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Supporting Information Text15

S1. Detailed Step-by-Step Walk-through of Complete Approach16

In this section we detail the use of our methodology in the context of a driving example. Applications of this methodologies to17

other fields are also possible. We hope that this example will make the “recipe” more concrete. Specifically, we provide the18

step-by-step execution of Algorithm 1 in the context of the example of autonomous merging with SVO shown in Figure S1.19

Our description is self-contained and simultaneously a detailed walk-through and summary of our approach.20
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Fig. S1. Example of a lane merge on a highway on-ramp. The red car merges onto the highway while the blue car moves to the adjacent lane to free space for the red car. The
SVO is estimated accordingly, shown in the top right inset, and allows the red autonomous vehicle to predict that a merge onto the adjacent lane is feasible. The bottom cutouts
show predictions for altruistic and egoistic SVOs compared to the actually observed trajectory at two different timesteps.

We assume the agent has some prior system knowledge before executing the algorithm. We gather this knowledge from21

several sources and preliminary steps:22

• Collect a dataset consisting of human trajectories of interacting agents over time. This paper focuses on the NGSIM23

dataset containing highway data, but other sources containing naturally interacting agents and their trajectories are also24

suitable.25

• Employ Inverse Reinforcement Learning (IRL) to learn human reward functions and calibrate them to human-like26

decision-making based on the dataset. The reward functions are general function approximators with parameters learned27

from IRL. These reward functions essentially describe how much human drivers value certain factors such as comfort,28

collision-avoidance, or getting to their goal location quickly.29

• If no dataset is available, reward functions can be hand-tuned by experts to represent plausible human-like reward30

functions that result in expected behavior.31

The following is a step-by-step breakdown of the algorithm routine executed by the AV:32

(i) We initialize without any knowledge about the other drivers’ SVOs, such that our initial estimated SVO of other vehicles33

is a uniform distribution over the SVO ring. This is visualized by a large spread of SVO estimate and particles in the34

SVO estimate plot in Figure S1.35

(ii) The AV needs to perceive its own state, including its position on the road network, and the relative position of other cars,36

see Figure S2A.37

(iii) The AV tracks other vehicles’ trajectories over time, Figure S2B.38
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Fig. S2. (A) Red vehicle perceives the state of the blue vehicle and its own state in the road network. (B) The state of the blue vehicle is tracked over time and accumulated into
a trajectory.

(iv) Given the state of another vehicle and the SVO of the other driver, the AV can predict their trajectory from the39

game-theoretic interaction model computing a Nash equilibrium (see Section S2). We use the following example as an40

illustration:41

(a) In our example of a lane-merge on the highway the blue car, which is already on the highway, will incur negative42

rewards for changing its speed or changing to the adjacent lane because it would incur costs for decreased comfort43

and a time delay for reaching its goal location. We can associate costs to decisions made by the blue car. As44

an illustrative example, let’s assume that the blue car only has two options to act: B1) Continuing as is without45

changing lanes or speed, B2) Changing lanes into the adjacent left lane. Option B1) Does not incur any costs if46

there is no collision, while option B2) incurs comfort costs.47

(b) The other red car is on the highway on-ramp and needs to merge onto the highway. It incurs negative rewards for48

accelerating, braking, and steering abruptly because of decreased comfort. Most importantly, it needs to avoid49

crashing into the barrier at the end of the on-ramp. Again, let’s evaluate the cost and limit the red car’s action50

options to either R1) keeping its speed and changing lanes and R2) breaking and changing lanes behind the blue car.51

(c) Note that limiting the options to two choices is a very strong simplification of our approach, and used for illustrative52

purposes. In the case that the blue car chooses option B1 and the red car chooses option R1: The blue car would53

continue on its lane, while the red car would merge into the blue vehicle’s lane. This would result in a crash.54

Nonetheless, the situation does not occur, since the reward functions are dynamic over time. The cost of driving too55

close to another vehicle would continuously increase until it is cheaper for the red car to brake and merge behind56

the blue vehicle. Thus, we neglect this combination of options.57

(d) Therefore, if the blue car is egoistic and takes only its own reward into account, it would always choose option58

