

Optimal Control and Optimization Methods for Multi-Robot Systems

Javier Alonso-Mora, Ketan Savla and Daniela Rus Tutorial on Multi-robot systems @ RSS 2015 July 2015

Future: many robots performing many tasks

We aim at optimal solutions for multi-robots

- Optimal control and optimization methods
- Attractive since:
 - they provide guarantees in the optimality of the solution
 - applicable to efficiently solve a wide range of problems
 - thanks to advances in the field of constrained optimization
 - and an increase in computational power of robotic platforms

Optimization is everywhere

Overview of this talk

- We give an overview of the required tools
- We focus on four canonical problems for multi-robot systems
- We describe some of the works by the community
- Disclaimers
 - Focus on motion planning / control / task assignment
 - Broad field we will miss some things
 - Large body of works if you feel we are missing some important reference, please let us know, We'll gladly add them
 - Contact: jalonsom@mit.edu
 - We are working on a tutorial/review

Overview

Introduction

1. Optimal control and optimization tools
Optimal control & dynamic programming
Constrained optimization
Combinatorial optimization

- 2. Problem definition & overview of state of the art
- Summary

Optimal control & dynamic programming

- Given a controlled dynamical system
 - State x(t), control input u(t)
 - Continuous

$$\dot{x} = f(x, u), x(0) = x^{0}$$

Discrete

$$x(t+1) = Ax(t) + Bu(t)$$

- A running cost r(x(t), u(t))
- Find the optimal control inputs

Optimal control & dynamic programming

Optimal control [discrete, infinite horizon]

$$\begin{array}{ll} \text{minimize} & J = \sum_{t=0}^{\infty} r(x(t), u(t)) \\ \text{subject to} & u(t) \in \mathcal{U}, \, x(t) \in \mathcal{X}, \quad t = 0, 1, \dots \\ & x(t+1) = Ax(t) + Bu(t), \quad t = 0, 1, \dots \\ & x(0) = x^0 \end{array} \qquad \begin{array}{ll} \text{Running cost} \\ \text{State and control constraints} \\ & x(t+1) = Ax(t) + Bu(t), \quad t = 0, 1, \dots \\ & \text{Model of the properties of the propertie$$

Dynamic programming solves for a value function satisfying Bellman equation

Model predictive control

Model predictive control

minimize
$$\sum_{\tau=t}^{t+T} r(x(\tau),u(\tau))$$
 subject to
$$u(\tau)\in\mathcal{U},\ x(\tau)\in\mathcal{X},\ \tau=t,\ldots,t+T$$

$$x(\tau+1)=Ax(\tau)+Bu(\tau),\ \tau=t,\ldots,t+T$$

$$x(0)=x^0$$

- Solve for a time horizon T and apply the first command, repeat at t+1
- Can be solved implicitly or explicitly (regions)

For a set of variables

$$\mathbf{x} \in \mathbb{X}$$

Find the optimal value that minimizes

$$\mathbf{x}^* := \underset{\mathbf{x}}{\text{arg min}} \quad f(\mathbf{x})$$

$$\text{subject to} \quad g_i(\mathbf{x}) \leq 0 \quad \forall i \in \{1, \dots, n_{ineq}\}$$

$$h_i(\mathbf{x}) = 0 \quad \forall i \in \{1, \dots, n_{eq}\}$$

Depending on the "shape" of f(x), $g_i(x)$ and $h_i(x)$ different problems are formulated

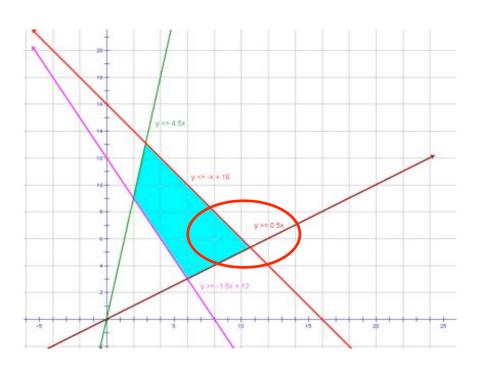
Convex optimization with continuous variables

$$\pmb{x} \in \mathbb{R}^{
u}$$

Linear programming LP

- $W_n X_1 + ... + W_n X_n$
- Quadratic programming QP
- $W_n X_1^2 + ... + W_n X_n^2$
- Semi-definite programming SDP

convex optimization methods are (roughly) always global, always fast

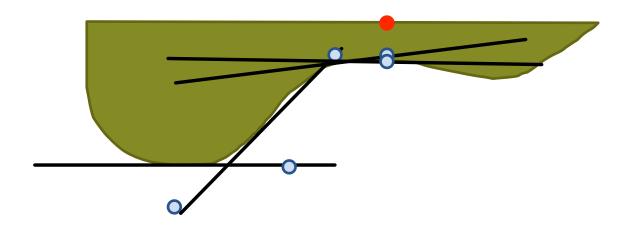


- for general nonconvex problems
 - local optimization methods are fast, but need not find global solution (and even when they do, cannot certify it)
 - global optimization methods find global solution (and certify it), but are not always fast (indeed, are often slow)

Prof. S. Boyd, EE364b, Stanford University

- Non-convex optimization with continuous variables $oldsymbol{x} \in \mathbb{R}^{
 u}$
 - Search techniques [global]
 - Gradient-based methods [local]
 - Sequential convex programming SCP [local]

- **Non-convex** optimization with **continuous** variables $x \in \mathbb{R}^{
 u}$
 - Sequential convex programming SCP [local]
 - a local optimization method for nonconvex problems that leverages convex optimization
 - convex portions of a problem are handled 'exactly' and efficiently



- **Non-convex** optimization with **continuous** variables $x \in \mathbb{R}^{
 u}$
 - Sequential convex programming SCP [local]

EFFICIENT LOCAL OPTIMUM

- a local optimization method for nonconvex problems that leverages convex optimization
 - convex portions of a problem are handled 'exactly' and efficiently
- SCP is a heuristic
 - it can fail to find optimal (or even feasible) point
 - results can (and often do) depend on starting point
 (can run algorithm from many initial points and take best result)
- SCP often works well, i.e., finds a feasible point with good, if not optimal, objective value

- Optimization with integer variables
 - Integer linear program as network flow
 - Mixed integer program MIP [global]

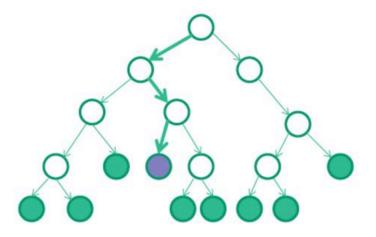
$$x_j \in \mathbb{N}, \quad x_j \in \{0,1\}$$

