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Abstract This article describes an investigation of local
motion planning, or collision avoidance, for a set of decision-
making agents navigating in 3D space. The method is
applicable to agents which are heterogeneous in size, dynam-
ics and aggressiveness. It builds on the concept of velocity
obstacles (VO),which characterizes the set of trajectories that
lead to a collision between interacting agents. Motion conti-
nuity constraints are satisfied by using a trajectory tracking
controller and constraining the set of available local trajec-
tories in an optimization. Collision-free motion is obtained
by selecting a feasible trajectory from the VO’s complement,
where reciprocity can also be encoded. Three algorithms for
local motion planning are presented—(1) a centralized con-
vex optimization in which a joint quadratic cost function is
minimized subject to linear and quadratic constraints, (2) a
distributed convex optimization derived from (1), and (3) a
centralized non-convex optimization with binary variables in
which the global optimum can be found, albeit at higher com-
putational cost. A complete system integration is described
and results are presented in experiments with up to four phys-
ical quadrotors flying in close proximity, and in experiments
with two quadrotors avoiding a human.
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1 Introduction

The last decade has seen significant interest in unmanned
aerial vehicles (UAVs), including multi-rotor helicopters due
to their mechanical simplicity and agility. Successful navi-
gation builds on the interconnected competences of local-
ization, mapping, and motion planning/control. Kumar and
Michael (2012) and Mahony et al. (2012) provide compre-
hensive overviews of the field.

The computation of global collision-free trajectories in
a multi-agent setting is currently challenging in real-time.
One approach is to hierarchically decompose the problem
into a global planner, which may omit motion constraints,
and a local reactive component, which locally modifies the
trajectory to incorporate all relevant constraints. The latter
is the topic of this article—a real-time reactive local motion
planner which takes into account motion constraints, static
obstacles, and other agents. The important case where other
agents are themselves decision-making is addressed.

Furthermore, a full system, including low level control,
collision avoidance and basic high level planning is proposed
end experimentally verified. This paper describes in detail
algorithms for collision avoidance as well as their interaction
with the multiple functioning parts.

1.1 Related work

In recent years, trajectory generation has been success-
fully demonstrated for a set of agents navigating in a
controlled environment with an external tracking system
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that provides precise localization. See the testbeds in the
GRASP lab (Michael et al. 2010) and the Flying Machine
Arena Lupashin et al. (2011). In contrast, our goal is to
handle dynamic obstacles, where real-time reactive collision
avoidance is needed.We develop a method which is intended
for on-board use, and which anticipates that the algorithmic
development will be accompanied by the development of
appropriate sensing capabilities, although the experiments in
this article were done using a similar testbed to those above.

Global collision-free trajectories for a single agent can be
obtained using randomized sampling (Frazzoli et al. 2002).
This method takes into account the dynamics of the ego-
agent and both static and dynamic agents, but it does not
handle multi-agent scenarios with multiple decision-making
agents. Global collision-free trajectories for a team of agents
can be computed via a centralized mixed integer quadratic
optimization (Mellinger et al. 2012), in which the state (the
position and its derivatives) of the agents at time-spaced inter-
vals is optimized. The method shows impressive results for
trajectory generation (Kushleyev et al. 2012) but it lacks real-
time performance. A related approach is to compute the state
at time-spaced intervals via a sequential convex optimiza-
tion (Augugliaro et al. 2012), leading to faster computations
for trajectory generation, but still not in real-time. In contrast
to that work, our goal is to compute a local trajectory for a
short time horizon in a reactive way and at a high frequency.

Fast reactive local motion planning (or collision avoid-
ance) is typically required to respond to unexpected events
or errors in the environment model. The use of local motion
planning in conjunction with a high-level controller for a
multi-agent task, such as exploration and coverage, was
described by Schwager et al. (2011), among others.

See-and-avoid approaches, such as the one described
by Mcfadyen et al. (2012), can be used when no range infor-
mation about the agent to be avoided is available. This is
the case for instance for mid-air avoidance with vision-only
sensing. In contrast, ourwork is concernedwith close naviga-
tion, where relative position, velocity and size of the agents
are known. We build on the concept of velocity obstacles
(VO) by Fiorini and Shillert (1998), a method for charac-
terizing the agent velocities that lead to a collision within a
planning horizon.

Reactive collision avoidance methods in close prox-
imity can typically be divided between rule-based and
optimization-based. Rule-based methods, which include
potential fields (Ogren et al. 2004) and optimal control
laws (Hoffmann and Tomlin 2008), maywork well in scenar-
ios with low agent density and low speeds, but typically do
not provide hard guarantees or must include restrictive rules.
Optimization-based methods include a centralized nonlin-
ear program (Raghunathan et al. 2004) which scales poorly
with the number of agents and a mixed integer linear pro-
gram (MILP)with constraints in dynamics (Kuwata andHow

Fig. 1 Collision avoidance experiment with quadrotors plus a human

2007). Alternatively, decentralized nonlinear model predic-
tive control using potential functions for collision avoid-
ance (Shim et al. 2003) has been explored, but without guar-
antees. The method proposed in this work falls in the later
category of optimization-basedmethods, thus providing hard
guarantees. This is combined with concepts from potential
fields, for increased safety.

Slightly departing from pure reactive collision avoidance
methods, a collision-free local motion can be obtained by
using a set of motion primitives or forward simulating input
commands and collision checking them. These approaches
have been widely applied for single agents moving in 2D
spaces by Fox et al. (1997), Knepper and Mason (2012) and
Pivtoraiko andKelly (2005) among others. Such an approach
readily extends to 3Dmotion butwith increase computational
cost due to the larger set of motion primitives. In this work,
we keep the idea of employing a set of local motions but
do not collision check them individually, instead, we solve a
convex optimization, which is more efficient (Fig. 1).

Reactive local planners typically ignore that other agents
are decision-making entities and this may lead to suboptimal
performance, especially in crowded multi-agent scenarios.
The reciprocal velocity obstacles (RVO) method by van den
Berg et al. (2009) addresses this and assumes pairwise col-
laboration of equal contribution, but it restricts robot action
capabilities to a set of constant velocities. Under the assump-
tion that all agents follow a straight line trajectory, future col-
lisions can be characterized as a function of relative veloc-
ity alone. Extensions to linear dynamics have been devel-
oped by Bareiss and van den Berg (2013), which extends the
method to LQR-obstacles, and by Rufli et al. (2013), which
extends to systems that require any degree of continuity. But,
both extensions apply only to homogeneous sets of agents,
where all interacting agents present the same control parame-
ters and their full state, including its higher order derivatives,
is known. On the other hand, we build on the idea presented
by Alonso-Mora et al. (2012b), which preserves motion con-
tinuitywhile applying to heterogeneous groups of agentswith
potentially different control parameters. We also build on the
joint utility method presented by Alonso-Mora et al. (2013)
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for centralized computation. Both methods build on previous
work by van den Berg et al. (2009).

1.2 Contribution

Algorithmic

Our main contribution is a derivation of three methods for
local motion planning, or collision avoidance, in 3D environ-
ments, based on recent extensions of the velocity obstacle
concept.

– A distributed convex optimization in which a quadratic
cost function is minimized subject to linear and quadratic
constraints. Only knowledge of relative position, velocity
and size of neighboring agents is required.

– A centralized convex optimization in which a joint
quadratic cost function is minimized subject to quadratic
and linear constraints. This variant scales well with the
number of agents and presents real-time capability, but
may provide a sub-optimal solution.

– A centralized non-convex optimization in which a joint
quadratic cost function is minimized subject to linear,
quadratic and non-convex constraints, formulated as a
mixed integer quadratic program. This variant explores
the entire solution space but scales poorly with the num-
ber of agents.

All methods can

– characterize agents as decision making agents that collab-
orate to achieve collision avoidance.

– incorporate motion continuity constraints.
– handle heterogeneous groups of agents.

A complexity analysis is provided, and a discussion of the
advantages and disadvantages of each method.

System integration

The novel collision avoidance algorithms are integrated
with the full control loop and implemented in an experimental
platform formed by several quadrotor helicopters.

Experimental evaluation

Finally the article contains extensive results in experi-
mentswith up to four physical quadrotors, and in experiments
with a human as a dynamic obstacle. We show the potential
of the real-time approach and discuss future research.