B1 and continue driving without a change of lanes or speed forcing the red car to choose option R2, to brake and59

merge behind the blue car. In contrast, if the blue car were altruistic, it would choose option B2 and merge into the60

adjacent lane, enabling the red car to choose option R1, to comfortably merge onto the highway without braking.61

This results from the utility-maximizing behavior. In the case of altruistic behavior, the utility of the blue car will62

always be higher when assisting in achieving a higher reward for the red car, whereas in the case of egoistic behavior63

the blue car would never assist the red car and only maximize its own reward.64

(e) The takeaway of the previous simplified decision-making is that different SVOs result in different prediction outcomes.65

The resulting trajectories of the blue vehicle are shown in Figure S3. The red vehicle has started changing lanes66

and attempts to change lanes form the on-ramp to the adjacent lane. If the blue car has an egoistic SVO, it would67

follow option B1 and keep moving inside its lane, or at the time of the screenshot move back center of the lane. This68

would force the red car to abort the lane change, to brake, and to attempt another lane change behind the blue69

vehicle at a later time. In the altruistic case the blue car follows option B2 and moves to the left adjacent lane70

allowing the red vehicle to complete the merge.71
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Fig. S3. Given the state and SVO of the blue car at a previous time, we can predict their future trajectory. The predicted trajectories vary for different SVOs. While an egoistic
SVO desires to return to the lane’s center, (A), the altruistic SVO yields a merge to the next adjacent lane, (B).

(v) We sample predicted trajectories for possible SVO values by computing maximum-utility trajectories. Comparing these72

to the actual observed trajectories allows us to score each of them with a likelihood function, as described in Section S3.E73

and shown in Figure S4. In this example, the trajectory predicted based on the altruistic SVO is closer to the observation74

than the trajectory predicted from the egoistic SVO. Followingly, the altruistic SVO is more likely than the egoistic SVO.75

While we have described the intuitive prediction based likelihood function comparing sampled and observed trajectories76

here, we have developed a similar maximum entropy likelihood function in Section S3.E.2.77
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Fig. S4. (A) Comparison of predictions given altruistic and egoistic SVOs. The altruistic prediction is much closer to the observed trajectory than the egoistic prediction, shown
in (B), top. Therefore, the blue car is more likely to be altruistic rather than egoistic, shown in (B), bottom.

(vi) The result is a likelihood distribution over SVOs computed from the observed trajectory. We integrate the likelihood78

function into a recursive filtering framework, a particle filter, updating the current posterior distribution over SVOs at79

every timestep once a new observation is available and a new likelihood distribution over SVOs can be computed. The80

particle filter’s SVO posterior over time is shown in Figure S1.81

(vii) The ego AV iteratively uses Algorithm 1 to sample and maintain its predictions about other vehicles during interactions.82

Given that we maintain an estimate over the SVOs of other agents in the environment, we can better predict their83

trajectories and behavior, and thus take better actions.84

S2. Game Theoretic Formulation for Multi-Agent Decision Making85

This section provides further detail on our multi-agent game theoretic decision-making formulation. First, we provide an86

optimization primer defining key terms and concepts. Next, we present the two-agent Stackelberg game formulation, followed87

by the generalized multi-agent Stackelberg game. We then present a solution method to the constrained multi-agent Nash88

Equilibrium.89

S2.A. Optimization Primer. Our approach utilizes a game theoretic formulation to model the interactions between agents in90

the system. In this section, we introduce several key concepts and terminology used in describing our approach. For agents91

i = {1, ...,m}, the agent’s state at time k is denoted xki and the control policy is denoted uki . We assume that each agent92

is governed by constrained dynamics, such that ẋi = fi(xi,ui), where the function fi(·) is subject to constraints ci(·) ≤ 0.93