EFFICIENT - GLOBAL OPTIMUM

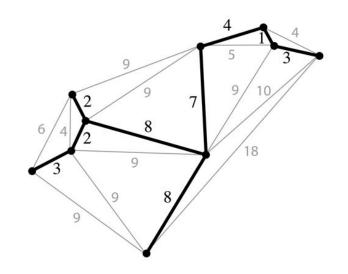
INEFFICIENT - GLOBAL OPTIMUM

- Combinatorial optimization
 - Traveling salesman problem TSP
 - small problems solved via MIP, large problems solved with heuristics

Branch-and-Bound



Each node in branch-and-bound is a new MIP



Constrained optimization: overview

- Convex optimization with continuous variables
 - LP/QP/SDP

VERY EFFICIENT GLOBAL OPTIMUM

- Non-convex optimization with continuous variables
 - Gradient-based methods [local]
 - Sequential convex programming SCP [local]

EFFICIENT LOCAL OPTIMUM

- Optimization with integer variables
 - Mixed integer program MIP [global]
 - Integer linear program as network flow
 - Combinatorial optimization

INEFFICIENT - GLOBAL OPTIMUM

EFFICIENT - GLOBAL OPTIMUM

INEFFICIENT - TYPICALLY HEURISTIC

Overview

- Introduction
- 1. Optimal control and optimization tools

2. Problem definition & state of the art

Multi-robot motion planning

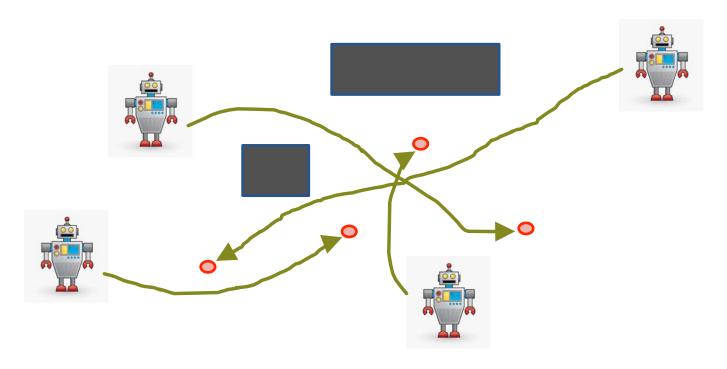
Formation planning

Task assignment

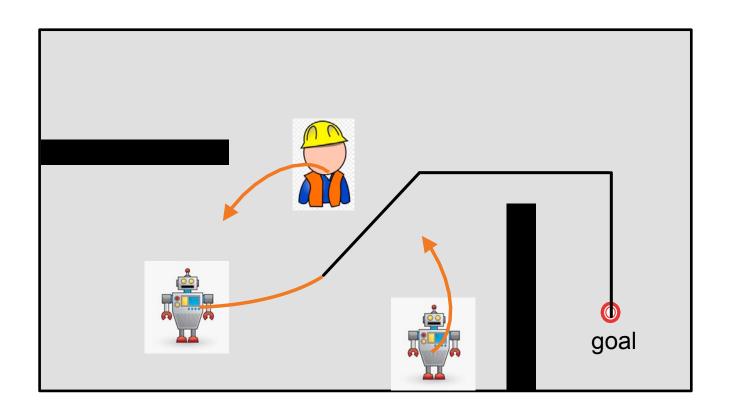
Surveillance and monitoring

Summary

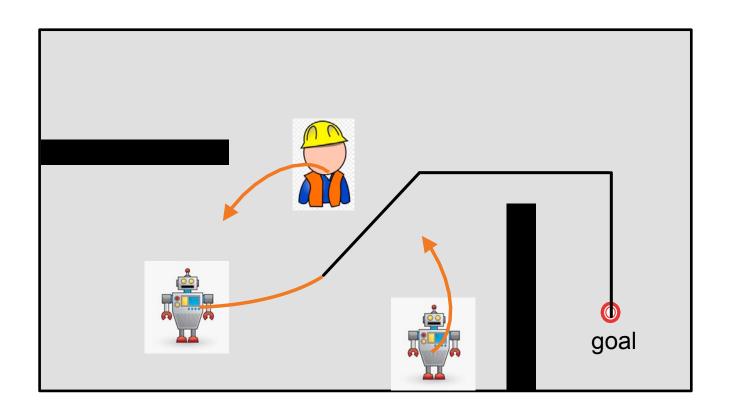
- Compute robot trajectories such that
 - Drive robots initial to final configuration
 - Avoid static and dynamic obstacles
 - Avoid inter-robot collisions
 - Respect dynamic model of the robot
 - Kinematic model, velocity/acceleration limits....



- Global planning
 - Trajectory from initial to final state
- Local planning (collision avoidance)
 - Trajectory from initial state up to a short time horizon

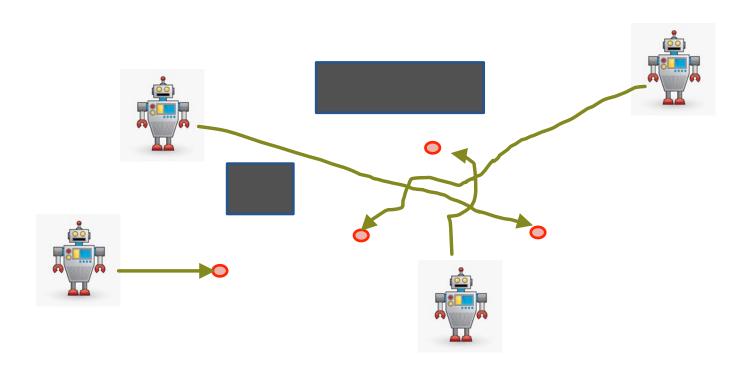


- Global planning
 - Trajectory from initial to final state
- Local planning (collision avoidance)
 - Trajectory from initial state up to a short time horizon



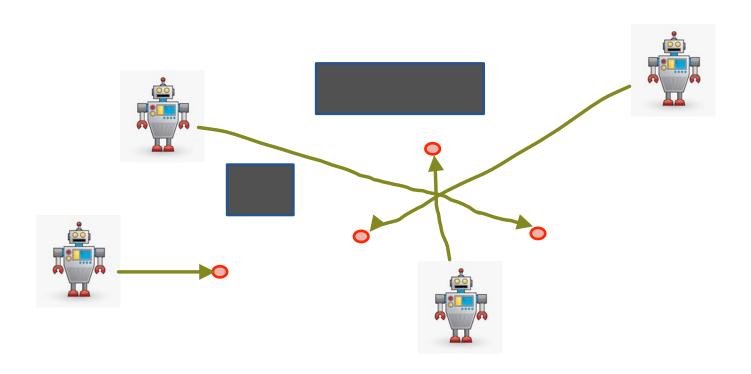
MMP: global planning

- "Traditional" approaches
 - Assign priorities and sequentially compute trajectories



