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Abstract— This paper presents a method for shared control
of a vehicle. The driver commands a preferred velocity which is
transformed into a collision-free local motion that respects the
actuator constraints and allows for smooth and safe control.
Collision-free local motions are achieved with an extension of
velocity obstacles that takes into account dynamic constraints
and a grid-based map representation. To limit the freedom of
the driver, a global guidance trajectory can be included, which
specifies the areas where the vehicle is allowed to drive in each
time instance. The low computational complexity of the method
makes it well suited for multi-agent settings and high update
rates and both a centralized and a distributed algorithm are
provided that allow for real-time control of tens of vehicles.
Extensive experimental results with real robotic wheelchairs at
relatively high speeds in tight scenarios are presented.

I. INTRODUCTION

Human-robot shared control has been applied in the field
of tele-robot operation for tasks such as space exploration
and surgery [1]. Applied to mobile robots, a method for
human interaction with a forklift was presented in [2];
an approach for shared control of a formation of aerial
vehicles via a haptic device in [3]; work on semi-autonomous
wheelchairs includes [4], [5] and [6]; and work on shared
control of self-driving cars includes [7]. There is potential to
apply shared control to personal urban transporters like the
Segway [8]. The ability to impose a guidance trajectory and
associated schedule on a mobile vehicle is of further interest
as self-driving vehicle technology begins to combine with
on-demand car services [9].

The main contribution is a method for shared control of a
semi-autonomous vehicle based on: (1) Real-time input from
a driver, (2) guidance trajectory, which specifies the areas
where the vehicle is allowed to drive in each time instance,
(3) avoidance constraints with respect to other agents and
a grid map, and (4) motion continuity constraints. As an
extension to [10]-[11], efficient centralized and distributed
algorithms based on convex optimization and non-convex
search are introduced to achieve real-time local planning
where an exact grid-based representation of the map is used
in conjunction with the velocity obstacles framework. This
allows for real-time control of tens of vehicles. Finally, the
approach is tested with robotic wheelchairs moving at speeds
of up to 3 m/s in close proximity and results are discussed.

II. OVERVIEW

Consider a group of n vehicles of which m are controlled,
either in a distributed or centralized way. The position,
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velocity and acceleration of robot i are denoted by pi ∈ R2,
vi = ṗi and ai = p̈i respectively. A disk D(p,r) of radius
ri centered at pi defines its enveloping shape. The enlarged
obstacle map is given by a static grid map Or of the positions
p where a disk D(p,r) is in collision with a static obstacle.

The driver commands the vehicle by specifying a desired
velocity. To guide the motion of the vehicle, to limit its
movements, to guarantee that the vehicle has a certain
performance even in the case where the driver does not
specify a velocity and to control the throughput of vehicles
through out an area, a guidance trajectory together with
active areas (areas where the vehicle is allowed to drive)
can be specified (Sec. IV). This two inputs are combined
and a local trajectory is computed.

For each vehicle, the set of local trajectories is given
by a controller (of sufficient continuity, C 2 in our work)
towards a straight-line reference trajectory at velocity u∈R2

(see Fig. 1 and Sec. III). This provides a low dimensional
parametrization (given by u) of the local motions and allows
for an efficient optimization in reference velocity space
to achieve collision-free motions that respect the dynamic
constraints of the vehicle.

In each time-step of the local planner, the motion is
obtained (Sec. VI) by computing an optimal reference ve-
locity u∗ such that its associated trajectory is collision-free,
satisfies the motion and guidance constraints and minimizes
the distance to a preferred velocity ū. The preferred velocity
(Sec. V) takes into account the driver input, a guidance
trajectory (Sec. IV) and the neighboring obstacles.

Throughout this paper x denotes scalars, x vectors, x= ||x||
its Euclidean norm, X matrices, X sets and X ⊕Y their
Minkowski sum. The super index ·k indicates the value at
time tk, subindex ·i indicates agent i and xi j = xi−x j relative
vectors. Time relative to the current time step is employed
when appropriate and denoted by t̃ = t − tk. In practice
estimated states are used, but to simplify the notation no
distinction is made between estimated and real states.