For brevity, we write the state and control policy of all agents as x = [x>1 , ...,x>m]> and u = [u>1 , ...,u>m]>. The states evolve94

according to system dynamics in Eq. (2):95

ẋ = f(x,u) = [f1(x1,u1)>, . . . , fm(xm,um)>]>.96
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We denote the discrete time transition function as xk+1 = xk +
∫ k+∆t
k

f(x,u) dt = F(xk,uk), with individual functions denoted97

Fi(xk,uk). The agents calculate their individual control policies ui by solving a general discrete-time constrained optimization98

over a given time horizon. At each time step in the horizon, the agent computes a utility function gi(·) based on their state,99

controls, and SVO.100

Table S1. Main symbols.

x = [xT1 , ..., xTm]T State trajectory of all agents
u = [uT1 , ..., uTm]T Control trajectory of all agents
ẋi = fi(xi, ui) Continuous dynamics of each agent i

xk+1
i = Fi(xki , uki ) Discrete dynamics of each agent i

ci(·) ≤ 0 Inequality constraints
ri(·) Instantaneous reward of agent i

gi(·) Instantaneous utility of agent i

Gi(·) Cumulative utility over time horizon of agent i

We define the utility function by weighting the reward functions of the agents by their SVO functions. Recall an agent’s101

SVO is denoted as the angle ϕi. For a two-agent game, the utility function of agent i = 1, written in Eq. (1), is102

gi(·) = cos(ϕ1)r1(·) + sin(ϕ1)r2(·),103

where ri(·) is an agent’s reward function. The reward function for each agent encodes their “payout.” In the context of104

autonomous driving, this may be travel time, comfort, distance between other cars, braking and acceleration efforts, progress105

towards a goal, and other priorities to the driver. Here, we learn the reward function ri(·) through Inverse Reinforcement106

Learning (IRL), discussed further in Section S3. We generalize the utility function from Eq. (1) to m agents as107

gi(x,ui,u¬i, ϕi) = 1
m− 1

∑
j∈¬i

[cos(ϕi)ri(x,ui,uj) + sin(ϕi)rj(x,uj ,ui)] , [s1]108

where x is the state of all agents, and ri(·) and rj(·) are the reward functions of agent i and agent j respectively. The generalized109

utility function essentially weights own rewards ri with cos(ϕi) against the sum of all other agents rewards r¬i scaled by110

1/(m− 1) sin(ϕi). In simpler terms this describes how the agent i weighs own rewards against rewards of the other agents.111

Recall we use the notation u¬i to denote all other agents’ control policies excluding the i−th agent. The ego agent computes112

their utility over a given time horizon, denoted Gi(·). The time horizon τ is discretized over N steps, such that τ =
∑N

k=0 ∆t.113

The utility at any given time for agent i is given by gi(xk,uk, ϕi) and the terminal utility gNi
(
xN , ϕi

)
, and written over the114

horizon in Eq. (3),115

Gi(x0,u, ϕ) =
N−1∑
k=0

gi
(
xk,uk, ϕi

)
+ gNi

(
xN , ϕi

)
.116

The sum results from integrating the instantaneous utilities encountered by agent i at each point in time over the time horizon.117

The terminal utility captures the utility at the end of the time horizon. To solve for an agent’s control policy, we construct a118

utility-maximizing optimization problem. Thus, each agent will find the optimal control policy that maximizes their utility119

over the horizon. In general, this is written120

u∗i = arg max
ui

Gi(x0,u, ϕ1). [s2]121

In the following section, we detail our game theoretic formulation of this problem, as well as present our method for solving122

this constrained optimization.123

S2.B. Constrained Stackelberg Game Formulation. The traditional two-agent Stackelberg game (1) consists of a leader (i = 1)124

and follower (i = 2). The leader chooses its control policy u1 based on the assumption that the follower maximizes their control125

given the leader policy, or u∗2(u1), yielding an under-actuated system126

xk+1 =
[

xk+1
1

xk+1
2

]
=
[

F1(xk1 ,uk1)
F2
(
xk2 ,uk,∗2 (uk1)

) ] . [s3]127

This formulation captures that agent 1 can influence agent 2’s actions u∗2(u1) by changing the own controls u1. Agent 1
therefore has indirect control over what agent 2 will do. Taking this form of interaction into account agent 1 can now actively
reason about how to influence agent 2’s actions to help themselves in the best way. Under this formulation, one can predict
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realistic behavior and interactions of other agents given its actions (2). The constrained Stackelberg game can be formulated as:

u∗1 = arg max
u1

G1(x0,u1,u∗2(u1), ϕ1), [s4]

s.t. xk+1
1 = F1(xk1 ,uk1),
c1(x,u1,u∗2(u1)) ≤ 0,
u∗2(u1) = arg max

u2
G2(x0,u1,u2, ϕ2)

s.t. xk+1
2 = F2(xk2 ,uk2),
c2(x,u) ≤ 0.