Fig. 2 High-level schema of the system

1.3 Organization

The problem statement is provided in Sect. 2, followed by an
overview of the local motion planning framework in Sect. 3.
The optimization framework is described in Sects. 4 and 5
formulates it as a convex optimization. Section 6 describes an
extension where the problem is formulated as a non-convex
optimization. The control framework for a quadrotor heli-
copter is then described in Sect. 7. Experimental results are
described in Sects. 8, and 9 concludes this paper. A high-level
block diagram of the proposed method is shown in Fig. 2.

1.4 Notation

Throughout this paper x denotes scalars, x vectors, X matri-
ces and X sets. The Minkowski sum of two sets is denoted
by X ⊕ Y , x = ||x|| denotes the euclidean norm of vector
x, xH the projection of x onto the horizontal plane and x3 its
vertical component, thus x = [xH , x3]. The super index ·k
indicates the value at time tk , and t̃ = t − tk the appropriate
relative time. Subindex ·i indicates agent i and relative vec-
tors are denoted by xi j = xi − x j . For ease of exposition, no
distinction is made between estimated and real states.1

2 Problem statement

A group of n agents freely moving in 3D space is considered.
For each agent i , pi ∈ R

3 denotes its position, vi = ṗi its
velocity and ai = p̈i its acceleration.

The goal is to compute for each agent, at high frequency
(typically 10Hz), a local motion that respects the kinematics
and dynamic constraints of the ego agent and that is collision-
free with respect to neighboring agents for a short time hori-
zon (typically 2–10 s). This problem is also referred as col-
lision avoidance.

Two scenarios are discussed, a centralized one where a
central unit computes local motions for all agents simulta-
neously and a distributed one where each agent computes
independently its local motion. For the second case, no com-
munication between the agents is required but each agent
must maintain an estimate of the position and velocity of
its neighbors. For the distributed case, neighboring agents

1 Estimated states with a Kalman filter, including time delay compen-
sation, are used in our implementation.
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Fig. 3 Schemas of local motion planning. Motion primitives given by candidate reference trajectories and local trajectory given by the optimal
reference trajectory. a Example of candidate local trajectories. b Example of a local trajectory

are labelled as dynamic obstacles or decision-making agents
which employ an identical algorithm to the ego-agent.

The local motion planning problem is first formulated as
an efficient convex optimization (either centralized or distrib-
uted), followed by a non-convex optimization (centralized)
that trades-off efficiency for richness of the solution space.

The shape of each agent is modeled by an enveloping
cylinder of radius ri and height 2hi centered at the agent.2

For the case of quadrotor helicopters, a cylindrical shape has
been employed (to account for rotor downwash) for non-
real time collision-free trajectory generation by Mellinger
et al. (2012) and Augugliaro et al. (2012). This is in con-
trast to the sphere/ellipse simplification of previous work in
real-time collision avoidance by Alonso-Mora et al. (2012b)
and Bareiss and van den Berg (2013).

The local motion planning framework is applied to
quadrotor helicopters, due to their agility and mechanical
simplicity (Mahony et al. 2012). Implementation details,
including an appropriate control framework are described
in Sect. 7, followed by extensive experimental results with
up to four quadrotors and a human.

3 Local motion planning: overview

In this work a fully integrated system is proposed, formed by
several interconnected components. In this section first the
terminology used is introduced, followed by the definition
of the local trajectories and an overview of the optimization
problem solved to obtain collision-free motions.

3.1 High level system description

Our system is formed by several interconnected modules, as
shown in Fig. 2. In the absence of standard terminology, we
use the following, illustrated in Fig. 3.

2 In this formulation arbitrary object shapes can be considered, but with
the assumption that they do not rotate during the local planning horizon
(typically a few seconds).

– Global trajectory: A trajectory between two configura-
tions embedded in a cost field with simplified dynamics
and constraints.

– Preferred velocity:The ideal velocity computed by a guid-
ance system to track the global trajectory. It is denoted by
ū ∈ R

3.
– Local trajectory: The trajectory executed by the agent,
for a short time horizon, and selected from a set of candi-
date local trajectories, which respect the kinematics and
dynamic constraints of the agent. Each one is computed
from a candidate reference trajectory via a bijective map-
ping.

– Candidate reference trajectory: is given by a constant
velocity (candidate reference velocity3) u ∈ R

3 which
indicates the target direction and velocity of the agent. An
optimal reference trajectory, parametrized by the optimal
reference velocity u∗ ∈ R

3, is selected from the set of can-
didate reference velocities and minimizes the deviation to
ū ∈ R

3. It defines the local trajectory.

The focus of this work is on local motion planning, using a
preferred velocity ū computed by a guidance system in order
to track a global trajectory. Following the idea of Alonso-
Mora et al. (2012a), an optimal reference trajectory is com-
puted such that its associated local trajectory is collision-free.
This provides a parametrization of local motions given by u
and allows for an efficient optimization in candidate refer-
ence velocity space (R3) to achieve collision-free motions
(Sect. 4).

3.2 Definition of candidate local trajectories

Each candidate reference trajectory is that of an omnidirec-
tional agent moving at a constant velocity u and starting at
the current position pk of the agent

3 In previous works we have referred to it as holonomic trajectory and
reference trajectory but, to hopefully increase clarity we now adopt the
latter.
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pref(t) = pk + u(t − tk), t ∈ [tk,∞). (1)

A trajectory tracking controller, respecting the kinemat-
ics and dynamic constraints of the agent, q(t̃) = f (zk,u, t̃)
is considered, continuous in the initial state zk = [pk, ṗk,

p̈k, . . . ] of the agent and converging to the candidate refer-
ence trajectory. This defines the candidate local trajectories
given by q(t̃) and a bijective mapping (for given zk) from
candidate reference velocities u.

3.3 Overview of the optimization problem

A collision-free local trajectory (described in Sect. 3.2 and
parametrized by u∗) is obtained via an optimization in candi-
date reference velocity where the deviation to the preferred
velocity ū is minimized. In Sect. 5 two alternative formula-
tions are presented, a centralized and a distributed optimiza-
tion, formulated as a convex optimization with quadratic cost
and linearized constraints for

– Motion continuity: The position error between the can-
didate reference trajectory and the local trajectory must
be below a limit ε to guarantee that the local trajectory
is collision-free if the candidate reference trajectory is.
Continuity in position, velocity, acceleration and further
derivatives (optional) is guaranteed by construction. See
Sect. 4.4.

– Collision avoidance: The candidate reference velocities
leading to a collision are described by the velocity obsta-
cle (Fiorini and Shillert 1998), a cone in relative candidate
reference velocity space, for agents of ε-enlarged radius.
See Sect. 4.5. Consider Ci the set of collision avoidance
constraints for agent i with respect to its neighbors and
C = ⋃

i∈A Ci .

These non-convex constraints can be linearized leading
to a convex optimization with quadratic cost and linear and
quadratic constraints. In Sect. 4 the optimization problem
is formulated and Sect. 5 describes the convex optimization
for the case of heterogenous groups of agents of unknown
dynamics. An algorithm to solve the original non-convex
optimization is described in Sect. 6, and an extension for
homogeneous groups of agents (same dynamics and con-
troller) is outlined in Appendix 1.

In the centralized case, a single convex optimization is
solved where the optimal reference velocity of all agents
u∗
1:m = [u∗

1, . . . ,u
∗
m] are jointly computed.

In the distributed case, each agent i ∈ A independently
solves an optimization where its optimal reference veloc-
ity u∗

i is computed. In this case it can be considered that
agents collaborate in the avoidance and apply the same algo-
rithm, otherwise they are treated as dynamic obstacles. Only

information about the neighbors’ pairwise current position,
velocity and shape is required.

4 Local motion planning: formulation

In this section the optimization cost and the optimization
constraints are described.

4.1 Preferred velocity

In each local planning iteration, given the current position
and velocity of the agent, a preferred velocity ū is computed
to follow a global plan to achieve either:

– Goal: ū is given by a proportional controller towards the
goal position gi , saturated at the agent’s preferred speed
V̄ > 0, and decreasing when in the neighborhood.

ūi = V̄ min

(

1,
||gi − pi ||

K v̄

)
gi − pi

||gi − pi ||
, (2)

where K v̄ > 0 is the distance to the goal from which the
preferred velocity is reduced linearly. Alternatively, it can
be given by an LQR controller as shown by Bareiss and
van den Berg (2013).