III. VEHICLE MODEL AND CONTROL

Given a reference trajectory at constant velocity pref(t) =
pk +ut̃ for t̃ ∈ [0,∞), with pk the position of i at the current
time-step k and u the reference velocity, consider a trajectory
tracking controller f (zk,u, t) = p(t) continuous in the initial
state, zk = [pk, ṗk, p̈k, . . . ] of the agent and converging to the
reference trajectory. The set of feasible motions is given by

R(zk) = {u ∈ R2, such that the trajectory f (zk,u, t)
respects all dynamic constraints}. (1)
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Fig. 1. Right: Wheelchair employed in the experiments (wheelchairs.com).
Left: Schema of the vehicle formed by two rear driving wheels and two front
castor wheels. Reference trajectory given by u and executed trajectory.

This set can be pre-computed by forward simulation and
depends on ṗk and p̈k. A trajectory controller appropriate
for the vehicle kinematics is required. We use the following.

1) Trajectory controller: Following [12], if the system
is modeled as a second order integrator (continuity in ac-
celeration) and the appropriate state feedback control low
towards the reference trajectory is formulated, the trajectory
f (zk,u, t) is given (for t̃ > 0) by

p(t) = pk+ut̃+((ṗk−u+(ω1−ω0)F)t̃−F)e−ω0 t̃ +Fe−ω1 t̃ ,

with F = (p̈k+2ω0(ṗk−v∞))/(ω0−ω1)
2 and ω0, ω1 design

parameters related to the decay of the initial velocity and
acceleration.

Saturation limits are added, maximum linear and angular
speed (|v1| ≤ v1,max, |v2| ≤ v2,max) and maximum linear and
angular accelerations (|v̇1| ≤ v̇1,max, |v̇2| ≤ v̇2,max).

2) Wheelchair kinematics: The unicycle model is used,
with p̄ the point in-between both tractor wheels, δ the
orientation of the vehicle and v1, v2 the linear and angular
speed of the platform (see Fig. 1),[

˙̄p, δ̇
]′
=
[
cosδ , sinδ , 0

]′ v1 +
[
0, 0, 1

]′ v2,

Following [13], a (fully controllable or holonomic) point
p = p̄+ [cosδ ,sinδ ]T ∆ to the front of the vehicle axles is
considered, where ∆>0 defines the maneuverability of the
vehicle. The following relations hold

ṗ = ξ , v1 = ξ · [cosδ ,sinδ ]T , v2 = ξ · [−sinδ ,cosδ ]T/∆.

The local trajectory is applied at this point and a circle of
radius r is considered as the enveloping shape of the vehicle.

IV. GUIDANCE TRAJECTORY

For some applications, and to have higher control over
the motion of the vehicles, it can be beneficial (although not
required) to create a roadmap of guidance trajectories. From
a static map, the roadmap can be computed automatically via
geometric or sampling-based methods [14] or be designed
(this is the case in our work) via waypoints connected by
straight lines. This representation does not require to account
for the dynamics of the vehicle, nor to perfectly fit the map,
since both are considered by the local planner.

For each waypoint wl ∈R2 the designer specifies an arrival
time Tl (or alternatively the speed over the segment), as
well as an active area of radius ρl around it, where the

Fig. 2. Map with several rooms and corridors. Empty space in white and
occupied space in grey. Nine waypoints wi are created with arrival times Ti
and different radii ρi for their associated active area (blue circle). In-between
waypoints, the ideal trajectory and active area is given by interpolation.
Waypoints 3a and 3b represent a bifurcation and waypoint 7 a large area
where the vehicles are allowed to freely drive.

vehicle is allowed to freely move. Consecutive waypoints
are connected and define the guidance trajectory and the
active area around it (by interpolation), an example is shown
in Fig. 2. When two or more active areas (from different
trajectories) intersect, the vehicle is assigned depending on
its current position and specified attributes of the guidance
trajectories, such as if more than one vehicle can follow that
trajectory or if the vehicle must stay in the current one. We
select the trajectory s that minimizes the weighted distance
to the current point on the guidance trajectory qs relative to
the current radius of the active area ρs,

argmin
s
(1−σ

s)||p−qs||/ρ
s (2)

where σ s ∈ (0,1) is an attribute indicating the predilection
to stay in one trajectory.