The Stackelberg game entails a bilevel optimization: An optimization on the higher level which contains a lower level128

optimization. For every optimization step on the higher level an optimization problem on the lower level needs to be solved. A129

simple interpretation is that agent 1 optimizes its own actions given that agent 2 optimizes their own actions depending on the130

actions of agent 1, and thus resulting in the underactuated system formulation given above in Eq. (s3).131

This constrained bilevel optimization is hard to solve in practice, due to the fact that for every step of the upper-level132

optimization algorithm, the lower-level problem needs to be solved. In (2), direct gradients based on the stationarity133

condition of G1(x0,u1,u2, ϕ1) with respect to u2 are defined and the linearized solution u∗2(u1)) is substituted back into134

G1(x0,u1,u∗2(u1), ϕ1). However, the method loses the ability to propagate constraints, which may contain critical safety135

features and does not generalize to more than two agents.136

Instead, an alternative approach is to reformulate the bilevel optimization problem as a local single-level optimization
problem using Karush-Kuhn-Tucker (KKT) stationarity conditions (3). The locally-equivalent formulation of Eq. (s4) is

u∗1 = arg max
u1,u2,k

G1(x0,u1,u2, ϕ1) +G2(x0,u1,u2, ϕ2), [s5]

s.t. xk+1 = F(xk,uk),
c1(x,u) ≤ 0,
c2(x,u) ≤ 0, [s6]

∇u2G2(x0,u1,u2, ϕ2) + k>∇u2c2(x,u) = 0, [s7]

k>c2(x,u) = 0 , [s8]
k ≥ 0, [s9]

which includes constraints and can be solved by state-of-the-art nonlinear optimizers. Here, Eq. (s7) describes the stationarity137

condition, Eq. (s8) the complementary slackness, Eq. (s9) the dual and Eq. (s6) the primal feasibility constraint of the lower138

level optimization, and k the vector of dual variables. The sum of G1 and G2 is contained in the objective function to ensure139

solving for a maximum of the lower level. We therefore avoid to add an additional constraint to enforce negative definiteness of140

the Hessians to ensure the solver yields maxima.141

A simplified explanation is that instead of solving the lower level optimization directly, we formulate a stationarity constraint142

which enforces optimality of the lower level optimization. In the standard Stackelberg formulation for every step at the143

higher-level optimization, a lower level optimization has to be solved. In our reformulation for every step in the upper level144

optimization only the stationarity constraint of the lower level optimization needs to be enforced. This can be handled easier145

than resolving an optimization on the lower level.146

Note that in solving Eq. (s5), all safety constraints of the autonomous agents can be preserved in the optimization. The147

inclusion of constraints within the optimization is critical to guaranteeing safe operation and performance of any autonomous148

system.149

S2.C. Multi-Agent Stackelberg Game Formulation. In the multi-agent case the Stackelberg game consists of a chain of leader
(i = 1), follower (i = 2), subfollower (i = 3), subsubfollower (i = 4), until agent (i = m). We write the multi-agent case as

u∗1 = arg max
u1

G1(x0,u1,u∗¬1(u1), ϕ1), [s10]

s.t. u∗2(u1) = arg max
u2

G2(x0,u1,2,u∗¬1,2(u1,2), ϕ2)

s.t. u∗3(u1,2) = arg max
u3

G2(x0,u1,2,3,u∗¬1,2,3(u1,2,3), ϕ3)

...
s.t. u∗m(u¬m) = arg max

um
Gm(x0,u¬m,um, ϕm).

