; -
S
-

- -
Optimal Control and Optimization Methods
for Multi-Robot Systems

Javier Alonso-Mora, Ketan Savla and Daniela Rus
Tutorial on Multi-robot systems @ RSS 2015
July 2015

£8 USC University of
IV Southern California

I I l H B Massachusetts

I Institute of
Technology



Future: many robots performing many tasks
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We aim at optimal solutions for multi-robots

Optimal control and optimization methods

Attractive since:

= they provide guarantees in the optimality of the solution

= applicable to efficiently solve a wide range of problems
= thanks to advances in the field of constrained optimization
= and an increase in computational power of robotic platforms



Optimization is everywhere




Overview of this talk

We give an overview of the required tools

We focus on four canonical problems for multi-robot systems

We describe some of the works by the community

Disclaimers

Focus on motion planning / control / task assignment
Broad field — we will miss some things

Large body of works — if you feel we are missing some important
reference, please let us know, We’'ll gladly add them

Contact: jalonsom@mit.edu
We are working on a tutorial/review
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Optimal control & dynamic programming

= Given a controlled dynamical system
= State x(t), control input u(t)
= Continuous

t = f(z,u), z(0) = z°

= Discrete

z(t +1) = Ax(t) + Bu(t)

* Arunning cost  r(z(t),u(t))

= Find the optimal control inputs



Optimal control & dynamic programming

=  Optimal control [discrete, infinite horizon]

o0
minimize .J = Z r(z(t), u(t)) Running cost
t=0
subject to wu(t) eU, z(t) e X, t=0,1,... State and control constraints
z(t +1) = Az(t) + Bu(t), t=0,1,...Controlled dynamical
(¢ +1) = As(t) + But), t=0,1 ed dy
z(0) =2z Initial state

= Dynamic programming solves for a value function satisfying Bellman equation



Model predictive control

Model predictive control

g
minimize r(z(7),u(r))

7=t

subjectto u(r)elU,z(r) e X, 1=t,...,t+T
z(t+1) = Az(7) 4+ Bu(r), 7=1¢,...,t+T
z(0) = z°

Solve for a time horizon T and apply the first command, repeat at t+1

Can be solved implicitly or explicitly (regions)



Constrained optimization

= For a set of variables

x € X

= Find the optimal value that minimizes
X" := argmin

in  f(x
subject to  g;(x) <0 Vi€ {1,

*

~~

Depending on the “shape” of f(x), g,(x) and
h,(x) different problems are formulated

- .,’I’Lineq}
o s ey
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Constrained optimization

= Convex optimization with continuous variables x € R¥
= Linear programming LP w, X, +..+w, X,
= Quadratic programming QP w, X2+ .. +w, X2

= Semi-definite programming SDP

= convex optimization methods are (roughly) always global, always fast
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Constrained optimization

e for general nonconvex problems

— local optimization methods are fast, but need not find global
solution (and even when they do, cannot certify it)

— global optimization methods find global solution (and certify it),
but are not always fast (indeed, are often slow)

Prof. S. Boyd, EE364b, Stanford University
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Constrained optimization

= Non-convex optimization with continuous variables x € RY
= Search techniques [global]
» Gradient-based methods [local]
= Sequential convex programming SCP [local]
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Constrained optimization

= Non-convex optimization with continuous variables x € R”
= Sequential convex programming SCP [local] | EFFICIENT LOCAL OPTIMUM

e a local optimization method for nonconvex problems that leverages
convex optimization

— convex portions of a problem are handled ‘exactly’ and efficiently
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Constrained optimization

=  Non-convex optimization with continuous variables x € RY
= Sequential convex programming SCP [local] | EFFICIENT LOCAL OPTIMUM

e a local optimization method for nonconvex problems that leverages
convex optimization