This framework provides an intuitive way to guide a
team of vehicles through-out the scenario while giving them
limited freedom in their movement via the active areas. Large
radius ρ implies freedom of movement, while small radius
ρ imposes accurate tracking of the guidance trajectory.

V. SHARED CONTROL

In each time step, for each vehicle i, a preferred velocity ūi
is computed, based on the input from the driver, the guidance
trajectory and the neighboring obstacles,

ūi = µ1(µ2u joy
i +utra j

i )+(1−µ1)uA∗
i +urep

i , (3)

where µ2 = 1 if the vehicle is inside the active area and
µ2 = 0 otherwise, and µ1 = 1 if q is in line of sight of the
vehicle and µ1 = 0 otherwise (see Fig. 3). In practice a small
hysteresis is introduced to µ1 and µ2 to avoid oscillations.
In normal operation µ1 = µ2 = 1. Each velocity term is
computed as follows. The input velocity u joy

i is proportional
to the joystick position (in the relative frame of the vehicle).
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Fig. 3. Shared control: components of the preferred reference velocity for
a vehicle within the active area (circle) of the current point q on the ideal
trajectory. An enlarged obstacle is marked in grey.

The guidance velocity utra j
i (optional term) is given by a

proportional controller to the guidance trajectory

utra j
i = Kp(qi−pi)+ q̇i, (4)

where qi is the ideal position on the guidance trajectory at
the current time. The repulsive velocity urep

i is computed
with a potential field approach that pushes the vehicle away
from both static and dynamic obstacles1. A linear function
weighting the distance to other vehicles is used

urep
i =Vr

D̄−d(pi,O)

D̄
ni,O + ∑

j | pi j<D
Vr

D− pi j

D− ri− r j

pi j

pi j
, (5)

where Vr is the maximum repulsive velocity, D and D̄ the
maximum distance from which a repulsive force is added,
d(pi,O) is the distance to the closest static obstacle within
the Ori map and ni,O , the normal vector from it. In order to
avoid corner issues, not only the closest point is considered,
but an average over the closest points. The norm of urep

i is
then limited to ||urep

i || ≤Vr.
In cases where the guidance point qi is not in direct line of

view from the current position pi a preferred velocity solely
based on the previous terms could be prone to deadlocks. To
avoid this, a term uA∗

i computed frorm a global path from
pi to qi taking into account the map Or but ignoring the
kinematic constraints and other vehicles is added. This term
is given by the first control input of a standard A∗ search in
the grid map [15].

VI. LOCAL MOTION PLANNING

In each control loop, given the preferred velocity ūi of the
ego vehicle and the current position and velocity of neighbor-
ing vehicles, a local trajectory given by an optimal reference
velocity u∗i is computed by solving an optimization problem
in reference velocity space, formulated as a combination of
a convex optimization with quadratic cost and linear and
quadratic constraints and a non-convex optimization.

Two alternative formulations are presented, a centralized
optimization where the optimal reference velocities of all
vehicles u∗1:m = [u∗1, ...,u

∗
m] are jointly computed. And a

distributed optimization where each vehicle i independently

1Constraints to achieve collision-free motion are included in the local
planning framework. Since they are written in velocity space, vehicles can
come arbitrarily close to each other. This can be unsafe in real scenarios
with uncertainties in sensing and vehicle model. The repulsive velocity is
thus included to ideally maintain a minimum distance to other vehicles and
walls and moves the ego-vehicle away when it is too close.

solves an optimization where its optimal reference velocity
u∗i is computed. The position p j and velocity v j of neigh-
boring agents is known.