In comparison to the above two agent Stackelberg game formulation, we have omitted equality constraints, such as dynamics,150

and inequality constraints, ci(x,u) ≤ 0, for compactness. Note that in Eq. (s10), each agent’s control policy depends on all151
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other agents, resulting in a recursion of dependencies that creates a m-level optimization problem even more challenging to152

solve than the bilevel optimization.153

The Stackelberg game is inherently asymmetric and imposes a recursive hierarchy of leaders and followers. While desirable in154

certain traffic situations, such as recursive conflict resolution on highways (4), it does not completely define socially-compliant155

behavior. In many traffic scenarios, there are no defined leaders and followers. Thus, we need a more symmetric and156

simultaneous decision-making game.157

Another limitation of the Stackelberg game is that it assumes the leader to have indirect control over the other agents158

and direct access to their control policies, which limits the follower’s ability to negotiate and compromise on decisions. In159

the two-agent case, the follower chooses u2(u1), but it may be desirable to have more levels of tacit-negotiation, such that160

u2(u1(u2(u1(...)))). This back-and-forth between agents removes the leader-follower dynamics and changes the sequential161

game to a simultaneous choice game. The generalized procedure for a multi-agent iterative best response game is described in162

Algorithm 1.163

Algorithm 1 Iterated Best Response
1: Initialize u,uprev
2: while ||u− uprev|| > ε do
3: for i← 1 to m do
4: u∗i = arg maxui Gi(x,ui,u¬i, ϕi)
5: uprev = u,u = u∗

6: Return u

Interestingly, the iterative best response is a numerical method to compute a Nash equilibrium game (5), since when the164

stationarity condition ||u − uprev|| < ε is satisfied, a Nash equilibrium is reached by definition. We will detail a solutuon165

method to the Nash equilibrium in the following section.166

S2.D. Defining the Constrained Multi-Agent Nash Equilibrium. If the infinite recursion from Algorithm 1 yields a stationary
point, this is the Nash equilibrium of the system. It can be formulated as

u∗i (u¬i) = arg max
ui

Gi(x0,u∗¬i(ui),ui, ϕi), ∀i ∈ m, [s11]

s.t. xk+1 = F(xk,uk),
ci(x,ui,u∗¬i(ui)) ≤ 0,

which contains m separate optimizations dependent on each other. Instead of solving for the Nash equilibrium in the iterative
fashion described in Algorithm 1, we can reformulate the optimization with KKT constraints to

u∗ = arg max
u,k

m∑
i=1

Gi(x0,u, ϕi), [s12]

s.t. xk+1 = F(xk,uk),
cj(x,u) ≤ 0, [s13]

∇ujGj(x
0,u, ϕj) + k>j ∇uj cj(x,u) = 0, [s14]

k>j cj(x,u) = 0 , [s15]
kj ≥ 0, ∀j ∈ m [s16]

where Eq. (s14) defines the stationarity condition, Eq. (s15) the complementary slackness, Eq. (s16) the dual and Eq. (s13)167

the primal feasibility constraints, and k is the vector of dual variables. The sum over Gi in the objective ensures solving for168

a maximum. We therefore avoid to add an additional constraint to enforce negative definiteness of the Hessians to ensure169

the solver to yield maxima. The approach is similar to the previously described reformulation of the Stackelberg bilevel170

optimization in Section S2.B. The reformulation of the optimization enables solving with state-of-the-art nonlinear optimizers.171

The Nash equilibrium formulation Eq. (s11) and its reformulation Eq. (s12) readily generalizes to the multi-agent case.172

Furthermore, it provides a more compact formulation than the recursive Stackelberg multi-agent game.173

Unlike Eq. (s3), the system dynamics evolve according to174

xk+1 =

[
xk+1

1
. . .

xk+1
m

]
=

 F1
(
xk1 ,uk,∗1 (uk¬1)

)
. . .