MMP: global planning

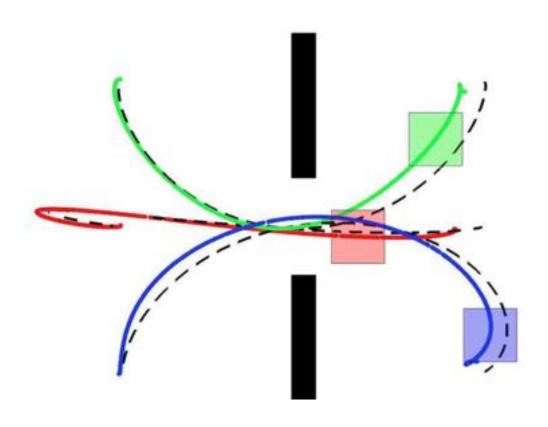
- "Traditional" approaches
 - Assign priorities and sequentially compute trajectories
 - Compute robot paths and adjust velocity profiles



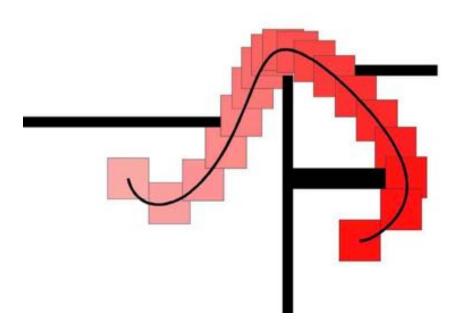
MMP: global planning

- "Traditional" approaches
 - Assign priorities and sequentially compute trajectories
 - Compute robot paths and adjust velocity profiles
- Optimization-based trajectory generation (examples)
 - "Near"-optimal approaches
 - Continuous space: Mixed Integer Program [Mellinger et al, 2012]
 - Discrete graph: Integer Linear Program [Yu and Rus, 2015]
 - Locally optimal approaches
 - Continuous obstacle-free: SCP [Augugliaro et al, 2012]
 - Continuous with obstacles: SCP [Chen et al, 2015]
 - Continuous 2D: Message passing [Bento et al, 2013]

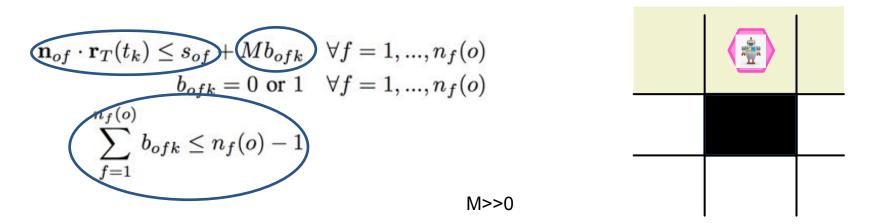
- Optimal trajectories, continuous, with dynamics [Mellinger et al, 2012]
- Formulated as a Mixed Integer Program



- Optimal trajectories, continuous, with dynamics [Mellinger et al, 2012]
- Formulated as a Mixed Integer Program
 - Trajectory = piecewise polynomial functions over n_w time intervals using Legendre polynomial basis functions P_{pw}(t)
 - Minimize the integral of the square of the norm of the snap (the second derivative of acceleration, $k_r = 4$)



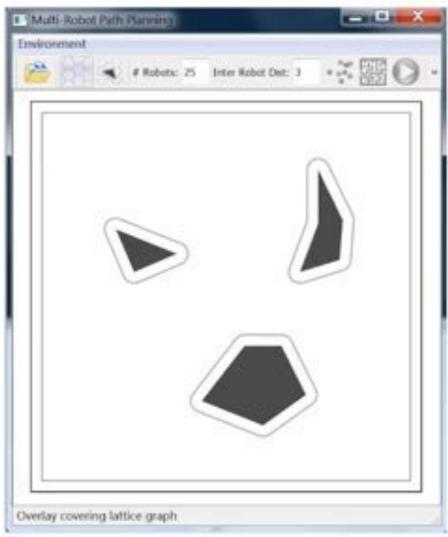
- Optimal trajectories, continuous, with dynamics [Mellinger et al, 2012]
- Formulated as a Mixed Integer Program
 - Trajectory = piecewise polynomial functions over n_w time intervals using Legendre polynomial basis functions P_{pw}(t)
 - Minimize the integral of the square of the norm of the snap (the second derivative of acceleration, $k_r = 4$)
 - Integer constraints for obstacle avoidance
 - At least one of the linear constraints defined by the faces of the obstacle separates the obstacle from the robot volume



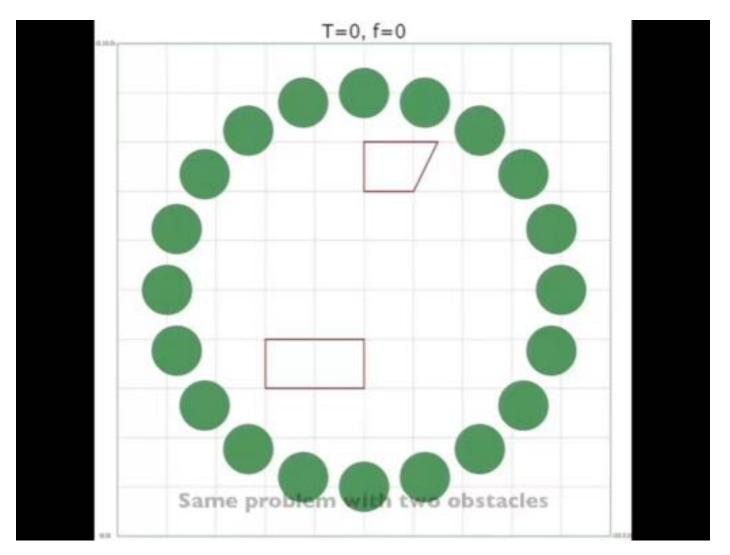
Optimal, but computationally expensive

- Near-optimal planning on a discrete graph [Yu and Rus, 15]
- Formulated as an Integer Linear Program (efficient)

- Near-optimal planning on a discrete graph [Yu and Rus, 15]
- Formulated as an Integer Linear Program (efficient)



- Locally optimal, continuous, 2D, holonomic, parallelizable
- ADMM 3 weight message passing [J. Bento et al, 2013]



- Locally optimal trajectories in free space, with dynamics
- Sequential convex programming (efficient) [Augugliaro et al, 2012]
 - The optimization variable $\chi \in \mathbb{R}^{3NK}$ consists of the vehicles' accelerations at each time step k
 - The optimality criterion is the sum of the total thrust at each time step
 - Convex constraints: physical properties of vehicles'
 - Non-convex constraints: collision avoidance:

$$\|p_i[k] - p_j[k]\|_2 \ge R, \quad \forall i, j, \quad i \ne j, \quad \forall k$$