— convex portions of a problem are handled ‘exactly’ and efficiently

e SCP is a heuristic

— it can fail to find optimal (or even feasible) point
— results can (and often do) depend on starting point
(can run algorithm from many initial points and take best result)

e SCP often works well, i.e., finds a feasible point with good, if not
optimal, objective value

Prof. S. Boyd, EE364b, Stanford University
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Constrained optimization

Optimization with integer variables
= |nteger linear program as network flow
" Mixed integer program MIP [global]

Combinatorial optimization
= Traveling salesman problem TSP

r; € N, z; € {0,1}

EFFICIENT - GLOBAL OPTIMUM

INEFFICIENT - GLOBAL OPTIMUM

" small problems solved via MIP, large problems solved with heuristics

Branch-and-Bound

o
OQfOOO

Each node in branch-and-bound is a new MIP
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Constrained optimization: overview

= Convex optimization with continuous variables VERY EFFICIENT
= [P/QP/SDP GLOBAL OPTIMUM

= Non-convex optimization with continuous variables
= Gradient-based methods [local]

EFFICIENT
= Sequential convex programming SCP [local] LOCAL OPTIMUM

= Optimization with integer variables
= Mixed integer program MIP [global] INEFFICIENT - GLOBAL OPTIMUM
= |nteger linear program as network flow EFFICIENT - GLOBAL OPTIMUM

= Combinatorial optimization INEFFICIENT — TYPICALLY HEURISTIC

17
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2. Problem definition & state of the art

Multi-robot motion planning

Formation planning
Task assignment
Surveillance and monitoring

Summary -




Multi-robot motion planning: problem definition

= Compute robot trajectories such that
= Drive robots initial to final configuration
= Avoid static and dynamic obstacles
= Avoid inter-robot collisions

= Respect dynamic model of the robot
= Kinematic model, velocity/acceleration limits....
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Multi-robot motion planning: problem definition

= Global planning
= Trajectory from initial to final state

= Local planning (collision avoidance)
= Trajectory from initial state up to a short time horizon

20



Multi-robot motion planning: problem definition

Global planning
= Trajectory from initial to final state

goal

21



MMP: global planning

= “Traditional” approaches
= Assign priorities and sequentially compute trajectories
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MMP: global planning

= “Traditional” approaches
= Assign priorities and sequentially compute trajectories
= Compute robot paths and adjust velocity profiles
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MMP: global planning

= “Traditional” approaches
= Assign priorities and sequentially compute trajectories
= Compute robot paths and adjust velocity profiles

=  Optimization-based trajectory generation (examples)
= “Near”-optimal approaches
= Continuous space: Mixed Integer Program [Mellinger et al, 2012]
= Discrete graph: Integer Linear Program [Yu and Rus, 2015]

= | ocally optimal approaches
= Continuous obstacle-free: SCP [Augugliaro et al, 2012]
= Continuous with obstacles: SCP [Chen et al, 2015]
= Continuous 2D: Message passing [Bento et al, 2013]
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MMP: centralized global planning

= Optimal trajectories, continuous, with dynamics [Mellinger et al, 2012]
= Formulated as a Mixed Integer Program
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MMP: centralized global planning

Optimal trajectories, continuous, with dynamics [Mellinger et al, 2012]
Formulated as a Mixed Integer Program

= Trajectory = piecewise polynomial functions over n,, time intervals
using Legendre polynomial basis functions P, (t)

= Minimize the integral of the square of the norm of the snap (the
second derivative of acceleration, k. = 4)
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MMP: centralized global planning

= Optimal trajectories, continuous, with dynamics [Mellinger et al, 2012]

= Formulated as a Mixed Integer Program

= Trajectory = piecewise polynomial functions over n,, time intervals
using Legendre polynomial basis functions P, (t)

= Minimize the integral of the square of the norm of the snap (the
second derivative of acceleration, k. = 4)

= |nteger constraints for obstacle avoidance

= At least one of the linear constraints defined by the faces of the obstacle
separates the obstacle from the robot volume

b, ._00r1 Vf—l nf(o)

M>>0

= Optimal, but computationally expensive
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MMP: centralized global planning

Near-optimal planning on a discrete graph [Yu and Rus, 15]
Formulated as an Integer Linear Program (efficient)
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MMP: centralized global planning

= Near-optimal planning on a discrete graph [Yu and Rus, 15]
= Formulated as an Integer Linear Program (efficient)
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MMP: centralized global planning

= Locally optimal, continuous, 2D, holonomic, parallelizable
= ADMM - 3 weight message passing [J. Bento et al, 2013]

T=0, f=0
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MMP: centralized global planning

Locally optimal trajectories in free space, with dynamics

Sequential convex programming (efficient) [Augugliaro et al, 2012]

= The optimization variable x € R3NK consists of the vehicles’
accelerations at each time step k

= The optimality criterion is the sum of the total thrust at each time step
= Convex constraints: physical properties of vehicles’
= Non-convex constraints: collision avoidance:

= Linearized around the current solution results in QP:

minimize x? Px + ¢ x +r
subject to AegX = beqg
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MMP: centralized global planning

= Locally optimal trajectories in free space, with dynamics
= Sequential convex programming (efficient) [Augugliaro et al, 2012]




MMP: centralized global planning

= Locally optimal trajectories, with dynamics
=  Sequential convex programming (efficient) [Chen et al, 2015]

Computation Time: 1.3 seconds




Multi-robot motion planning: problem definition

= Local planning (collision avoidance)
= Trajectory from initial state up to a short time horizon
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MMP: collision avoidance

= Velocity obstacles with motion constraints [Alonso-Mora et al. 2010]
=  Set of motion primitives towards linear trajectories (reference velocity)
= (Collision avoidance constraints in reference velocity space

Ay

i\v‘#
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MMP: collision avoidance

= Velocity obstacles with motion constraints [Alonso-Mora et al. 2010]
=  Set of motion primitives towards linear trajectories (reference velocity)
= (Collision avoidance constraints in reference velocity space

y 1(p; +uit) — (p; +ust)|| > ri + 7

. ----- vVt € [0, 7]
J u

b 4
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MMP: collision avoidance

= Velocity obstacles with motion constraints [Alonso-Mora et al. 2010]
=  Set of motion primitives towards linear trajectories (reference velocity)
= (Collision avoidance constraints in reference velocity space

1(p; +uit) — (p; +ust)|| > ri + 7

vt € |0, 7]
P; — P;
t

Distributed with assumption on u;
=  Static: u; = 0
= Constant velocity: u; = v;

> = Both decision-making:
= Collaborative

AVZ' = )\AVij
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MMP: collision avoidance

= Velocity obstacles with motion constraints [Alonso-Mora et al. 2010]
=  Set of motion primitives towards linear trajectories (reference velocity)
= (Collision avoidance constraints in reference velocity space

1(p; +uit) — (p; +ust)|| > ri + 7

vt € |0, 7]
r; -+ Tj
t

P; — P
t

+ (u; — uy)|| >

Distributed with assumption on u;
=  Static: u; = 0
= Constant velocity: u; = v;

= Both decision-making:
= Collaborative

AVZ' = )\AVij

A 4

Uij,x

= This gives a distributed convex optimization with linear constraints
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MMP: collision avoidance

=  Optimal control [Hoffmann and Tomlin 2008]
= Model predictive control [Shim, Kim and Sastry 2003]

= Convex optimization in velocity space [van den Berg et al. 2009]
= Extension to account for robot dynamics [Alonso-Mora et al. 2010]
= Also applied to aerial vehicles [Alonso-Mora et al. 2015]

Qse
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Formation control/planning: problem definition

= Maintain desired inter-robot distances defining the formation
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Formation control

= (QObstacle-free environments

= Centralized optimal coverage with assignment [Alonso-Mora et al. 2012]

**\

*;’ 1()])()( ] +
I( }: \
a)\, : "