Fm
(
xkm,uk,∗m (uk¬m)

)
 , [s17]175

where the dynamics of each agent depends on the control policies of all other agents.176

The Nash equilibrium has a number of direct advantages towards our goal of socially-compliant control design. Due to its177

non-hierarchical structure, no leader and followers need to be defined, creating symmetric interactions based on simultaneous178

choices between agents. Since all agents’ policies depend on all other agents, the outcome yields a negotiation process that179

mimics the resolution of social dilemmas between agents.180
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S2.E. Nash Equilibrium Solver Performance.181

S2.E.1. Computation Times in Experiments. We solve the optimization problem of Eq. (s11) in a receding horizon fashion, i.e.,182

at any timestep k we find the optimal control policy for the autonomous vehicle incorporating the expected and observed183

controls of the other vehicles. The vehicle then executes the control action uk,∗. We set up the optimization problem with184

CasADi (6), a software framework for nonlinear optimization and optimal control including automatic differentiation. We185

employed IPOPT (7), a widely used interior point solver, to solve the resulting nonlinear optimization problem. All experiments186

were conducted on a single core of an AMD Ryzen 7 1700X @3.4Ghz.187

For experiments in simulation (left-turn across traffic and 3- to 2-lane highway merge), the interior point solver was capable188

of solving the optimization problem in less than 100ms. The planning horizon consists of 20 steps of ∆t = 0.2s, for a total189

horizon time of 4s. In our experiments on congested highway driving based on the NGSIM dataset the interior point solver was190

capable of solving the optimization problem in less than 100ms for up to 4 controlled vehicles and up to 10 dynamic obstacles.191

A sensitivity analysis on total number of vehicles versus ego vehicle solver improvement showed that adding more cars did192

not have a major influence on the controlled ego vehicles. Thus, we account for the closest neighboring vehicles to the ego193

vehicle, which are the vehicles involved in the interaction. Furthermore, adding additional vehicles will increase the solution194

computation time, and may compromise real-time solutions without contributing a performance increase. We can quantify the195

level of interaction between vehicles by observing the norms of the Hessian blocks corresponding to the pairs of cars in the196

experiment. Details of this Hessian-based analysis are presented in Section S4. We observe that the norms of the Hessian197

blocks corresponding to cars very far away from the ego vehicle are very small, such that their level of interaction is low and198

they can be approximately treated as independent, which supports our argument.199

S2.E.2. KKT vs Iterative Best Response Performance Comparison. To compare the performance of the KKT-based approach (see200

Section S2.D) to the iterative best response approach to compute the multi-agent Nash equilibrium, we created a series of201

benchmark problems. An exemplary problem is shown in Figure S7. A variable number of vehicles start from randomized202

initial conditions (position, heading, speed) with the goal to reach randomized goal positions. The cost function consists of203

control costs, collision avoidance, and distance to the goal position at the final time. These examples are used to illustrate the204

performance variations between our two methods of solving for the optimal control policies.205

Both approaches were started with an initial guess computed based on independently optimized trajectories where all other206

agents’ inputs were set to zero, which results in constant velocity. The computation time for the initial guess was included in the207

reported total solve time. Both approaches were run until stationarity conditions were met sufficiently (i.e., the magnitude of208

the gradients of the agents’ cost functions were below a given threshold). Solutions of both solvers were checked for consistency209

and yielded the same trajectories up to some tolerance if initialized in the region of attraction of the same homotopy class.210

This verifies the correctness of our KKT-based solution approach. All experiments were repeated 500 times.211

The KKT-based approach was consistently faster than the iterative based approach. While the solution time for the212

KKT-based approach was more than one order of magnitude faster on average, the difference was more prominent for shorter213

time horizons (10-20 times for N < 30) and lower for longer time horizons (N > 40), where N is the number of steps in the214

horizon. Figure S5 shows the relative speedup of the KKT-based approach for m = 2 and m = 6 agents, respectively. Figure S6215

shows the solver times in seconds for both approaches across varying time horizons and number of agents.216

While the iterative best response method approaches the Nash Equilibrium without the guidance of any gradients, the217

KKT-based method is able to use gradients to move towards the Nash Equilibrium faster. We find that as the number of218

interactions increases in a scenario, the greater is the performance advantage of the KKT-based approach. An explanation is219

that if all agents’ solution trajectories are independent, then our method of computing an initial guess already yields the Nash220

Equilibrium solution. Thus, both approaches terminate immediately, the overall solution time is dominated by computing the221

initial guess, and both methods are equally fast. The amount of interaction of agents can be quantified by observing the norm222

of the non-diagonal blocks of every agents’ Hessian, described in further detail in Section S4.223
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Fig. S5. Solver performance speedup of the KKT approach over the iterative best response approach to solving the multi-agent Nash equilibrium problem. TOP: Performance
speedup for m = 2 agents, with speedup indicated as an X−times factor for the KKT approach over the iterative best response approach across varying time horizons of N
stages. BOTTOM: Performance speedups for m = 6 agents.