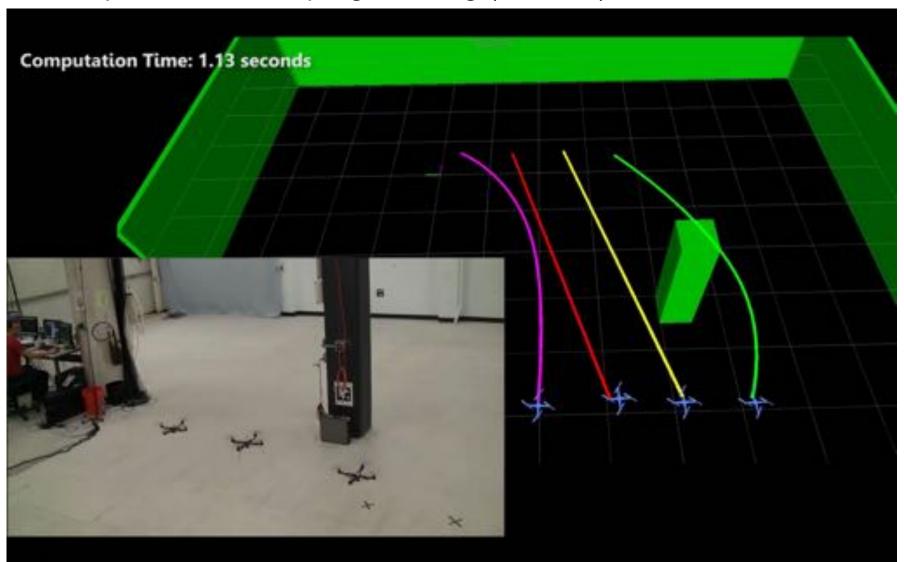
Linearized around the current solution results in QP:

minimize
$$\chi^T P \chi + q^T \chi + r$$

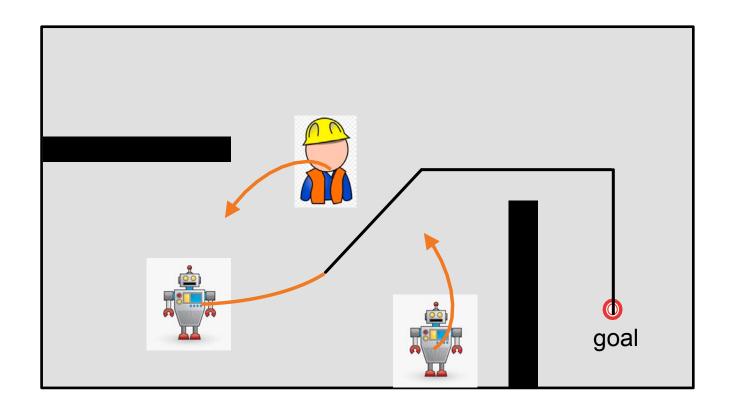
subject to $A_{eq} \chi = b_{eq}$
 $A_{in} \chi \leq b_{in}$,

- Locally optimal trajectories in free space, with dynamics
- Sequential convex programming (efficient) [Augugliaro et al, 2012]

- Locally optimal trajectories, with dynamics
- Sequential convex programming (efficient) [Chen et al, 2015]

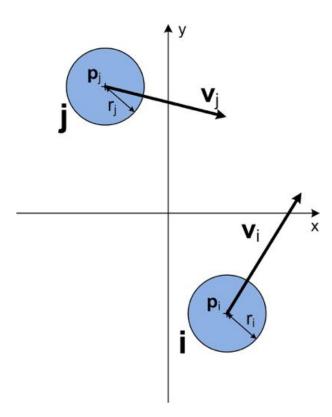


- Global planning
 - Trajectory from initial to final state
- Local planning (collision avoidance)
 - Trajectory from initial state up to a short time horizon



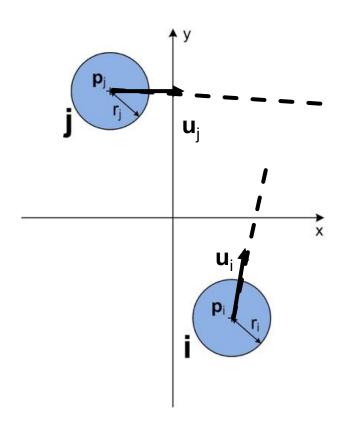
MMP: collision avoidance

- Velocity obstacles with motion constraints [Alonso-Mora et al. 2010]
 - Set of motion primitives towards linear trajectories (reference velocity)
 - Collision avoidance constraints in reference velocity space



MMP: collision avoidance

- Velocity obstacles with motion constraints [Alonso-Mora et al. 2010]
 - Set of motion primitives towards linear trajectories (reference velocity)
 - Collision avoidance constraints in reference velocity space

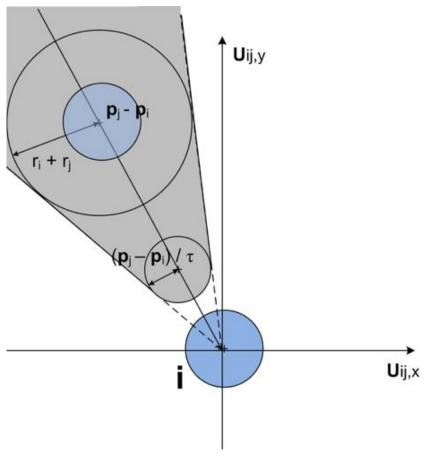


$$||(\mathbf{p}_i + \mathbf{u}_i t) - (\mathbf{p}_j + \mathbf{u}_j t)|| > r_i + r_j$$

$$\forall t \in [0, \tau]$$

MMP: collision avoidance

- Velocity obstacles with motion constraints [Alonso-Mora et al. 2010]
 - Set of motion primitives towards linear trajectories (reference velocity)
 - Collision avoidance constraints in reference velocity space



$$||(\mathbf{p}_i + \mathbf{u}_i t) - (\mathbf{p}_j + \mathbf{u}_j t)|| > r_i + r_j$$

$$\forall t \in [0, \tau]$$

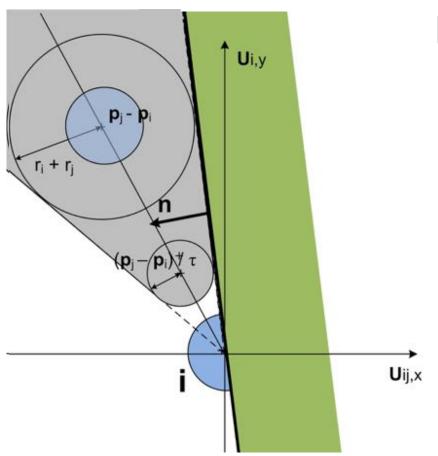
$$||\frac{\mathbf{p}_i - \mathbf{p}_j}{t} + (\mathbf{u}_i - \mathbf{u}_j)|| > \frac{r_i + r_j}{t}$$