The optimization cost is given by two parts, the first
one, a regularizing term penalizing changes in velocity and
the second one minimizing the deviation to the preferred
reference velocity. For the centralized case

C(u1:m) := Ko||u1:m−v1:m||2 + ||u1:m− ū1:m||2, (6)

where Ko is a design constant. For the distributed case

C(ui) := Ko||ui−vi||2 + ||ui− ūi||2, (7)

The kinematic constraints of the vehicle are included
following the idea of [10] where the vehicle’s radius is
enlarged by a value ε > 0 and the local trajectories are limited
to those with a tracking error below ε with respect to the
reference trajectory (parametrized by u).

Constraint 1 (Avoidance other agents): For every pair of
neighboring agents i≤m, j≤ n the constraint is given by the
reference velocities such that ‖pi−p j +(ui−u j)t‖ ≥ ri+ j =
ri + εi + r j + ε j, for all t ∈ [0,τ].

Following [16] this constraint is rewritten as ui − u j /∈
VOτ

i j =
⋃

τ
t=0((D(p j,r j + ε j)⊕D(pi,ri + εi)/t), representing

a truncated cone, see Fig. 4, and computed if the distance
between the two agents is below a threshold (pi j < Kd). The
non-convex constraint R2 \VOτ

i j is approximated by three
linear constraints of the form nl

i j ·ui j−bl
i j[

cos(γ+)
sin(γ+)

]
ui j ≤ 0,−

pi j

pi j
·ui j ≤

pi j− ri+ j

τ
,

[
cos(γ−)
sin(γ−)

]
ui j ≤ 0,

(8)
where γ+ = α +β , γ− = α −β , α = atan2(−pi j) and β =
acos(ri+ j/pi j). The first and last constraints represent avoid-
ance to the right and to the left, and the middle one a head-
on maneuver (collision-free up to t = τ). The linearization
of R2 \VOτ

i j is obtained by selecting the linear constraint
with maximum constraint satisfaction for the current relative
velocity (minl(nl

i jvi j−bl
i j)). Other sensitive choices include

linearization with respect to the preferred velocity ūi j or fixed
avoidance side (right / left). For j ≤ m this linear constraint
is added to the centralized optimization. For j > m (dynamic
obstacles) or when distributed, it is rewritten as follows.

In the distributed case all agent’s are considered as in-
dependent decision-making agents solving their independent
optimizations. To globally maintain the constraint satis-
faction and avoid collisions, an assumption on agent j’s
reference velocity is required 2. Variable sharing of avoidance
effort might be considered with ∆vi = λ∆vi j and the assump-
tion that ∆v j = −(1−λ )∆vi j. For collaborative agents that
equally share the avoidance effort λ = 0.5. If it is considered
that agent j ignores agent i and continues with its current
velocity, then λ = 1 and full avoidance is performed by agent
i. For λ ∈ [0,1] the constraint is given by

nl
i j ·ui j =

nl
i j

λ
· (ui− (1−λ )vi−λv j)≤ bl

i j, (9)

2The change in velocity is denoted by ∆vi = ui− vi and the relative
change in velocity by ∆vi j = ∆vi−∆v j .
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Fig. 4. In relative reference velocity space, constraint (grey) for avoidance
between two vehicles, approximated by three linear constraints.

Constraint 2 (Active area): Guarantees that the agent lo-
cally remains within the active area. For agent i ≤ m the
constraint is given by ‖pi−qi +(ui− q̇i)τ‖2 ≤ ρ2

i , with qi
the point on the guidance trajectory for the current time, q̇i
its speed and ρi the radius of its associated active area (by
interpolation between the previous and next waypoint).

With the constant velocity assumption for the guidance
trajectory, if the vehicle is initially within the active area, this
constraint guarantees that it remains inside for time t ≤ τ . If
the vehicle is initially outside, it guarantees that the vehicle
enters within time τ . The constraint can be rewritten as

uT
i ui +2

(
pi−qi

τ
− q̇i

)T

ui +

∥∥∥∥(pi−qi

τ
− q̇i

)∥∥∥∥2

≤ ρ2
i

τ2 .

This is a quadratic constraint (circle in reference velocity
space), ignored if no active areas are given.

Constraint 3 (Avoidance static obstacles): For agent i ≤
m, the constraint is given by the reference velocities such
that the new positions are not in collision with the enlarged
obstacle map, pi +uit /∈ Ori+εi , for all t ∈ [0,τ].