Wilko Schwarting, Alyssa Pierson, Javier Alonso-Mora, Sertac Karaman, and Daniela Rus 9 of 30



2 3 4 5 6

N=10

 

2

4

6

8

10

12

S
o

lv
e

 t
im

e
 [

s
]

2 3 4 5 6

N=35

2 3 4 5 6

N=50

KKT approach

Iterative approach

Nash Equilibrium Stackelberg solve times

m agents
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problem is significantly faster than using an iterative best response solver.
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Fig. S7. Visualization of solution of the Nash Equilibrium problem. 5 vehicles start from their start positions and initial headings. Start positions are indicated by circles with the
goal of reaching their respected goal locations shown by crosses. Visualized are the planned trajectories over the planning time horizon. The objective function consists of
control costs (acceleration and steering), collision avoidance, and distance to goal location at the final time. Due to the trade off of control costs and distance to goal location, as
well as dynamic constraints on maximum steering angles and acceleration, the vehicles may not always have reached the goal location at the end of the planning horizon yet.
We also compare the influence of changing the SVO of all vehicles from egoistic (ϕ = 0) to prosocial (ϕ = π

4 ). We find that the vehicles execute cooperative trajectories,
where some agents modify their actions to allow others to improve their performance. The overall reward increases by 24%. Interestingly, all agents improve, especially 1 and 2
since they switch sides. All other agents receive cascading improvements: 3 can move directly to its goal location and does not have to wait until 1 and 2 have passed. 4 can
take a more direct path since 1 and 3 are already out of its way. Agent 5 is only very weakly influenced by the interaction and does not change its trajectory and reward.

S3. Learning Human Behavior and Human Decision Making Policies224

In Section 3, we introduced our model of human drivers’ decision making using a utility-maximizing policy. Here, we elaborate225

in more detail on the specifics of our model. To compute the utility function, we need an underlying reward function ri for226

the human driver. In general, one can find ri through Inverse Reinforcement Learning (IRL) (8–11) by learning from human227

demonstrations. We briefly describe our approach of learning the reward and utility function in Section S3.B. While we define228

the reward functions as linear combinations of weighted features, the concept of SVO is general enough to utilize reward229

functions of any form, such as popular general function approximators like neural networks.230

S3.A. Reward Function Features in Human Driving. The agents define their utility function based on a reward function.231

Consistent with reinforcement learning literature, we define the reward functions ri(·) as linear combinations of weighted232

features of the environment,233

ri(x,u) = θTψ(x,u), [s18]234

where ψi(·) define the features with weights θi. We employ features that allow us to quantify235

• road progress, found by projecting the driven velocity onto the road’s tangent;236

• comfort, defined by quadratically penalizing high steering and acceleration controls;237

• desired velocities within speed limits;238

• penalizing tailgating of other vehicles, in the form of orientation aligned Gaussians;239

• collision avoidance, as in avoiding close lateral and longitudinal distances to other vehicles;240

Wilko Schwarting, Alyssa Pierson, Javier Alonso-Mora, Sertac Karaman, and Daniela Rus 11 of 30



• centered positions within the lanes; and241

• road departures for leaving the drivable space.242

The cost function encoding the road in the six-lane NGSIM merge scenario is visualized in Figure S9. The merge lane angles243

into the adjacent lane. This costmap has lowest values within the lanes, with higher values indicating features to avoid. The244

cost function of the three-lane to two-lane merge including lane termination is pictured in Figure S8. We use this example in245

our simulations in Section 4.B.246

Fig. S8. An illustration of the cost map encoding the reward function Eq. (s18) for a three-lane to two-lane merging scenario. Less-desirable actions incur a higher cost. Note
the area outside of the lanes increases in cost. This cost map is used in our simulations of autonomous merging where all cars are autonomous.