Distributed with assumption on $\mathbf{u}_{\mathbf{i}}$

- Static: $\mathbf{u}_j = 0$
- lacksquare Constant velocity: $\mathbf{u}_j = \mathbf{v}_j$
- Both decision-making:
 - Collaborative $\Delta \mathbf{v}_i = \lambda \Delta \mathbf{v}_{ij}$

MMP: collision avoidance

- Velocity obstacles with motion constraints [Alonso-Mora et al. 2010]
 - Set of motion primitives towards linear trajectories (reference velocity)
 - Collision avoidance constraints in reference velocity space



$$||(\mathbf{p}_i + \mathbf{u}_i t) - (\mathbf{p}_j + \mathbf{u}_j t)|| > r_i + r_j$$

$$\forall t \in [0, \tau]$$

$$||\frac{\mathbf{p}_i - \mathbf{p}_j}{t} + (\mathbf{u}_i - \mathbf{u}_j)|| > \frac{r_i + r_j}{t}$$

Distributed with assumption on $\mathbf{u}_{\mathbf{i}}$

- Static: $\mathbf{u}_j = 0$
- lacksquare Constant velocity: $\mathbf{u}_j = \mathbf{v}_j$
- Both decision-making:
 - Collaborative $\Delta \mathbf{v}_i = \lambda \Delta \mathbf{v}_{ij}$

This gives a distributed convex optimization with linear constraints

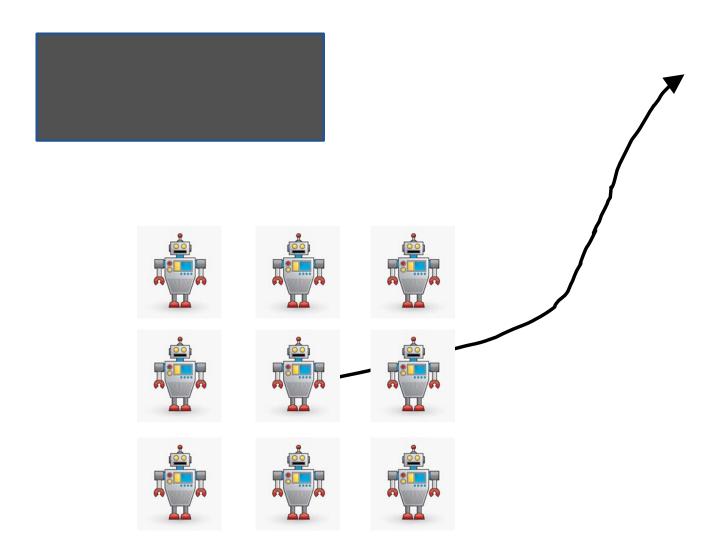
MMP: collision avoidance

- Optimal control [Hoffmann and Tomlin 2008]
- Model predictive control [Shim, Kim and Sastry 2003]
- Convex optimization in velocity space [van den Berg et al. 2009]
 - Extension to account for robot dynamics [Alonso-Mora et al. 2010]
 - Also applied to aerial vehicles [Alonso-Mora et al. 2015]



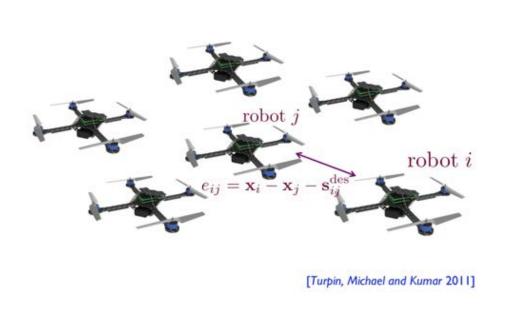
Formation control/planning: problem definition

Maintain desired inter-robot distances defining the formation



Formation control

- Obstacle-free environments
 - Centralized optimal coverage with assignment [Alonso-Mora et al. 2012]
 - Leader follower with optimal control [Ji, Muhammad and Egerstedt 2006]
 - Distributed QP with leader follower [Turpin, Michael and Kumar 2012]
 - Model Predictive Control [Dunbar and Murray 2002]
 - Distributed consensus [Montijano and Mosteo 2014]

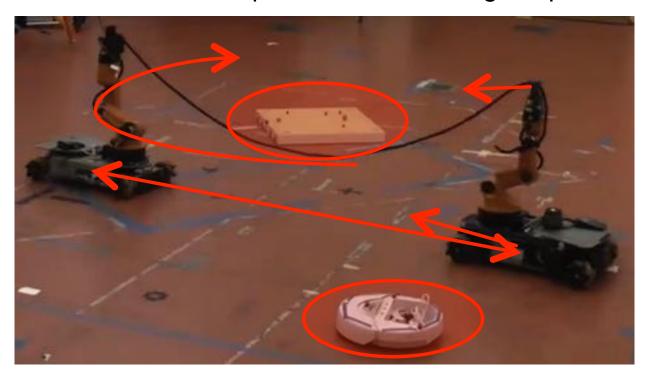


Formation planning: with obstacles

- Convex optimization
 - SDP, circular formation, triangulate space [Derenick and Spletzer 2007]
 - SDP for circular obstacles [Derenick, Spletzer and Kumar 2010]
 - Centralized LP in velocity space [Karamouzas and Guy 2015]
 - Distributed QP in velocity space [Alonso-Mora et al. 2015]
 - Constraints: Avoidance + min/max inter-robot distance

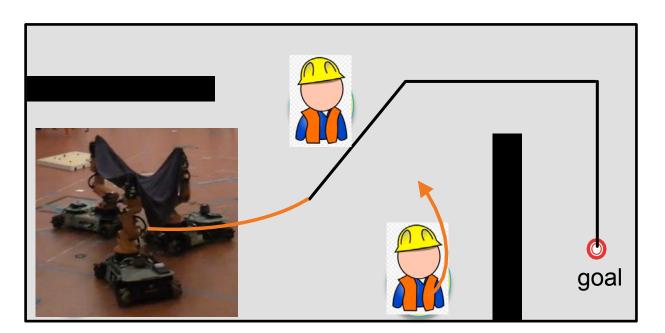
Formation planning: with obstacles

- Distributed convex optimization [Alonso-Mora et al. 2015]
 - Compute a new velocity minimize (deviation to target global motion of the object)
 - s.t. Collision avoidance constraints [velocity obstacles]
 Shape maintenance constraints: min / max distance
 Force sensing used to indicate intention and to coordinate
 Constraints convexified & partitioned assuming cooperation

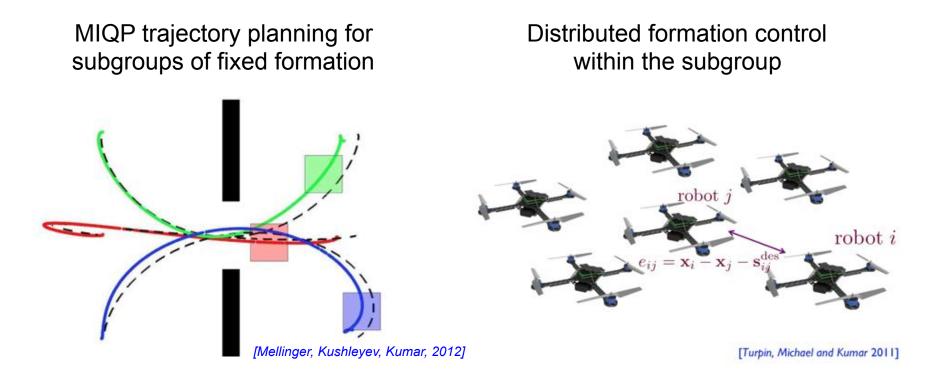


Distributed convex optimization [Alonso-Mora et al. 2015]

- Convex optimization
 - SOP, circular formation, triangulate space [Derenick and Spletzer 2007]
 - SDP for circular obstacles [Derenick, Spletzer and Kumar 2010]
 - Centralized LP in velocity space [Karamouzas and Guy 2015]
 - Distributed QP in velocity space [Alonso-Mora et al. 2015]
- Non-convex optimization
 - Off-line global MIP for sub-groups [Kushleyev, Mellinger and Kumar 2012]
 - On-line local sequential convex programming [Alonso-Mora et al. 2015]



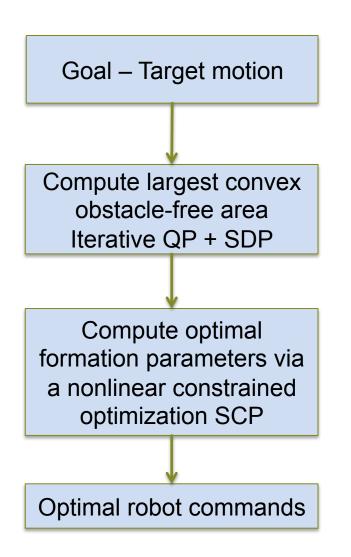
Centralized off-line MIP subgroups [Kushleyev, Mellinger and Kumar 2012]

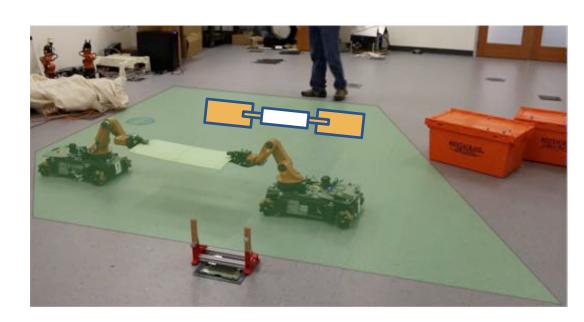


Centralized off-line MIP subgroups [Kushleyev, Mellinger and Kumar 2012]



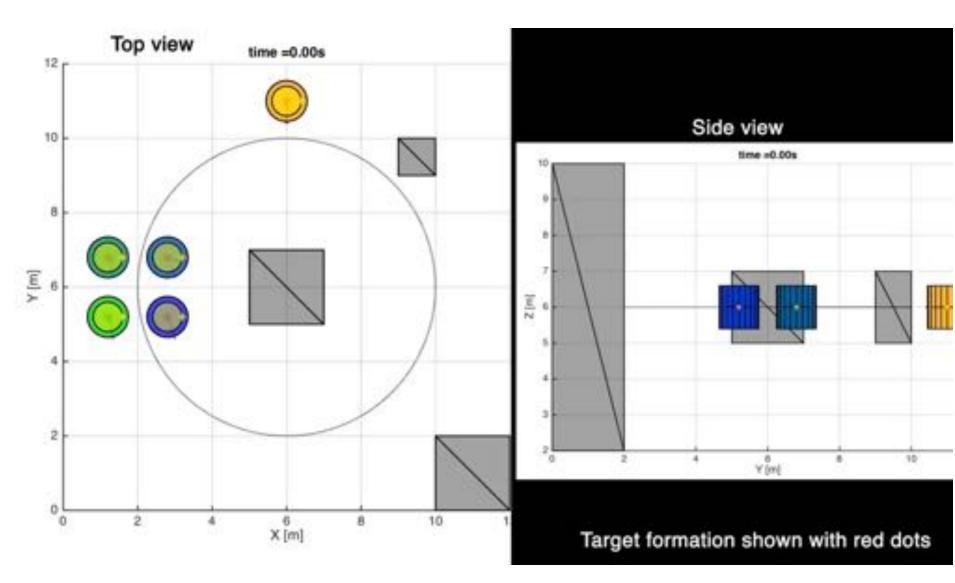
Centralized local real-time SCP [Alonso-Mora et al. 2015]



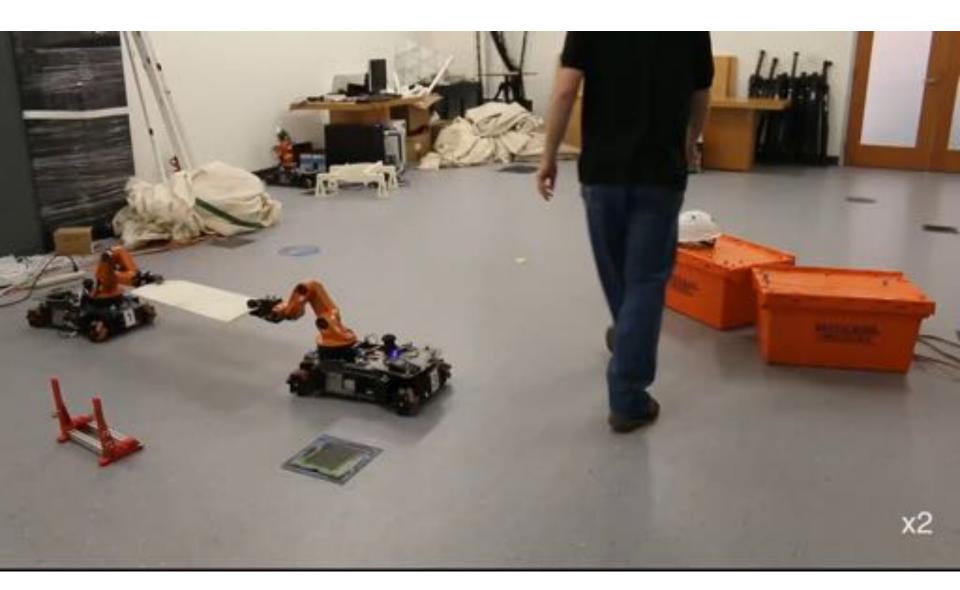


$$\begin{array}{ll} \mathbf{x}_i^* = \ w_t ||\mathbf{t} - \mathbf{g}(t_f)||^2 + w_s ||s - \bar{s}||^2 + w_q ||\mathbf{q} - \bar{\mathbf{q}}||^2 + c_i \\ s.t. \quad C_1^j = \{A(\mathbf{t} + s \operatorname{rot}(\mathbf{q}, \mathbf{f}_{0,j}^i)) \leq \mathbf{b}\} & \text{Inside convex polytope} \\ C_2 = \{s \ d_0^i \geq 2 \max(r, h)\} & \text{Minimum size} \\ C_3 = \{||\mathbf{q}||^2 = 1\} & \text{Quaternion} \end{array}$$