This constraint is kept in its grid-based form (gray area in
Fig. 2) to allow the vehicle full navigation capability, being
able to move close to the static obstacles and go inside small
openings. Given a known map O0, the enlarged map Ori+εi

can be precomputed for several values of εi.
Constraint 4 (Dynamic restrictions): Each agent must

remain within εi of its reference trajectory. For a maximum
tracking error εi and current state zi = [pi, ṗi, p̈i], the set of
reference velocities ui that can be achieved with position
error below εi is given by Ri := R(zi,εi)

Ri := {ui ∈R(zi) | ||(pi + tui)− f (zi,ui, t)|| ≤ εi, ∀t > 0}.
(10)

If the trajectory controller of Sec. III is used, the set of
reachable reference velocities Ri depends on ṗi, p̈i and εi. A
mapping γ from initial state ṗ, p̈ and reference velocity u
to maximum tracking error is precomputed and stored in a
look up table

γ(u, ṗ, p̈) = max
t>0
‖(p+ tu)− f (z,u, t)‖ (11)

An example of this constraint is shown in Fig. 5. A bounding
box given by four linear constraints of the form Hl =
{ui | Alui ≤ bl} is computed such that R(zi,εi) ⊂

⋃4
l=1 Hl .

These linear constraints are included in both the centralized
and decentralized optimizations to reduce the search space.

un

ut

Fig. 5. In green and yellow, reachable reference velocities Ri for a
representative current velocity (dot). Plot in reference velocity space aligned
with the vehicle axis (tangential/normal). Forward velocities displayed.

VII. ALGORITHM AND GUARANTEES

The optimization consists of two types of constraints,
convex (linear and quadratic) and non-convex (grid-based).
To efficiently find a solution, the optimization is divided in
two parts, fist a convex subproblem is solved resulting in uc

i ,
followed by a search within the grid-based constraints re-
stricted to the convex area defined by the linear and quadratic
constraints. The set of convex constraints (Constraints 1, 2
and bounding box of Constraints 4) is denoted by C . The set
of non-convex constraints (Constraints 3 and 4 for agent i,
with respect to a grid of the same resolution) is denoted by
C̃i. For both the centralized (N =m) and the distributed (N =
1, without loss of generality) optimizations the algorithm
proceeds as follows.

Input distributed: z1, ū1 and r1 +εi; p j, ṗ j and r j ∀ j neighbor
of 1. Consider ε j = ε1.
Input centralized: zi, ūi and ri+εi ∀i≤m; p j, ṗ j and r j ∀ j >m
neighbor of i≤ m.
Result: u∗1:N = [u∗1, . . . ,u

∗
N ]

Compute constraints (Sec. VI)
uc

1:N ← solution 2N-dimensional convex optimization with
quadratic cost (Eq. (6)-(7)) and convex constraints C .
// Wave expansion from uc

1:N within convex area C .
Initialize sorted list L (increasing cost) with uc

1:N .
while L 6= /0 do

u1:N ← fist point in L ; L := L \u1:N ; feasible := ’true’;
for i = 1 to N do

if feasibleDynamics(ui)=’false’ or feasibleMap(ui)=’false’
then

L ← expandNeighbors(L , u1:N , i, 1);
feasible := ’false’; break;

end if
end for
if feasible = ’true’ then return u∗1:N = u1:N end if.

end while; return 0;

Function feasibleDynamics(ui), checks in a precomputed
grid if the tracking error is below εi, given the initial state
of the vehicle.

if ui ∈ Ri (See Eq. (10)) then return ’true’; else ’false’;

Function feasibleMap(ui), checks if ui leads to a trajectory
in collision with static obstacles given by the grid map O .
This is efficiently checked in the precomputed dilated map
Ori+εi (See Constraint 3).

if segment (pi,pi +uiτ)∩Ori+εi = /0 then return ’true’;
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The function expandNeighbors adds the neighboring grid
points if they are within the convex region defined by
the convex constraints in C , and they were not previously
explored. This algorithm is recursive for N > 1, although
only one level of recursion is used to reduce computational
time at the expense of optimality.