1()!)()! 7

[Turpin, Michael and Kumar 2011]

Leader follower with optimal control [Ji, Muhammad and Egerstedt 2006]
Distributed QP with leader follower [Turpin, Michael and Kumar 2012]
Model Predictive Control [Dunbar and Murray 2002]

Distributed consensus [Montijano and Mosteo 2014]

¢ %

1

= /11N

[Alonso-Mora et al, 2012]
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Formation planning: with obstacles

Convex optimization

SDP, circular formation, triangulate space [Derenick and Spletzer 2007]
SDP for circular obstacles [Derenick, Spletzer and Kumar 2010]
Centralized LP in velocity space [Karamouzas and Guy 2015]

Distributed QP in velocity space [Alonso-Mora et al. 2015]
= Constraints: Avoidance + min/max inter-robot distance
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Formation planning: with obstacles

= Distributed convex optimization [Alonso-Mora et al. 2015]
= Compute a new velocity
minimize (deviation to target global motion of the object)
s.t. Collision avoidance constraints [velocity obstacles]
Shape maintenance constraints: min / max distance
Force sensing used to indicate intention and to coordinate
Constraints convexified & partitioned assuming cooperation
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Formation planning

= Distributed convex optimization [Alonso-Mora et al. 2015]
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Formation planning

Non-convex optimization
= Off-line global MIP for sub-groups [Kushleyev, Mellinger and Kumar 2012]
= On-line local sequential convex programming [Alonso-Mora et al. 2015]
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Formation planning

= Centralized off-line MIP subgroups [Kushleyev, Mellinger and Kumar 2012]

MIQP trajectory planning for Distributed formation control
subgroups of fixed formation within the subgroup

vkt

1()])()t 7

‘/

robot 1

—
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[Mellinger, Kushleyev, Kumar, 2012] [Turpin, Michael and Kumar 201 1]
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Formation planning

= Centralized off-line MIP subgroups [Kushleyev, Mellinger and Kumar 2012]




Formation planning

= (Centralized local real-time SCP [Alonso-Mora et al. 2015]

Goal — Target motion
Compute largest convex

obstacle-free area
lterative QP + SDP

l

Compute optimal
formation parameters via

a nonlinear constrained | x; = w|t—g(t)|[*+w, s3> +w,lla—a >+
optimization SCP ; :
P |m|ZaA|0n 3.0, C{ = {A(t+ srot(q, f:)’j)) < b} Inside convex polytope
l Cz = {8 db > 2max(r, h)} Minimum size
C3 = {||q||2 = 1} Quaternion

Optimal robot commands
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Formation planning

Centralized local real-time SCP [Alonso-Mora et al. 2015]

Top view time =0.00s

oo N

Side view

Target formation shown with red dots
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Formation planning

= (Centralized local real-time SCP [Alonso-Mora et al. 2015]

X2




Take home message

Convex optimization with continuous variables x € R”

= | P/QP/SDP
= Very fast, global optimum
= But, most problems are not convex

Non-convex optimization with continuous variables

= Sequential convex programming SCP [local]
= Fast but local, often works well, but no strict guarantees

Non-convex optimization with binary variables z; € {0,1}

= Mixed Integer Program MIP [global]
= Slow but eventually will find the global optimum
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Surveillance and monitoring:

problem definition

52



Surveillance and monitoring: problem definition

= Consider m robots at p = {p4,-.-,.Pm}
= Environment is partitioned intov ={v,, ..., v}
= Cost:

H(p,v) = }: f lz = pil)) ¢ (z)dz

o p: R? = R> density
o f:R>9— R penalty function
= Voronoi partition {V,, . . ., V. } generated by points {p4, . . ., p,,}

Vilp) ={z € Q| llz —pill < llz —p;ll, V5 # i}

Descartes 1644, Dirichlet 1850, Voronoi 1908, Thiessen 1911,
Fortune 1986 (sweepline algorithm O(m logim)))
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Surveillance and monitoring: problem definition

Hp.0) =Y [ Sz = pile(@)ds
i—1 v Vi

Theorem (Alternating Algorithm, Lloyd '57)

Q at fixed positions, optimal partition is Voronoi
Q at fixed partition, optimal positions are ‘generalized centers”

© alternate v-p optimization

= local optimum = center Voronoi partition
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Surveillance and monitoring

= Spatial distribution known
= Gradient descent — alternating algorithm [Lloyd 1982]

=  Spatial distribution unknown
= Adaptive algorithms [Schwager, Rus and Slotine 2009]
= Motion constraints [Savla and Frazzoli 2010]
= Persistent surveillance [Smith et al. 2011]
= Adapting to sensing/actuation [Pierson et al. 2015]
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Multi-robot coverage

= Adapting to sensing/actuation [Pierson et al. 2015]

In the following experiment, robot 2 (red)
has a lower sensor health. Its Voronoi cell
will shrink over time to compensate.




Task assignment: problem definition

= Taxonomy [Gerkey 2004]
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Task assignment: Single task per robot

3. THE GENERAL ASSIGNMENT PROBLEM

Suppose n individuals (1 = 1, ..., n) are available for n jobs (j=1, ..., n) and that a
rating matrix R = (r“) is given, where the rij are positive integers, for all { and J. An assign-
ment consists of the choice of one job j’ for each individual i such that no job is assigned to
two different men. Thus, all of the jobs are assigned and an assignment is a permutation

(1 2 VagaNaas )

J ’2 aricze iR

of the integers 1, 2, ..., n. The General Assignment Problem asks:
For which assignments is the sum

rnl + l‘2’2 0 b l'nln
of the ratings largest?

= Optimal [Kuhn 1955]
= Suboptimal: auction [Bertsekas 1992]
= Concurrent assignment and planning [Turpin, Michael, Kumar 2014]
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Task assignment: vehicle routing

= A pot. large number of tasks to be satisfied by a set of robots

= Static venhicle routing [Toth and Vigo 2001]

= Traveling salesman problem
= Small problems can be solved via a MIP
= Large problems are typically solved with heuristics (tabu search)

= Dynamic vehicle routing [Bertsimas and van Ryzin 1991]
* |ntroduced queuing theory (Arrival process: spatio-temporal Poisson)
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Task assignment: vehicle routing

= Dynamic vehicle routing [Bertsimas and van Ryzin, 1991]
= |ntroduced queuing theory
= Motivated many extensions
= time constraints [Pavone et al, 2009]
= service priorities [Smith et al, 2009]
= adaptive and decentralized algorithms [Arsie et al, 2009]
= complex vehicle dynamics [Savla et al. 2008]
= |imited sensing range [Enright and Frazzoli, 2000]
= mobility on demand and rebalancing [Smith et al, 2013]
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An optimal spatially-unbiased heavy-load policy

= Voronoi partition + single robot TSP [Frazzoli and Bullo, CDCO04]
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Combination of optimization methods

=  Animation display with multiple robots [Alonso-Mora et al. 2012]
Optimal coverage, goal assignment and collision avoidance
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Combination of optimization methods

=  Animation display with multiple robots [Alonso-Mora et al. 2012]
Optimal coverage, goal assignment and collision avoidance
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Summary

Optimal control / optimization techniques can play an important
role in the design and operation of multi-robot systems

We provided an overview of these techniques in the context of
four major classes of multi- robot problems:

Multi-robot motion planning '

Formation planning

Task assignment |

Surveillance & monitoring

Optimization metheds can also be found in othér areas, such
as cooperative localization and rﬂapping




Questions?

@ contrelLoptimiZation techniques can pl n important
role in the desigmand operdfIOMTOf multi-robot SYSteM g
-

Please send me more refs. and we will'add them!
Contact: J. AIonso-Mora:m\som@mit.edu
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