Centralized local real-time SCP [Alonso-Mora et al. 2015]



Centralized local real-time SCP [Alonso-Mora et al. 2015]



Take home message

Convex optimization with continuous variables

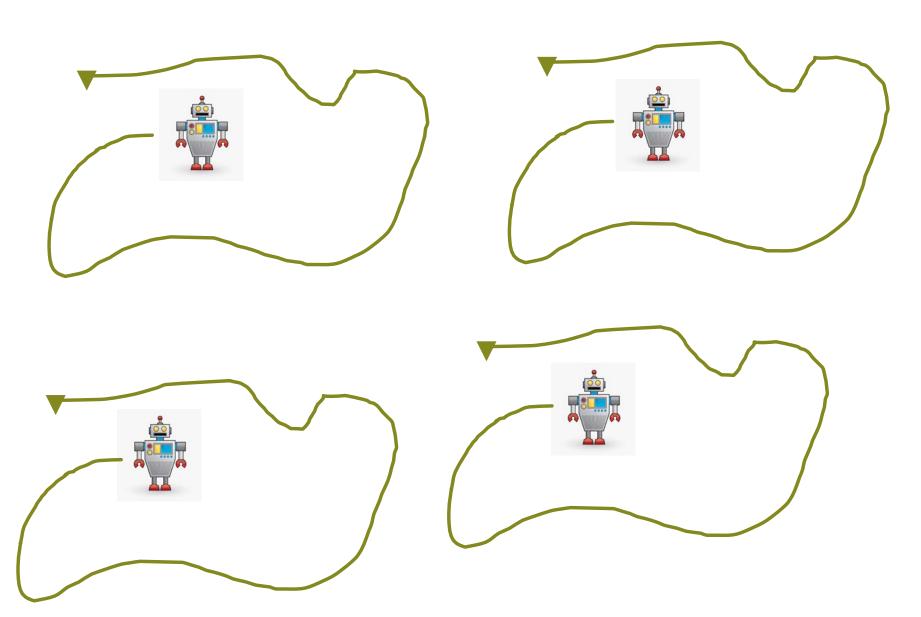
$$\pmb{x} \in \mathbb{R}^{
u}$$

- LP/QP/SDP
 - Very fast, global optimum
 - But, most problems are not convex
- Non-convex optimization with continuous variables
 - Sequential convex programming SCP [local]
 - Fast but local, often works well, but no strict guarantees
- Non-convex optimization with binary variables

$$x_j \in \{0, 1\}$$

- Mixed Integer Program MIP [global]
 - Slow but eventually will find the global optimum

Surveillance and monitoring: problem definition

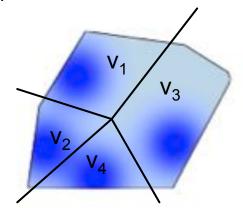


Surveillance and monitoring: problem definition

- Consider m robots at p = {p₁,...,p_m}
- Environment is partitioned into v = {v₁, ..., v_m}
- Cost:

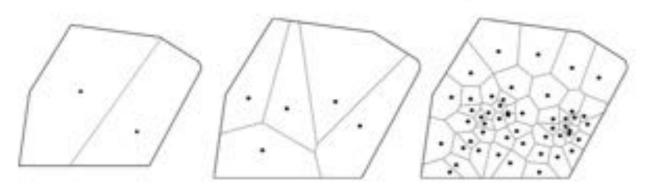
$$\mathcal{H}(p, v) = \sum_{i=1}^{m} \int_{v_i} f(\|x - p_i\|) \varphi(x) dx$$

- $\varphi: \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ density
- $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ penalty function



• Voronoi partition $\{V_1, \ldots, V_m\}$ generated by points $\{p_1, \ldots, p_m\}$

$$V_i(p) = \{ x \in \mathcal{Q} | \|x - p_i\| \le \|x - p_j\|, \ \forall j \ne i \}$$



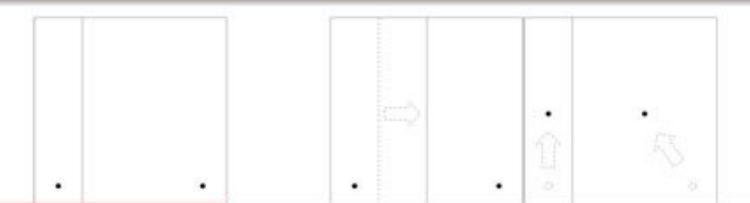
Surveillance and monitoring: problem definition

$$\mathcal{H}(p, v) = \sum_{i=1}^{m} \int_{v_i} f(\|x - p_i\|) \varphi(x) dx$$

Theorem (Alternating Algorithm, Lloyd '57)

- at fixed positions, optimal partition is Voronoi
- at fixed partition, optimal positions are "generalized centers"
- alternate v-p optimization

⇒ local optimum = center Voronoi partition



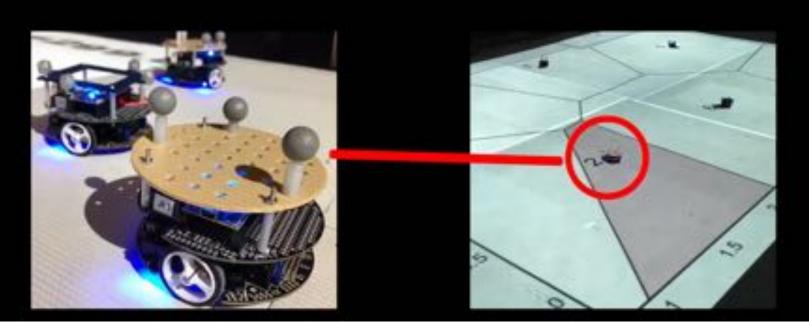
Surveillance and monitoring

- Spatial distribution known
 - Gradient descent alternating algorithm [Lloyd 1982]
- Spatial distribution unknown
 - Adaptive algorithms [Schwager, Rus and Slotine 2009]
 - Motion constraints [Savla and Frazzoli 2010]
 - Persistent surveillance [Smith et al. 2011]
 - Adapting to sensing/actuation [Pierson et al. 2015]