S3.B. Maximum Entropy Inverse Reinforcement Learning Model. Inverse Reinforcement Learning, also referred to as inverse247

optimal control, is the problem of recovering an unknown reward or utility function from a Markov decision process. As248

discussed in Section 3.A, human decision-makers are reasonably modeled as utility maximizing agents. Following this direction,249

the Maximum Entropy Inverse Reinforcement Learning model (11) models the probability of actions or controls u to be250

proportional to the exponential of the rewards encountered along the trajectory:251

P (ui|x0,u¬i, ϕi, θ) = 1
Z

exp
(
Gi(x0,u, ϕi)

)
, [s19]252

Therefore, less rewarding actions are exponentially less likely. Here, Z is the normalization function which can be evaluated by253

dynamic programming (11) which poses a practical challenge due to high computational complexity. This is particularly true254

for long time horizons and high dimensional systems with continuous control inputs.255

S3.C. Learning Human Reward Functions from Driving Data. The following outlines how we learn the human reward function256

from the utility function. We use the notation G(u) to refer to the sum of utilities gi along the trajectory defined by (x0,u).257

For the purpose of this section, we use G instead of Gi, as the process is general to all agents. Consider258

P (u|x0) = exp (G(u))
[∫

exp (G(ũ)) dũ
]−1

. [s20]259

To approximate the intractable normalizer, the authors in (9) apply the Laplace transform, which corresponds to assuming that260

the demonstration performs a local optimization when choosing the actions u. A local approximation of the utility function as261

12 of 30 Wilko Schwarting, Alyssa Pierson, Javier Alonso-Mora, Sertac Karaman, and Daniela Rus



Fig. S9. An illustration of the cost map encoding the reward function Eq. (s18) for a six-lane highway and an adjacent merge lane from the NGSIM data set. Less-desirable
actions incur a higher cost. TOP: Illustration of the cost map without vehicles. Lanes are naturally encoded with a lower cost, which rewards lane-keeping. The boundaries of
the highway have a significantly higher cost. The merge lane is wider and therefore the cost basin is wider as well. BOTTOM: Cost map illustrated with vehicles and obstacles.
For an autonomous ego vehicle in congestion, it will avoid collisions with other vehicles by keeping to low-cost areas of the map.
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a second order Taylor expansion of G(u) around u yields262

G(ũ) = G(u) + (ũ− u)T ∂G
∂u + 1

2(ũ− u)T ∂
2G

∂u2 (ũ− u). [s21]263

We refer to ∂G
∂u as g and ∂2G

∂u2 as H. Inserting the approximation in Eq. (s21) into the exponent in Eq. (s20) allows us to evaluate264

the integral of the normalization factor in closed form. This yields a tractable way of evaluating the likelihood including265

normalization factor,266

P (u|x0) = exp(G(u))
[∫

exp (G(ũ)) dũ
]−1

≈ exp(G(u))
[∫

exp
(
G(u) + (ũ− u)Tg + 1

2(ũ− u)TH(ũ− u)
)

dũ
]−1

= exp
(1

2gTH−1g
)
| −H|

1
2 (2π)−

dim(u)
2 .

[s22]267

The assumption of local optimality is strictly less restrictive than the assumption of global optimality. In contrast to global268

methods, the local method described in (9) scales well with task dimensionality and long time horizons. Furthermore, by only269

updating the utility function locally, only locally optimal demonstrations are sufficient. The log-likelihood of Eq. (s22) is270

L = 1
2gTH−1g + 1

2 log | −H| − dim(u)
2 log 2π. [s23]271

The learning process consists of maximizing the likelihood Eq. (s22) for parameters θ in G and therefore L(θ),

θ∗ = arg max
θ

L(θ). [s24]

This can be done with standard gradient and non-gradient based optimization techniques. The resulting θ∗ are the maximum272

Entropy fit parameters best explaining the observed trajectories in the given dataset. