where 50 simulated

quadrotors display an animation of a human walking. Images

are captured every 5s and distances are displayed in meters.

The input animation is shown in the top row, the 3D-frontal

view of the aerial display in the middle row and a side view

in the bottom row.

1www.asctec.de; www.digi.com; www.vicon.com
2www.ros.org/wiki/asctecmavframework
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Fig. 3. Top row and left to right: Input object star; eleven simulated quad-rotor helicopters in their initial configuration, followed by an intermediate
capture after 2s and in their final positions (4s) displaying the star; trajectory of each quad-rotor in different colors. Middle row and left to right: Input
object ant; 80 simulated quad-rotor helicopters in their initial configuration displaying a dog, followed by an intermediate capture after 3s and in their final
positions (7s) displaying the ant; trajectory of each quad-rotor in different colors. Bottom row: 80 simulated quad-rotors take off and display the dog (three
screenshots at 0s, 4s and 9s; the minimum distance between quad-rotors in each time instance is shown in the right-most image. The minimum distance
stays over twice the radius of the vehicles and thus collisions are avoided. Realistic background is added to visualize the effect of such a display.
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Fig. 5. Six simulated quadrotors (with identified dynamic model and
measurement noise) exchange positions on a circle. Left: Top view of the
trajectories [m]. Right: Frontal view.

D. Collision avoidance

We present two experiments to show the performance of

the collision avoidance algorithm for aerial vehicles. The first

one consists of six simulated quadrotors (with identified dy-

namic model and measurement noise) exchanging positions

on a circle. The trajectories are shown in Figure 5. The results

of the second experiment are shown in Figure 6, where two

real quadrotors exchange their positions in flight.
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Fig. 6. Two real quadrotors exchange positions. Left: Top view of the
trajectories. Right: Distance between the quadrotors at each time instance
(blue) and desired minimal distance (red).

VII. CONCLUSION AND FUTURE WORK

In this paper we present a method to create 3D displays

with aerial vehicles. An object or 3D animation created by

an artist is taken as input, and is first transformed into a

set of goal positions. In real time, the aerial vehicles are

assigned to the goal positions and driven towards them.

Resulting trajectories are collision-free. The underlying local

reciprocal collision avoidance algorithm can be distributed

and enables the method to scale well to large groups of

vehicles. Simulated experiments are presented with up to 80
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Fig. 4. 50 simulated quadrotors display an animation of a human walking. Images are captured every 10s and distances are in meters. The robot color
is adjusted according to color from surface mesh texture. Realistic background is again added to visualize the effect of the display. Top: Input animation.
Middle: 3D-frontal view. Bottom: Side view. The full animation is found in the accompanying video.

quad-rotors subject to their real dynamics, and the method

is further verified with two real quadrotors.

It becomes apparent that when using a low number of

aerial vehicles, the view-point of the object has an important

effect on the accurate representation. In this work we have

presented a general method, but one could benefit from view-

point information in the future.
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