Function L ← expandNeighbors(L , uin
1:N , k, rec);

for each 8-connected grid neighbor uk of uin
k do

Consider u1:N = [uin
1 , . . . ,u

in
k−1,uk,uin

k+1, . . . ,u
in
N ].

if {u1:N not previously added to L } and
{uk not checked as unfeasible w.r.t. constr. C̃i} then

if u1:N satisfies convex constraints C
Add u1:N to L

else
if{rec=1} and {∃ constr. type 1 unfeasible} then

Select constr. which maximizes n ·u1:N −b > 0.
j := ”index of second agent in the selected constraint”.
if j ≤ N then L ← expandNeighbors(L , u1:N , j,0)

end if.; end if; end if; end if; end for

If the optimization is unfeasible, constraints 2 are removed
and the optimization is recomputed. If still unfeasible, agents
i≤N decelerate on their last feasible local trajectory follow-
ing the time remap

γ(t) =−t2
f /(2τ)+(1+ t f /τ)t− t2/(2τ), (12)

where t f is the time where the last feasible local motion was
obtained. This reparametrization of the trajectories guaran-
tees that the vehicles stop within the time horizon of the
local planner, unless the optimization becomes feasible in a
later time-step [17].

Remark 1 (Computational complexity): With a limit in
the number of linear constraints for collision avoidance the
complexity of the algorithm can be kept linear with the
number of agents, although the centralized is of higher cost.
If distributed, for each agent the optimization consists of
two variables, one quadratic constraint, four linear constraints
(bounding box of Constr. 5), a maximum of m linear con-
straints of type 1 (in practice limited to a constant Kc) and
a wave expansion within the 2D grid. If centralized, the
optimization consists of 2n variables, n quadratic constraints,
less than 4n+ n(n−1)

2 +n(m−n) linear constraints (limited to
4n+nkc) and a joint wave expansion in n 2D grid maps.

Remark 2 (Safety guarantees): If feasible, the local tra-
jectories are collision-free up to time τ , with the assumption
that other vehicles follow the same algorithm or maintain
a constant velocity. If unfeasible, no collision-free solution
exists that respects all the constraints. If the time horizon is
longer than the required time to stop, safety is preserved if
all vehicles drive their last feasible trajectory with a time re-
parametrization (12) to reach stop before a collision arises,

γ̇(t f + τ) = (1+ t f /τ)− (t f + τ)/τ = 0. (13)

Remark 3 (Unfeasibility): The optimization can be unfea-
sible due to several causes:
(a) Not enough time to find the solution within the allocated
time. (b) Differences between the model and the real vehicle.
(c) Noise in localization and estimation of vehicles’ state.

(d) Due to the limited local planning horizon together with
over simplification of motion capabilities by reducing them
to the set of local motions of Sec. III. (e) If distributed, given
the use of pair-wise partitions of velocity space with either
the assumption of equal effort in the avoidance or constant
speed, not all world constraints are taken into account for
the neighboring agents. Thus a vehicle may have conflicting
partitions with respect to different neighbors / static obstacles
/ kinematics rendering his optimization unfeasible.

Remark 4 (Deadlock-free guarantees): For a single
agent, deadlock-free navigation steams thanks to the uA∗

term that drives the vehicle towards its goal position or
guidance trajectory. In the multi-agent scenario, deadlocks
are still feasible, although in degenerated situations. Giving
priority to those agents further in their guidance trajectory
can help resolve the situation. The input from the driver can
also act as a deadlock breaking input.

VIII. EXPERIMENTAL RESULTS

The algorithms have been extensively tested in simulation
with larger groups of robots. Due to space limitations, the
analysis is restricted to the case with real wheelchairs (Fig 1)
with driver. Each vehicle has an enclosing radius of 1 m, lim-
its v1,max = 3 m/s, v2,max = 2 rad/s, v̇1,max = 2 m/s2, v̇2,max =
20 rad/s2, v̇1,min = −1.1 m/s2 and a maximum sideways
acceleration of 1.5 m/s2. Vehicles are tracked by an over-
head tracking system and controlled from a central computer
at 30Hz. Velocity commands from the driver are transmitted
to the central computer at the same rate. Computations are
performed in an i5 3GHz PC.

A. Free driving

In this section semi-autonomous driving is discussed,
without a guidance trajectory and where each vehicle is
driven by a human that inputs a desired velocity u joy. Over
50 hours of experiments showed that the algorithms are safe
and collisions with walls and other vehicles are avoided.

Fig. 6 shows two representative examples of the distributed
collision avoidance, where the driver-commanded velocity
u joy is shown with arrows in the right-side images. In the
top, safe and smooth velocity between 1 and 2.5 m/s is
achieved in very close proximity to the wall when the driver
was commanding the vehicle towards it. The vehicle slightly
slows down as it gets closer. In the bottom figure, a frontal
collision is avoided where a relative velocity of about 5 m/s
(18 km/h) in very close proximity (below 6 m) was handled.
In this extreme case the optimization became unfeasible
during 0.15 seconds, mostly due to lack of reactiveness in
the low level controller and unmodeled dynamics, slowing
the vehicle. This renders the algorithm feasible in subsequent
time-steps.

Even if the velocity input by the driver seems to follow
a bang-bang control of zero - maximum velocity (Fig. 7,
bottom left) the algorithm adapts the velocity of the vehicle
in the range -1 to 3 m/s to remain safe (Fig. 7, top left).
The driver stops at some times. The angular velocity shows
to be smooth and within the limits (Fig. 7, top right),
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Fig. 6. Top: Example of robot - wall collision avoidance. Bottom: Example of robot-robot collision avoidance. Left: Distance and relative velocity (negative
when towards each other). The time-steps where the optimization was unfeasible are marked in grey in the background. Zero distance indicates that two
objects touch. Right: Vehicle position, the input velocity from the driver is displayed with white arrows and the safe vehicle command with black arrows.

while the orientation of u joy (Fig. 7, top right, in vehicle
reference frame) is mostly centered in the forward direction
and presents clear peaks at 0, ±90 and 180 degrees.
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Fig. 7. Histograms over all experiments. Linear and angular velocities
(top) and input velocity from the driver relative to the vehicle (bottom).

Fig. 8 shows, in log scale to emphasize the unfrequent
worst cases, statistics of the computational time for the col-
lision avoidance optimization. For the distributed algorithm
(left, per vehicle) a solution is usually found in below 1.5ms.
Higher times (below 6ms in all the experiments) depend
on the non-convex search within the convex region (see
Sec. VII). Similar computational time per agent is observed
for experiments with larger number of vehicles in simulation.
For the centralized algorithm (right, two vehicles) higher
computational times where observed for the worst case, we
believe that due to inefficient handling of high-dimensional
sorted lists and other implementation inefficiencies.
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Fig. 8. Histogram in log-scale of the computational time of the collision
avoidance algorithm. Distributed (left), and centralized (right). If no solution
is found in 35ms, the algorithm returns unfeasible for that time step,
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Fig. 9. Example of two vehicles without drivers following two guidance trajectories that intersect at the same time in the middle point. Vehicles distance
and linear velocities (left), and position (right). Black: obstacles, grey: area covered by the vehicle, color line: path with time indicator.

B. Constrained driving with guidance trajectory
Fig. 9 shows an example of two vehicles without driver

following two guidance trajectories that intersect at the same
time in the middle point of an eight-shape scenario. Vehicle
2 accelerates within its active area, while vehicle 1 first
decelerates to let vehicle 2 safely pass and then accelerates
to catch up with its guidance trajectory. The position on the
path is color coded according to time for comparison.

Fig. 10 shows statistics over several experiments of vehicle
distance to the guidance trajectory relative to the active area
radius. For a vehicle without driver (left) the 10% offset is
due to the proportional tracking controller employed. For a
vehicle with driver (right) it is observed that the driver is
able to freely move within the active area but the algorithm
successfully constraints the motion of the vehicle.

IX. CONCLUSION

A method for shared control of a vehicle has been pre-
sented where the driver commands the vehicle by specifying
a preferred velocity. The specified velocity is then trans-
formed into a local motion that respects the actuator limits
and is collision-free with respect to other moving vehicles
and static obstacles, given by a grid map. This allows for
smooth and safe control of the vehicle. In order to limit
the freedom of the driver, a global guidance trajectory can
be included, which specifies the areas where the vehicle is
allowed to drive in each time instance. Good performance
has been observed in extensive experimental tests at speeds
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Fig. 10. Histogram of distance from vehicle to guidance trajectory ||p−q||
relative to active area radius ρ . With (right) and without (left) driver.

of up to 3 m/s and in close proximity to other vehicles and
walls. Further, the low computational time of the algorithm
allows for real-time control of tens of vehicles.

REFERENCES

[1] S. Bodenstedt, N. Padoy, and G. Hager, “Learned Partial Automation
for Shared Control in Tele-Robotic Manipulation,” AAAI Fall Sympo-
sium Series, 2012.

[2] A. Correa, M. R. Walter, L. Fletcher, J. Glass, S. Teller, and R. Davis,
“Multimodal interaction with an autonomous forklift,” in Human-
Robot Interaction, 5th ACM/IEEE International Conference on, 2010.

[3] A. Franchi, C. Secchi, M. Ryll, H. H. Bulthoff, and P. R. Giordano,
“Shared control: Balancing autonomy and human assistance with a
group of quadrotor UAVs,” Robotics Automation Magazine, IEEE,
vol. 19, no. 3, pp. 57–68, 2012.

[4] J. Connell and P. Viola, “Cooperative control of a semi-autonomous
mobile robot,” Robotics and Automation, Proceedings., IEEE Interna-
tional Conference on, 1990.

[5] J. S. Nguyen, T. H. Nguyen, and H. T. Nguyen, “Semi-autonomous
wheelchair system using stereoscopic cameras,” pp. 5068–5071, 2009.

[6] B. M. Faria, L. Ferreira, L. P. Reis, N. Lau, M. Petry, and J. Couto,
“Manual Control for Driving an Intelligent Wheelchair: A Compara-
tive Study of Joystick Mapping Methods,” environment, vol. 17, p. 18.

[7] A. Toffetti, E. S. Wilschut, M. H. Martens, A. Schieben, A. Rambal-
dini, N. Merat, and F. Flemisch, “CityMobil: Human Factor Issues
Regarding Highly Automated Vehicles on eLane,” Journal of the
Transportation Research Board, Dec. 2009.

[8] H. G. Nguyen, A. J. Morrell, B. K. Mullens, A. A. Burmeister,
S. Miles, C. N. Farrington, A. K. Thomas, and D. W. G. E, “Segway
robotic mobility platform,” in in SPIE Mobile Robots XVII, 2004.

[9] Techcrunch, “Google Ventures puts $258M into Uber,” Aug. 2013.
[10] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart, “Re-

ciprocal collision avoidance for multiple car-like robots,” in Robotics
and Automation (ICRA), IEEE International Conference on, 2012.

[11] J. Alonso-Mora, M. Rufli, R. Siegwart, and P. Beardsley, “Collision
Avoidance for Multiple Agents with Joint Utility Maximization,” in
Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), 2013.

[12] M. Rufli, J. Alonso-Mora, and R. Siegwart, “Reciprocal Collision
Avoidance With Motion Continuity Constraints,” Robotics, IEEE
Transactions on, Mar. 2013.

[13] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a
nonholonomic car-like robot,” in Robot motion planning and control
(J.-P. Laumond, ed.), pp. 171–253, Springer, 1998.

[14] S. M. LaValle, “Motion Planning: The Essentials,” IEEE Robotics and
Automation Society Magazine, pp. 1–10, Apr. 2011.

[15] R. Dechter and J. Pearl, “Generalized best-first search strategies and
the optimality of A*,” Journal of the ACM, 1985.

[16] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body Collision Avoidance,” in Int. Symp. on Robotics Research, 2009.

[17] M. Rufli in PhD thesis ETH Zurich, 2012.

1645