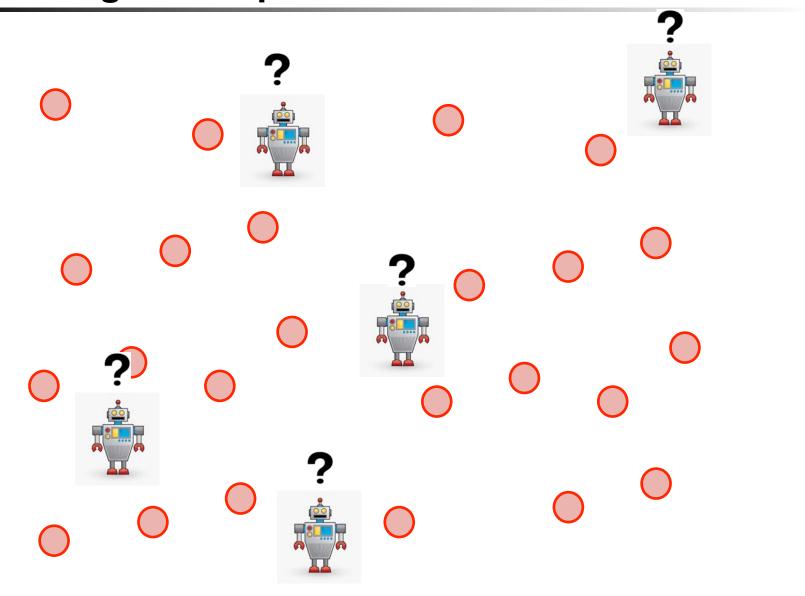
Multi-robot coverage

Adapting to sensing/actuation [Pierson et al. 2015]

In the following experiment, robot 2 (red) has a lower sensor health. Its Voronoi cell will shrink over time to compensate.



Task assignment: problem definition



Taxonomy [Gerkey 2004]

Task assignment: Single task per robot

3. THE GENERAL ASSIGNMENT PROBLEM

Suppose n individuals (i = 1, ..., n) are available for n jobs (j = 1, ..., n) and that a rating matrix $R = (r_{ij})$ is given, where the r_{ij} are positive integers, for all i and j. An assignment consists of the choice of one job j_i for each individual i such that no job is assigned to two different men. Thus, all of the jobs are assigned and an assignment is a permutation

$$\begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$$

of the integers 1, 2, ..., n. The General Assignment Problem asks: For which assignments is the sum

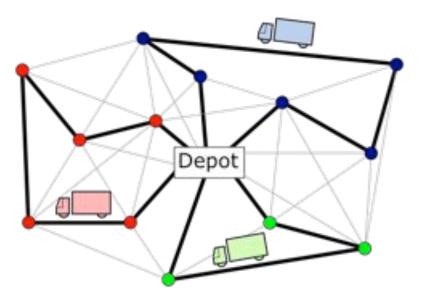
$$r_{1j_1} + r_{2j_2} + \cdots + r_{nj_n}$$

of the ratings largest?

- Optimal [Kuhn 1955]
- Suboptimal: auction [Bertsekas 1992]
- Concurrent assignment and planning [Turpin, Michael, Kumar 2014]

Task assignment: vehicle routing

- A pot. large number of tasks to be satisfied by a set of robots
- Static vehicle routing [Toth and Vigo 2001]
 - Traveling salesman problem
 - Small problems can be solved via a MIP
 - Large problems are typically solved with heuristics (tabu search)
- Dynamic vehicle routing [Bertsimas and van Ryzin 1991]
 - Introduced queuing theory (Arrival process: spatio-temporal Poisson)

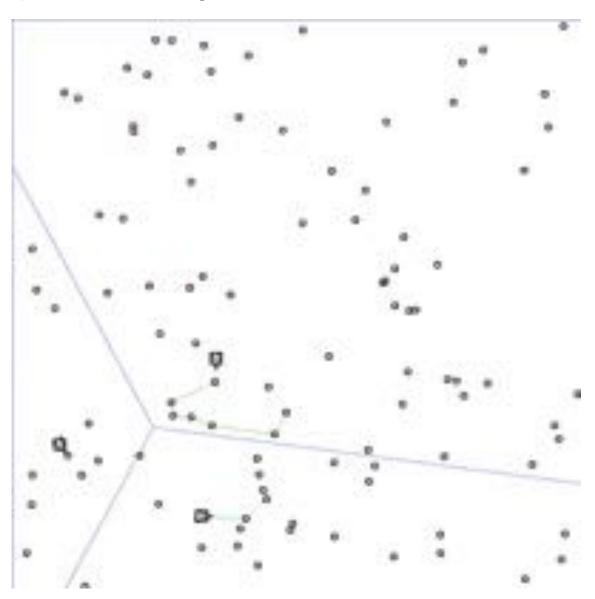


Task assignment: vehicle routing

- A potentially large number of tasks are to be satisfied by a set of robots
- Static vehicle routing [Toth and Vigo, 2001]
 - Traveling salesman problem
 - Large problems are typically solved with heuristics (tabu search)
- Dynamic vehicle routing [Bertsimas and van Ryzin, 1991]
 - Introduced queuing theory
 - Motivated many extensions
 - time constraints [Pavone et al, 2009]
 - service priorities [Smith et al, 2009]
 - adaptive and decentralized algorithms [Arsie et al, 2009]
 - complex vehicle dynamics [Savla et al. 2008]
 - limited sensing range [Enright and Frazzoli, 2006]
 - mobility on demand and rebalancing [Smith et al, 2013]

An optimal spatially-unbiased heavy-load policy

Voronoi partition + single robot TSP [Frazzoli and Bullo, CDC04]



Combination of optimization methods

- Animation display with multiple robots [Alonso-Mora et al. 2012]
- Optimal coverage, goal assignment and collision avoidance

Combination of optimization methods

- Animation display with multiple robots [Alonso-Mora et al. 2012]
- Optimal coverage, goal assignment and collision avoidance

Overview Introduction 1. Optimal control and optimization tools 2. Problem definition & overview of state of the art **Summary**

Summary

- Optimal control / optimization techniques can play an important role in the design and operation of multi-robot systems
 - We provided an overview of these techniques in the context of four major classes of multi- robot problems:
 - Multi-robot motion planning
 - Formation planning
 - Task assignment
 - Surveillance & monitoring
 - Optimization methods can also be found in other areas, such as cooperative localization and mapping

Questions?

- Optimal control / optimization techniques can play an important role in the design and operation of multi-robot systems
- Please send me more refs. and we will add them!
- Contact: J. Alonso-Mora: jalonsom@mit.edu

- Acknowledgements:
 - Ketan Salva joint work for this presentation/paper
 - P. Beardsley, F. Bullo, E. Frazzoli, D. Rus, R. Siegwart