– Trajectory: ū is given by a trajectory tracking controller
for omnidirectional agents, such as the one by Hoffmann
et al. (2008).

4.2 Repulsive velocity

The optimization algorithm described in this paper guar-
antees collision-free motion per se, as proved in Sect. 5.1.
Nonetheless, optimality in our formulation implies that
agentswould be infinitely close to each other in the avoidance
phase. In practical settings, with uncertainties and modeling
errors, this can potentially lead to collisions.

To mitigate this problem, a small repulsive velocity, much
lower than in traditional potential field approaches, is added
to the preferred velocity ū. This has the effect of pushing
agents slightly away from each other when close together. At
high speeds the small repulsive velocity alone is not enough to
create collision-free motions. Collision-free guarantees arise
from the optimization constraints.

A vector field like those of Fig. 4 gives the repulsive veloc-
ity ů with finite support in a neighborhood of the agent. The
equations for the repulsive velocity are described in Appen-
dix 2.
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Fig. 4 Two examples of repulsive velocities

4.3 Optimization cost

The optimization cost is given by two parts, the first one a
regularizing term penalizing changes in reference velocity
and the second one minimizing the deviation to the preferred
velocity ūi corrected by the repulsive velocity ůi .

Guy et al. (2010) showed that pedestrians prefer to main-
tain a constant velocity in order to minimize energy. Pref-
erence was given to turning instead of changing the speed.
Furthermore, penalizing changes in speed leads to a reduction
of deadlock situations. This idea is formalized as an ellipti-
cal cost, higher in the direction parallel to ūi + ůi , and lower
perpendicular to it. Let λ > 0 represent the relative weight
and define L = diag(λ, 1, 1) and Di the rotation matrix of
the transformation onto the desired reference frame.

In the distributed case, the quadratic cost is

C(ui ) := Ko||ui − vi ||2+||L1/2Di (ui − (ūi +ůi ))||2, (3)

where, with the exception of the optimization variables ui ,
the values of all other variables are given for the current time
instance and Ko is a design constant.

In the centralized case, the quadratic cost is

C(u1:m) := Ko

m∑

i=1

ω̄i ||ui − vi ||2

+
m∑

i=1

ω̄i ||L1/2Di (ui − (ūi + ůi ))||2, (4)

where ω̄i represent relativeweights between different agents,
to take into account avoidance preference between agents,
which can be interpreted as aggressive (high ω̄i ) versus shy
(low ω̄i ) behavior.

4.4 Motion continuity constraints

In order to guarantee collision-free motions it must be guar-
anteed that each agent remains within εi of its reference tra-
jectory, with εi < min j ||p j − pi ||/2.

Constraint 1 (Motion continuity) For a maximum tracking
error εi and current state zi = [pi , ṗi , p̈i ], the set of candi-
date reference velocitiesui that can be achieved with position
error lower than εi is given by

Ri = R(zi , εi )

= {ui | ||(pi + t̃ui ) − f (zi ,ui , t̃)|| ≤ εi , ∀t̃ > 0}, (5)

For arbitrary trajectory tracking controller f (zi ,ui , t̃) the
set Ri can be precomputed. For quadrotors freely moving in
3D space this concept was first introduced by Alonso-Mora
et al. (2012b), where an LQR controller was used as the
function f (zi ,ui , t̃). In our implementation, position control
and local trajectory are decoupled and f (zi ,ui , t̃) is given
by Eq. (22). See Fig. 5 for an example.

If the agents were omnidirectional, the set Ri would be
given by a sphere, centered at zero and of radii vmax (no
continuity in velocity). For the case of study of this paper,
given εi and zi (initial state), the limits are obtained from the
precomputed data

δRi,εi = {ui |max
t̃>0

||(pi + t̃ui ) − f (zi ,ui , t̃)|| = εi } (6)

To reduce computational complexity, δRi,εi is then
approximated by the largest ellipse (quadratic constraint of
the formuT

i Qiui +li ·ui ≤ ai , with Qi ∈ R
3×3 positive semi-

definite, li ∈ R
3 and ai ∈ R) fully contained inside δRi,εi .

4.5 Collision avoidance constraints

Each agent must avoid colliding with static obstacles, other
controlled agents and dynamic obstacles. A maximum time
horizon τ is considered, for which collision-free motion is
guaranteed.

Fig. 5 Schema of reference and local trajectory with tracking error
below ε. The radius and height of the agent are also enlarged by ε
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A static obstacle is given by a regionO ⊂ R
3. The agents

are modeled by an enclosing vertical cylinder.4 The disk of
radius r centered at c is denoted by Dc,r ⊂ R

2 and the
cylinder of radius r and height 2h centered at c is denoted by
Cc,r,h ⊂ R

3. This section builds on the work on VO by van
den Berg et al. (2009) and Fiorini and Shillert (1998).

The collision avoidance constraints are computed with
respect to an agent following the reference trajectory. Since
the agents are not able to perfectly track the reference trajec-
tory, their enveloping cylinder must by enlarged by the max-
imum tracking error εi . For ease of notation, through out this
section the following is used: r̄i := ri + εi and h̄i := hi + εi

the enlarged radius and cylinder height, and pi the current
position of agent i .

Constraint 2 (Avoidance of static obstacles) For every
agent i ∈ A and neighboring obstacle O, the constraint
is given by the reference velocities for which the intersec-
tion between O and the agent is empty for all future time
instances, i.e. pi + ui t̃ /∈ (O ⊕ C0,r̄i ,h̄i

), ∀t̃ ∈ [0, τ ].
This constraint is given by a cone in the 3D candidate

reference velocity space generated by O ⊕ C0,r̄i ,h̄i
− pi and

truncated at (O ⊕ C0,r̄i ,h̄i
− pi )/τ . An example of this con-

straint for a rectangular object is shown in Fig. 6.
Boundary wall constraints are directly added, given by

n · ui ≤ d(wall,pi )/τ , with n the normal vector to the wall
and d(wall,pi ) the distance to it.

Constraint 3 (Inter-agent collision avoidance) For every
pair of neighboring agents i, j ∈ A, the constraint is given
by the relative reference velocities for which the agents’
enveloping shape does not intersect within the time horizon,
i.e. ui − u j /∈ VOτ

i j = ⋃τ
t̃=0((Cp j ,r̄ j ,h̄ j

⊕ C−pi ,r̄i ,h̄i
)/t̃),

∀t̃ ∈ [0, τ ].
For cylindrical-shape agents the constraint can be sepa-

rated in the horizontal plane ‖pH
i − pH

j + (uH
i − uH

j )t̃‖ ≥
r̄i + r̄ j and the vertical component |p3i − p3j + (u3

i − u3
j )t̃ | ≥

h̄i + h̄ j for all t̃ ∈ [0, τ ], where at least only one constraint
needs to be satisfied. ,where at least only one constraint needs
to be satisfied. The constraint is a truncated cone, as shown
in Fig. 7, left.

4.5.1 Approximation by linear constraints

Since the volume of reference velocities leading to a colli-
sion is convex, the aforementioned collision avoidance con-
straints are non-convex. To obtain a convex optimization,

4 To account for the downwash effect that does not allow for close
operation in the vertical direction. The results readily extend to robots
of arbitrary shape with the assumption of constant orientation for t ∈
[0, τ ].

Fig. 6 Example of the collision avoidance constraint for a static rec-
tangular obstacle O. In grey the reference velocities ui leading to a
collision within the given time horizon. Its complement is non convex
and is linearized

theymust be linearized. For increased control over the avoid-
ance behavior and topology, each non-convex constraint is
approximated by five linear constraints, representing avoid-
ance to the right, to the left, over and under the obstacle
(or other agent) and a head-on maneuver, which remains
collision-free up to t = τ .

In particular, for the feasible space R
3 \ VOτ

i j consider

five (l ∈ [1, 5]) linear constraints (half-spaces) Hl
i j of the

form nl
i j (ui − u j ) ≤ bl

i j , with nl
i j ∈ R

3 and bl
i j ∈ R, and

verifying that if ui −u j satisfies any of the linear constraints
it is feasible with respect to the original constraint,

5⋃

l=1

Hl
i j ⊂ R

3 \ VOτ
i j . (7)

An example is shown in Fig. 7 and the equations of the
linear constraints are given in Appendix 3.

To linearize the original constraint, only one of the linear
constraints is selected and added to the convex optimization.

4.5.2 Selection of a linear constraint

Each collision avoidance constraint is linearized by selecting
one of the five linear constraints. Sensible choices include:

1. Fixed side for avoidance. If agents are moving towards
each other (vi j · pi j < 0), avoid on a predefined side,
for example on the left (l = 1). If agents are not mov-
ing towards each other, the constraint perpendicular to
the apex of the cone (l = 5) is selected to maximize
maneuverability.

2. Maximum constraint satisfaction for the current relative
velocity:

argmin
l

(nl
i j · (vi − v j ) − bl

i j ).
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Fig. 7 Example of the collision avoidance constraint for a pair of inter-
acting agents. The relative candidate reference velocities ui j = ui −u j
leading to a collision are displayed in grey. Its complement its non-
convex and is linearized. Left Constraint in relative velocity space.

Middle/right projection onto the horizontal/vertical plane, including
the projection of three linearizations (or half-planes of collision-free
relative velocities). a Velocity obstacle in relative velocity. b Projection
onto the horizontal plane. c Projection onto a vertical plane

This selection maximizes the feasible area of the opti-
mization, when taking into account themotion continuity
constraints of Sect. 4.4.

3. Maximum constraint satisfaction for the preferred veloc-
ity:

argmin
l

(nl
i j · (ūi − ū j ) − bl

i j ) if centralized.

argmin
l

(nl
i j · (ūi − v j ) − bl

i j ) if distributed.

This selection may provide faster progress towards the
goal position, but the optimization may become quickly
infeasible if the agent greatly deviates from its preferred
trajectory.

Option 1 provides the best coordination results as it incor-
porates a social rule, option 2 maximizes the feasible area
of the optimization and option 3 may provide faster conver-
gence to the ideal trajectory. An experimental evaluation of
these options is given in Sect. 8.

Without loss of generality, consider ni j · ui j ≤ bi j the
selected linearization of R3 \ VOτ

i j , which can be directly
added in the centralized optimization of Algorithm 1.

4.5.3 Partition: distributed case

In the distributed case, the reference velocity of agent j
is typically unknown, only its current velocity vi can be
inferred. With the assumption that every agent follows the
same algorithm, a partition must be found such that if both
agents select new velocities independently, their relative ref-
erence velocity ui − u j is collision-free. The idea of recip-
rocal avoidance first presented by van den Berg et al. (2009)
is followed.

The change in velocity is denoted by Δvi = ui − vi and
the relative change of velocity by Δvi j = Δvi − Δv j . In
the distributed case all agents are considered as independent
decision-makers solving their independent optimizations. To
globally maintain the constraint satisfaction and avoid colli-
sions, an assumption on agent j’s velocity is required.

Variable sharing of avoidance effort might be considered
leading to Δvi = λΔvi j with the assumption that Δv j =
−(1 − λ)Δvi j . For collaborative agents that equally share
the avoidance effort, λ = 0.5. If it is considered that agent j
ignores agent i and continues with its current velocity, then
λ = 1 and full avoidance is performed by agent i .

With the assumption that both agents share the avoidance
effort (change in velocity), for λ ∈ [0, 1] the linear constraint
is rewritten as

ni j · ui j = ni j · (ui − v j − Δv j )

= ni j · (ui − v j + (1 − λ)Δvi j )

= ni j · (ui − v j + (1 − λ)(ui − vi )/λ)

= ni j

λ
· (ui − (1 − λ)vi − λv j ) ≤ bi j . (8)

Leading to

ni j · ui ≤ bi = λbi j + ni j · ((1 − λ)vi + λv j ), (9)

which is a fair partition of the velocity space for both agents
and provides avoidance guarantees.

5 Algorithm: convex optimization

To achieve low computational time the inherently non-
convex optimization is approximated by a convex optimiza-
tion with quadratic cost and linear and quadratic constraints.
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Two algorithms are presented, one centralized and one dis-
tributed.

Algorithm 1 (Centralized convex optimization) A single
convex optimization is solved where the optimal reference
velocity of all agents u∗

1:m = [u∗
1, . . . ,u

∗
m] are jointly com-

puted.

u∗
1:m := argmin

u1:m
C(u1:m)

s.t. ||ui || ≤ vmax , ∀i ∈ A
quadratic Constraint 1, ∀i ∈ A
linearized Constraint 2, ∀i ∈ A
linearized Constraint 3, of the form

ni j · (ui − u j ) ≤ bi j ,

∀i, j ∈ A neighbors

(10)

where the optimization cost is given by Eq. (4).

Algorithm 2 (Distributed convex optimization) Each agent
i ∈ A independently solves an optimization where its optimal
reference velocity u∗

i is computed.

u∗
i := argmin

ui

C(ui )

s.t. ||ui || ≤ vmax ,

quadratic Constraint 1, agent i,
linearized Constraint 2, agent i,
linearized Constraint 3, of the form
ni j · ui ≤ bi , ∀ j ∈ A neighbor of i,

(11)

where the optimization cost is given by Eq. (3).
These 2m and 2-dimensional quadratic optimizationswith

linear and quadratic constraints can be solved efficiently
using available solvers.5

If the optimization is feasible, a solution is found that
guarantees collision-free motion up to the time horizon τ .
If the optimization is infeasible, no solution exists for the
linearized problem. In this case, the involved agents drive
their last feasible trajectory (obtained at time t f ) with a time
reparametrization given by

γ (t) = (−t2f + (2τ + 2t f )t − t2)/(2τ), t ∈ [t f , t f + τ ],
γ (t) = t f + τ/2, t > t f + τ.

(12)

This time reparametrization guarantees that the involved
agents reach a stop on their previously computed pathswithin
the time horizon of the collision avoidance algorithm. Since
this computation is performed at a high frequency, each indi-
vidual agent is able to adapt to changing situations.

5 We use IBM ILOG CPLEX.

5.1 Theoretical guarantees

Remark 1 (Computational complexity) Linear in the number
of variables and constraints, although the centralized is of
higher complexity.

If distributed, for each agent the optimization consists of
three variables, one quadratic constraint and a maximum of
m + no linear constraints for collision avoidance (in practice
limited to a constant value Kc, plus no), where no is the
number of static obstacles.

If centralized, the optimization consists of 3n variables, n
quadratic constraints and less than n(n−1)

2 + n(m − n)+ nno

linear constraints (usually limited to n(kc + no)).

Remark 2 (Safety guarantees) Safety is preserved in normal
operation.

If feasible, collision-free motion is guaranteed for the
local trajectory up to time τ (optimal reference trajectory
is collision-free for agents of radii enlarged by ε and agents
stay within ε of it) with the assumption that all interacting
agents either continue with their previous velocity or com-
pute a new one following the same algorithm and assump-
tions.

Let pi (t) = [pH
i (t), p%i (t)] denote the position of agent

i at time t ≥ tk and recall t̃ = t − tk . If the two agents are
side by side then

||pH
i (t) − pH

j (t)|| = || f (zk
i ,ui , t̃)H − f (zk

j ,u j , t̃)H ||
≥ ||(pH

i (tk) + uH
i t̃) − (pH

j (tk) + uH
j t̃)|| − εi − ε j

≥ ri + εi + r j + ε j − εi − ε j = ri + r j , (13)

where the first inequality holds from the triangular
inequality and Constraint 1 (ui ∈ Ri and u j ∈ R j ). The sec-
ond inequality holds from Constraint 3 (ui − u j /∈ VOτ

i j ).
The proof proceeds analogously for the vertical component
in the case where agents are on top of each other. Recall
that at least one of the two constraints (projection onto the
horizontal or vertical plane) must hold.

If infeasible, no collision-free solution exists that respects
all the constraints. If the time horizon is longer than the
required time to stop, passive safety is preserved if the last
feasible trajectory of all agents are driven with a time repara-
metrization to reach stop before a collision arises (Eq. 12).
This time reparametrization implies a slowdownof the agent,
which in turn may render the optimization feasible in a later
time-step. Since this computation is performed at a high fre-
quency, each individual agent is able to adapt to changing
situations.

Remark 3 (Infeasibility) In some cases the constraints can be
such that the optimization is over-constrained and infeasible.
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The agent may reach a state where the optimization is
over-constrained and therefore infeasible. This can be due to
several causes, such as the following.

(a) Due to the limited local planning horizon together with
over simplification of motion capabilities by reducing them
to the set of local motions of Sect. 4.

(b) Due to differences between the precomputed motion
primitives and the executed motion, arising from differences
between themodel and the real vehicle or uncertainty in local-
ization and estimation of the agents’ state.

(c) If distributed, given the use of pair-wise partitions of
velocity space with either the assumption of equal effort
in the avoidance or constant speed, not all world con-
straints are taken into account for the neighboring agents.
Thus an agent may have conflicting partitions with respect
to different neighbors rendering its optimization infeasi-
ble.

Remark 4 (Deadlock-free guarantees) As for other local
methods, deadlocks may still appear.

A global planner for guidance is required in complex sce-
narios.

6 Algorithm: non-convex optimization

Section 4 described a method for local motion planning
for heterogeneous groups of aerial vehicles which was for-
mulated as a convex optimization problem in Sect. 5. This
section presents an extension to a non-convex optimization
where the global optimumcan be found, albeit at an increased
computational cost.

As shown in Sect. 4.5, each non-convex constraint VO is
approximated by 5 linear constraints of which only one is
introduced in the optimization, leading to a local optimum.
The full solution space can be explored by the addition of
binary variables, and reformulating the problem as a mixed
integer quadratic program (MIQP).

One binary variable ξ l
c = {0, 1}, is added for each lin-

ear constraint l ∈ [1 : 5] approximation of a non-convex
constraint c ∈ C. Only one out of the 5 linear constraints is
active, thus

∑5
l=1 ξ l

c = 4, ∀c ∈ C.

Algorithm 3 (Centralized Mixed-Integer optimization) A
single MIQP optimization is solved where the optimal ref-
erence velocity of all agents u∗

1:m = [u∗
1, . . . ,u

∗
m], as well as

the active constraints ξ̄ = ⋃
l∈[1,5], c∈C ξ l

c are jointly com-

puted. Define fT
ξ̄

a vector with (optional) weights for each

binary variable, for instance to give preference to avoidance
on one side.

argmin
u1:m

C(u1:m) + fT
ξ̄

ξ̄

s.t. ||ui || ≤ umax , ∀i ∈ A
quadratic Constraint 1, ∀i ∈ A
linear Constraints 2, of the form
nl

i · ui − Nξ l
i ≤ bl

i , ∀i ∈ A, ∀l ∈ [1, 5]
linear Constraints 3, of the form
nl

i j · (ui − u j ) − Nξ l
i j ≤ bl

i j ,

∀i, j ∈ A, neighbors, ∀l ∈ [1, 5]
∑5

l=1 ξ l
c = 4, ∀c ∈ C,

(14)

where N >> 0 is a large constant of arbitrary value. The
linear cost vector fξ̄ is a zero vector if no preference between
linear constraints for each VO exists. Analogously to the
work for 2D local planning by Alonso-Mora et al. (2013),
different weights can be added for each linear constraint to
include preference for a particular avoidance side.

This optimization can be solved via branch and bound
using state of the art solvers.6 Although the number of vari-
ables and constraints can be bounded to be linear with the
number of agents, the number of branches to be explored
increases exponentially. In practice a bound in the resolution
time or number of explored branches (avoidance topologies)
must be set.

A distributed MIQP optimization can also be formulated,
but collision avoidance guarantees would be lost, since this
can lead to a disagreement in the avoidance side and recipro-
cal dances appear, as observed by van den Berg et al. (2009)
for the 2D case.

7 Control framework: quadrotor vehicle

The aforementioned algorithms are experimentally evaluated
with quadrotor helicopters. A cascade control framework is
implemented (see Fig. 8) which has several interconnected
modules that work at different frequencies and are composed
of multiple submodules.

Motion planning

– Global motion planning: In complex environments, a
global planner is required for convergence. This is not
the focus of this work, therefore a fixed trajectory or goal
position is considered.

– Local motion planning:Computes (10Hz) a collision-free
local motion, given a desired global trajectory or a goal
position.7

• Guidance system:Outputs a preferred velocity ū, given
a desired global trajectory or a goal position, and the
current state.

6 We use IBM ILOG CPLEX.
7 Although the local planning is designed for on-board performance,
this is left as future work.
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Fig. 8 Schema of control framework, with blocks, variables and frequencies

• Collision avoidance: Receives a preferred velocity ū
and computes the optimal reference velocity u∗, i.e.
the closest collision-free candidate reference velocity
that satisfies the motion continuity constraints. This is
the topic of Sect. 4.

Control

– Position control: Controls the position of the quadrotor
to the local trajectory and runs at 50Hz off-board in a
real-time computer8.

• Local trajectory interpreter: Receives the optimal ref-
erence velocity u∗ at time instances tk . Outputs the
control states q, q̇, q̈, to satisfy motion continuity at
time tk and asymptotic convergence to the optimal ref-
erence trajectory given by pk + u∗ t̃ .

• Position control: Receives setpoints in position q,
velocity q̇ and acceleration q̈ and outputs the desired
force F̄ .

– Low-level control: Runs onboard (200Hz) and provides
accurate attitude control at high frequency. The low-level
controller abstracts the nonlinear quadrotor model as a
point-mass for the high-level control. It is composed of
three submodules:

• Attitude control: Receives a desired force F̄ (collec-
tive thrust and desired orientation) and outputs desired
angular rates ω̄x , ω̄y , ω̄z .

• Body angular rate control: Receives the desired body
angular rates ω̄x , ω̄y , ω̄z and collective thrust T . The
output is a rotation speed setpoint for each of the four
motors [ω1, . . . , ω4].

• Motor control: Receives the desired rotation speed
of the motor [ω1, . . . , ω4]. Off-the-shelf motor con-
trollers are used to interface the four motors of the
quadrotor.

8 Position control and the local trajectory interpreter could be on-board
given access to position sensing.

Fig. 9 The basic model of a quadrotor with applied forces

A quadrotor is a highly dynamic vehicle. To account for
delays, the state used for local planning is not the current state
of the vehicle, but a predicted one (by forward simulation of
the previous local trajectory) at the time when the new local
trajectory will be sent. For ease of exposition, this distinction
is omitted in the following sections.

A quadrotor is an under-actuated system in which trans-
lation and rotation are coupled. Its orientation (attitude), is
defined by the rotation matrix RB

I = [
ex , ey, ez

] ∈ SO(3),
which describes the transformation from the inertial coor-
dinate frame I to the body fixed coordinate frame B. For
completeness, we provide an overview of the model and con-
trol. For details, refer toMellinger andKumar (2011), among
others.

7.1 Quadrotor model

The four rotors of a quadrotor are mounted in fixed positions
with respect to the body frame and their motor speeds ωi can
be controlled individually as indicated in Fig. 9. Each motor
produces a force Fi = ctω

2
i , and a moment Mi = cyω

2
i , with

ct and cy model specific constants.
Yaw, pitch, roll and total thrust T ∈ R are controlled

by differential control of the individual rotors. The system
is under-actuated and the remaining degrees of freedom are
controlled through the system dynamics.
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Following (Mellinger and Kumar 2011), the total thrust T
and themoments around the body axesMa = [

Mx , My, Mz
]

∈ R
3 are given by

[
T
Ma

]

=

⎡

⎢
⎢
⎣

ct ct ct ct

0 cal 0 −cal
−cal 0 cal 0

cy −cy cy −cy

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
U

⎡

⎢
⎢
⎣

ω2
1

ω2
2

ω2
3

ω2
4

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
ωm

, (15)

where l is the length from the center of gravity of the quadro-
tor to the rotor axis of the motor and ca a model constant.

The angular velocity ω and its associated skew anti-
symmetric matrix ω̆ are denoted by

ω̆ :=
⎡

⎣
0 −ωz ωy

ωz 0 −ωx

−ωy ωz 0

⎤

⎦ , ω :=
⎡

⎣
ωx

ωy

ωz

⎤

⎦ .

The angular acceleration around the center of gravity is
given by

ω̇ = J−1 [−ω × Jω + Ma
]
, (16)

with J the moment of inertia matrix referenced to the center
of mass along the body axes of the quadrotor. If RI

B denotes
the transformation from the body to the inertial frame, the
rotational velocity of the quadrotor’s fixed body frame with
respect to the inertial frame is given by Ṙ I

B = ω̆RI
B .

Apoint-massmodel canbeused for the position dynamics.
The accelerations of the quadrotor’s point-mass in the inertial
frame p̈I are given by

p̈I = RI
B

[
0, 0, − T

m

]T + [
0, 0, g

]T
, (17)

where two forces are applied, gravity FG = mg in the z
direction in the inertial frame and thrust T , in the negative z
direction in the quadrotor body-frame.

7.2 Attitude control

The approach by Lee et al. (2010) that directly converts dif-
ferences of rotation matrices into body angular rates is fol-
lowed. A desired force setpoint F̄ and a desired yaw angle ψ

given by a high-level controller are transformed to a desired
rotation matrix R̄ = [

ēx , ēy, ēz
]
with

ēz = F̄

‖F̄‖ , ēy = x̄ψ × ēz

‖x̄ψ × ēz‖ , ēx = ēy × ēz,

and x̄ψ = [cosψ, sinψ, 0]T a vector pointing in the desired
yaw direction. The desired body angular rates are controlled
with a standard PD controller and given by

ω̄ = f

(
1

2
(R̄B

I R̂ I
B − R̂B

I R̄ I
B)

)

, (18)

where R̂ indicates the estimated rotation matrices.

7.3 Position control

According to the double integrator dynamics of Eq. (17), the
discrete LTI model can be written as

xp
k+1 = Axp

k + Bup, y = Cxp
k , (19)

with state vector xp := [
px , vx , py, vy, pz, vz

]T , input vec-

tor up = [
Fx , Fy, Fz

]T and system matrices

A := I3 ⊗
[
1 dt
0 1

]

, B := I3 ⊗
[

st
dt

]

, C := I3 ⊗ [
1 0

]
,

with I3 the 3x3 identity matrix, st = 1
2dt2, dt the time step

and ⊗ the Kronecker product. To have an integral action for
theLQRcontroller, the systemgiven inEq. (19) is augmented
with the integral term xpI ∈ R

3 to the discrete LTI system

x̃p :=
[
xp

xpI

]

, Ã :=
[

A 0
C I

]

, B̃ :=
[

B
0

]

, C̃ := [
C 0

]
.

The control input up is then givenwith the state feedback law
up = −K x̃p with K the solution to the Discrete Algebraic
Riccati equation (DARE) with state and input cost matrices.

7.4 Motion primitives

Apoint-mass M-order integratormodel is considered, decou-
pled in each component,9

q(M+1)(t̃) = ν (20)

Let ν ∈ R
3 be piecewise continuous and (.)(M+1) rep-

resent the derivative of order M + 1 with respect to time.
The resulting solution q(t̃) is CM -differentiable at the initial
point.

For M > 0 the state feedback control law is given by

ν(t̃) = −aMq(M) − · · · − a2
..
q

+a1(u− .
q) + a0(pk + ut̃ − q). (21)

Mellinger and Kumar (2011) showed that the under-
actuated model of a quadrotor can be written as a differen-
tially flat (VanNieuwstadt andMurray 1997) system, with its
trajectory parametrized by its position and yaw angle [p, ψ]
and their derivatives up to forth degree in position and sec-
ond degree in yaw angle. In the following, the yaw angleψ is

9 Alternatively, any other controller with arbitrary constraints, or an
LQR controller can be employed.
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Fig. 10 The quadrotor used in the experiments consists of a PX4 IMU
with an AR. Drone frame and motors

considered constant. Although the method presented in this
paper extends to M = 4, in order to simplify the formula-
tions, given the difficulty to accurately estimate the high order
derivatives and theirmarginal effect, only continuity in accel-
eration (M = 2) is imposed in the remaining of the paper.

For M = 2 (continuity in initial acceleration), as derived
in Rufli et al. (2013), the motion primitive is

q(t̃) = pk + ut̃ + Fe−ω1 t̃

+((ṗk − u + (ω1 − ω0)F)t̃ − F)e−ω0 t̃ , (22)

with F = (p̈k + 2ω0(ṗk − v∞))/(ω0 − ω1)
2 and ω0, ω1

design parameters related to the decay of the initial velocity
and acceleration and can potentially be different for each of
the three axis.

8 Experimental results and discussion

Experiments were performed both in simulation and with
physical quadrotors (Fig. 10). Simulation utilizes a model of
the dynamics, and enables experiments for larger groups of
vehicles. As an example, Fig. 11 shows a simulation for posi-
tion exchange for ten vehicles. See the accompanying video
for this experiment and other experiments in this section. All
other results in this section are for physical quadrotors only.

8.1 Experimental setup

The experimental space is a rectangular area of approxi-
mately 5m×5.5m and 2m height. Quadrotor position is
measured by an external motion tracking system10 running
at 250Hz. Figure 10 shows the quadrotor used in the experi-
ments. It is based on a PX4 IMU11 with an AR.Drone frame
and motors.12 The vehicle is low-cost and easy to build, with

10 http://www.vicon.com/.
11 https://pixhawk.ethz.ch/px4/.
12 http://ardrone2.parrot.com/.

a totalweight of about 450g. Each vehicle ismodeledwith the
following parameters. ω0 = 3, ω1 = 3.5, ri = 0.35 m, hi =
0.5 m, vmax = 2m/s, amax = 2m/s2, ε = 0.1 m and τ = 3 s.

A system diagram was shown earlier in Fig. 8. A low-
level attitude estimator and controller run on each quadro-
tor’s IMU and the quadrotor is abstracted as a point-mass
for the position controller. The position controller runs on
a real-time computer and communication between the real-
time computer and the quadrotors is donewith a 50HzUART
bridge.13 The overlying collision avoidance runs in a nor-
mal operating system environment and sends a collision-free
optimal reference trajectory to the position controller over a
communication channel.

The position controller ensures that the quadrotors stay on
their local trajectory as computed by the collision avoidance
algorithm. This hard real-time control structure ensures the
stability of the overall system and keeps the quadrotors on
given position references.

8.2 Single quadrotor

The benchmark performance of the system is evaluated for a
single quadrotor running the full framework, including local
planning in which continuity up to acceleration is imposed.
Figure 12 shows a single quadrotor tracking a circularmotion
given by a sinusoid reference signal in all three position com-
ponents.

Figure 12 shows at top-left the projection of the position
p of the quadrotor onto the horizontal plane, and at bottom-
left the projection onto a vertical plane. The reference circular
motion is not feasible due to the space limitation of the room,
but the local planning successfully avoids colliding with the
walls, causing the flattened edges in the y component. Fig-
ure 12 at top-right shows each component of the position p
with respect to time as a continuous line,while the point-mass
local trajectory q is shown by a dashed line. Good tracking
performance is observed, although with a small delay due
to unmodeled system delays and higher order dynamics. A
steady-state error is further observed due to the use of anLQR
controller without integral part in the experiments. Steady-
state error is greatest in the vertical component, as a thrust
calibration is not performed before flight, and its value varies
therefore from quadrotor to quadrotor. To handle steady state
error, continuity is imposed in the local trajectory instead of
on the real state of the quadrotor. This approach adapts well
to poorly calibrated systems, like the one in our experiments.

Figure 12 at bottom-right shows the measured velocity v
of the quadrotor as a continuous line and the velocity of its
point-mass local trajectory q̇ as a dashed line with respect
to time. Good tracking performance is observed, although
the delay is more apparent, especially for abrupt changes in

13 http://www.lairdtech.com/.
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Fig. 11 Position exchange for ten quadrotors in simulation. Top a horizontal(x–y) view. Bottom, a vertical (x–z) view. Vehicle position is depicted
for timestamps 0s:4s:6s:8s:12s in an arena of size 8 m×4m ×8m. Convergence to the goal configuration is achieved in about 15 s

Fig. 12 Experiment with a single quadrotor. Left Horizontal (x–y) and
vertical (x–z) views of the path followed by the quadrotor when track-
ing a sinusoid signal in each position component. The flattened edges
in the y component are due to the wall constraints in the experimental

space. Right Position and velocity of the quadrotor (p, v) with respect
to time are shown as a solid line, and position and velocity of the local
trajectory (q, q̇) are shown as a dashed line

velocity, partially due to the unmodeled high-order dynam-
ics of the quadrotor. The smoothness of the velocity profile
can be adjusted by the parameters ω0 and parameter ω1 in
Eq. (22) which can be tuned for overall good performance.
The compensation of this and other system delays is a topic
for future work.

8.3 Position swap

This section describes position swap experiments with sets
of two or four quadrotors, with about fifty transitions to dif-
ferent goal configurations, both antipodal and random. The
centralized (Algorithm1) and distributed (Algorithm2) algo-

rithms are both tested, with the three different linearization
options for the collision avoidance constraints described in
Sect. 4.5.2. The joint MIQP optimization (Algorithm 3) was
also tested, but proved too slow for real time performance
at 10Hz in our implementation. In simulation, the approach
provided good results.

Figure 13 shows a representative position exchange for
two quadrotors. Figure 13 at left shows the projection of their
paths on the horizontal and vertical planes. The slight change
in height is due to the dynamics of the quadrotors. Figure 13
at right shows the velocity profile for both quadrotors. The
preferred speed of the quadrotors is 2m/s, and the position
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Fig. 13 Position exchange for two quadrotors. Left horizontal (x–y)
and vertical (x–z) plots of the path followed by each quadrotor, with
initial position marked by “o” and final position by “x”. Right Velocity

profile with respect to time for both quadrotors. The measured velocity
v is shown by a continuous line, and the control velocity q̇ is shown by
a dashed line)

Fig. 14 Position exchange of four quadrotors, with video frames approximately every 2s. Top Linearization of collision avoidance constraints
enforcing that all agents avoid to the right. Bottom Linearization of collision avoidance constraints with respect to the current velocity

exchange takes a few seconds. Very similar performance was
obtained in the distributed and centralized case and with the
different linearization options.

Figure 14 shows two experiments in which four quadro-
tors transition to antipodal positions whilst changing height.
Two different linearization strategies are employed—Fig. 14
at top shows the case when avoidance to the right is imposed
(Sect. 4.5.2, case (1), while Fig. 14 at bottom shows the
case when collision avoidance constraints are linearized with
respect to the measured velocities (Sect. 4.5.2, case (2). Fig-
ure 15 shows the data for the two experiments, again with
the different linearization strategies at top and bottom. Fig-
ure 15 at left-and-center columns shows the projection of
the position of all quadrotors onto the horizontal plane and
a vertical plane. Figure 15 at right shows the velocity profile
for all quadrotors. The preferred speed is 2m/s. The position
exchanges were collision-free thanks to the local planning
algorithm even for this complex case in which the preferred
velocity always points towards the goal positions and there-
fore is not collision-free, and the dimensions of the room

only allow the quadrotors to fly at a height between 0 m and
2 m.

For the case when avoidance to the right is imposed, the
behavior is highly predictable and smooth, as the rotation of
all vehicles to one side is imposed in the linearization, which
showed good results both in the centralized and distributed
cases. Although this characteristic is effective for cases of
symmetry, in arbitrary configurations it can lead to longer
trajectories. For the case of linearization with respect to the
current velocity, the behavior can be different for different
runs and emerges from non-deterministic characteristics of
the motion. It is observed that in this particular example two
quadrotors chose to pass over each other. Although this lin-
earization option presents very good performance in not too
crowded environments, its performance degrades in the case
of high symmetry and very crowded scenarios (for example
due to disagreements in avoidance side, especially in the dis-
tributed case). A detailed analysis of the best linearization
option for each case is outside of the scope of this paper and
remains as future work.
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Fig. 15 Position exchange of four quadrotors,TopLinearization of col-
lision avoidance constraints enforcing that all agents avoid to the right.
Bottom Linearization of collision avoidance constraints with respect to
the current velocity. Left and middle column Horizontal (x–y) and ver-

tical (x–z) plots of the path followed by each quadrotor, with initial
position marked by “o” and final position by “x”. Right Velocity profile
with respect to time for both quadrotors. The measured velocity v given
by a continuous line, and the control velocity q̇ by a dashed line)

8.4 Trajectory following

This section describes experiments to test the method for
trajectory tracking i.e. the case of a moving goal. Two rep-
resentative scenarios are described. Vertical motion is not
displayed in the results because, without loss of generality,
motion was approximately in a horizontal plane.

Figure 16 shows two quadrotors that are tracking inter-
secting trajectories while avoiding collision locally. The blue
quadrotor follows a circular motion and the red quadorotor
follows a diagonal motion such that there are two intersec-
tion points in position and time. The red quadrotor finally
transitions to a rest position. Figure 16 at left shows that both
quadrotors must deviate from their ideal trajectories in order
to avoid collision. Figure 16 at right is the velocity plot which
shows that no deadlock appeared, and both quadrotors were
moving at a velocity of about 1.5m/s, except towards the
end of the experiment where the red quadrotor approaches
a static goal position. The trajectory for the blue quadrotor
then becomes feasible and it is well tracked as shown by the
velocity values after 100s.

Figure 17 shows two quadrotors (blue and red) that are
tracking non-colliding circular trajectories with 180 degrees
phase shift, while a human (black) moves in the arena. The
human is considered as a dynamic obstacle. The two quadro-
tors avoid collisions locallywhilst tracking, as closely as pos-
sible, their ideal trajectories. Figure 17 at left shows the tra-
jectories and Fig. 17 at right shows the measured velocity for
all agents. No collision or deadlock was observed, although
in some cases a quadrotor had to stop as the optimiza-
tion became infeasible. In this experiments the human must
move at a speed similar to that of the quadrotors (<2m/s)
and be slightly predictable, due to the constant velocity
assumption.

8.5 Overall behavior and algorithm evaluation

This section discusses overall behavior based on statistics
collected over all experiments.

Deadlock was not observed in our experiments, but it
is possible from a theoretical standpoint and can occur
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Fig. 16 Two quadrotors track intersecting trajectories while avoiding
collision locally. The blue quadrotor follows a circular motion and
the red quadrotor follows a diagonal motion such that there are two
intersection points in position and time. The red quadrotor finally tran-
sitions to a rest position. Left Horizontal (x–y) plot of the path followed

by each agent, with initial position marked by “o” and final position
by “x”. Right Horizontal components of the measured velocity v with
respect to time for all agents. Vertical motion is approximately zero
(Color figure online)

Fig. 17 Two quadrotors (blue and red) track non-colliding circular
trajectories, while a human (black) moves randomly in the arena. The
two quadrotors avoid collisions locally. Left Horizontal (x–y) plot of
the path followed by each agent, with initial position marked by “o”

and final position by “x”. Right Horizontal components of the mea-
sured velocity v with respect to time for all agents. Vertical motion is
approximately zero (Color figure online)

either due to a stop condition being the optimal solution
with respect to the optimization objective, or due to the
optimization problem being infeasible. The constraints can
be such that the optimization is infeasible (no solution is
found) for two main reasons. Firstly, for experimental rea-
sons such as the unmodeled high-order dynamics of the vehi-
cles and other uncalibrated parameters such as delays, lead-
ing to differences between the precomputed motion primi-
tives and the executed ones. Secondly, for reasons inherent
in the method (and the trade-off between richness of plan-
ning versus low computational time), such as the limited

horizon of the local planning or the convexification of the
optimization via the linearization of the collision avoidance
constraint.

The local planning optimization, computed at 10Hz, was
infeasible in under 10% of the cumulated time-steps over all
experiments (about 40,000 data points at 10Hz over more
than 50 experimental runs). On encountering this condition,
the speed of the quadrotor is reduced at a higher than normal
rate following Eq. (12) and the quadrotor can (if necessary)
be brought to a halt before a collision thanks to the finite local
planning horizon. In all cases, and thanks to the reduction in
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Fig. 18 Optimal reference velocity u∗ for the experiment of Fig. 15,
bottom with four quadrotors. There are six timesteps where the opti-
mization becomes infeasible between times 64s and 68s. No collision
was observed (see Fig. 15 and the accompanying video)

speed, the optimization became feasible after a further one
or more time-steps, typically below 0.5 seconds.14

Figure 18 shows the optimal reference velocity u∗ result-
ing from the optimization with respect to time for one of
the experiments with four quadrotors (Fig. 15, bottom). Six
instances inwhich the optimization is infeasible are observed
between the times 65 and 68 seconds. These are points
where the optimal reference velocity becomes zero before the
quadrotors have converged to their goal positions. The effect
of these infeasible time-steps is to slow down the quadrotors,
which in turn has the effect of rendering the local planning
feasible in subsequent time-steps. This extreme situation was
mostly not observed in experiments with only two quadro-
tors.

Figure 19 shows accumulated statistics for the inter-agent
distance over all experiments. There is a step decrease in the
number of data points with distance below one meter. This
is due to the fact that quadrotors are considered to have a
radius of 0.35 m, enlarged by ε = 0.1 m to account for the
dynamics, as discussed in Sect. 4, and which can decrease
towards zero when in close proximity.

A few data-points appear to be in collision (<0.7m),
which can happen in cases where the optimization becomes
infeasible, especially when a human is walking in the
workspace. In the fully controlled case, no collisionwas visu-
ally observed and all situations were successfully resolved.
In the case with a human present, the quadrotor halted before
a collision in a few cases - this happens for example when
the velocity estimation is inaccurate or the human moves too
fast or with an abrupt change in direction.

14 This might not always be the case, mostly in scenarios with fast
dynamic obstacles, and if a collision can not be avoided. In that case,
the quadrotor stops to guarantee passive safety.

Fig. 19 Histogram of distance between all agents cumulated over all
the experiments (about 40,000 data points sampled at 10Hz). Only a
few samples are below the sum of radii (0.7m)

Algorithm evaluation: Good performance is observed
especially for the centralized convex optimization. The dis-
tributed optimization performs well in simulation and in
experiments with two quadrotors. If the collision avoidance
constraints are linearized with respect to the current veloc-
ity,15 the distributed approach suffers from inaccuracies in the
velocity estimation, which can lead to performance degrada-
tion due to disagreements in the linearization.16 The central-
ized, non-convex optimization performs well in simulation
but was too slow for real-time performance.

9 Conclusion

Quadrotors are increasing in autonomy, acquiring more
sophisticated onboard sensing, and being deployed in groups
and around humans. These developments motivate the work
here on real-time reactive local motion planning for a set
of decision-making agents moving in 3D space. Building
on the concept of VO, three approaches are described and
compared—a centralized convex optimization, a distributed
convex optimization, and a centralized non-convex optimiza-
tion. The methods can be applied to a group of agents which
is heterogeneous in size, dynamics and aggressiveness. Suc-
cessful performance was shown in extensive experiments
with up to four quadrotors in close proximity, and includ-
ing humans.

The algorithms have low computational complexity so
that local motion planning can be on-board, provided

15 If they are linearized following a given strategy such as avoid to
the right, coordination is always achieved, but the solutions can be
suboptimal.
16 For example both agents try to avoid each other on the same side.
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that appropriate sensing capabilities are present. In this
work several linearization options for the non-convex con-
straints have been discussed and experimentally evaluated.
A detailed analysis of the best linearization option for each
case is nonetheless outside of the scope of this paper and
remains as future work. Additional future works also include
the modeling of system delays for accurate tracking of
the motion primitives, which would considerably improve
performance. Last but not least, asynchronous operation
should be evaluated. We expect the distributed algorithm
to perform well in that case thanks to the fast replanning
cycle and the low (in comparison) change in position and
velocity.

Appendix 1: Extension to homogenous group of agents

This appendix describes an extension of the local motion
planning method of Sect. 4 towards an homogeneous group
of agents (having the same control parameters).

With the assumption that all agents have the same control
parameters (ω0, ω1) for the local trajectories (Sec. 7.4), the
ε enlargement of the agents is not required. This is achieved
by substituting the V O constraint (Constraint 3 of Sec. 4.5)
by a 3D extension of the control obstacle C M − C O intro-
duced by Rufli et al. (2013). The C M −C O characterizes the
(n-differentiable) control trajectories in collision and is com-
puted by formulating in relative candidate reference velocity
space the full trajectories (Eq. (22) for M = 2). Linearization
of the constraint is still required and is done with respect to
the current velocity. The algorithms described in this paper
can be applied thereafter.

Relyingon the concept of differential flatness for a quadro-
tor vehicle (Mellinger and Kumar 2011), if M = 5 is used,
the quadrator would, in theory, be able to perfectly track the
control trajectory. In this case the full state (up to the fifth
derivative) shall be known for all agents.

Appendix 2: Equations repulsive velocity

For the repulsive velocity field of Fig. 4, left, the repulsive
velocity for agent i ∈ A is given by

for j = 1 : m, j �= i do
if pH

i j < ri + r j and |p3j i | < (hi + h j + Dh) then

ů3
i j = Vr

(
ri +r j −pH

i j
ri +r j

)(
hi +h j +Dh−|p3j −p3i |

Dh

)
p3j i

|p3i j |
end if
if pH

i j < ri + r j + Dr and |p3j i | < (hi + h j ) then

ůH
i j = Vr

(
hi +h j −|p3i j |

hi +h j

) (
ri +r j +Dr −pH

i j
Dr

)
pH

ji

pH
ji

end if

end for
ůi := ∑m

j=1 ůi j ; ůi = min(Vr/||ůi ||, 1)ůi

where Vr is the maximum repulsive force and Dr , Dh the
preferred minimal inter-agent distance in the X–Y plane and
in the Z component respectively.

Appendix 3: Equations linearization of VO

Denote h̄i j = h̄i + h̄ j and r̄i j = r̄i + r̄ j .
The non-convex constraint R3 \ VOτ

i j is linearized to
obtain a convex problem. For an approximation with five
linear constraints, as in Fig. 7, the linear constraints are
given by

if pH
i j > r̄i j then

α = atan2(pH
i j ), αn = acos(r̄i j/pH

i j )

if |p3i j | > h̄i j then

α1 = atan

(
p3i j +h̄i j

pH
i j −sign(p3i j )r̄i j

− π
2

)

α2 = atan

(
p3i j −h̄i j

pH
i j +sign(p3i j )r̄i j

+ π
2

)

O = [pH
i j − r̄i j , p3i j − sign(p3i j )h̄i j ]

else

α1 = atan

(
p3i j +sign(p3i j )h̄i j

pH
i j −r̄i j

− sign(p3i j )
π
2

)

α2 = atan

(
p3i j −sign(p3i j )h̄i j

pH
i j −r̄i j

+ sign(p3i j )
π
2

)

O = [pH
i j − r̄i j , 0]

end if
αO = atan2(O)

n1i j = [cos(α − αn), sin(α − αn), 0]
n2i j = [cos(α + αn), sin(α + αn), 0]
n3i j = [pH

i j cos(α1)/pH
i j , sin(α1)]

n4i j = [pH
i j cos(α2)/pH

i j , sin(α2)]
n5i j = [pH

i j cos(αO)/pH
i j , sin(αO)]

c1i j = c2i j = c3i j = c4i j = 0; c5i j = ||O||/τ
else if |p3i j | > h̄i j then

α = atan2(pH
i j ), β = atan(

|p3i j |−h̄i j

r̄i j
)

α1 = π
2 − atan(

|p3i j |−h̄i j

r̄i j −pH
i j

)

α2 = π
2 − atan(

|p3i j |−h̄i j

r̄i j +pH
i j

)

n1i j = [cosα cosα1, sin α cosα1, sin α1]
n2i j = [cosα cosα2, sin α cosα2, sin α2]
n3i j = [cos(α + π

2 ) sin β, sin(α + π
2 ) sin β, cosβ]

n4i j = [− cos(α + π
2 ) sin β, − sin(α + π

2 ) sin β, cosβ]
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n5i j = [0, 0, 1]
c1i j = c2i j = c3i j = c4i j = 0; c5i j = (|p3i j | − h̄i j )/τ

if p3i j < 0 then
ns

i j [3] = −ns
i j [3] ∀s

end if
else
Agents i and j are in collision
nl

i j = pi j/pi j

cl
i j = −(r̄i j − pH

i j + h̄i j − |p3j − p3i |/τ
end if

where H1
i j and H2

i j represent avoidance to the right / left,

H3
i j and H4

i j above / below and H5
i j represents a head-on

maneuver, which remains collision-free up to t = τ .
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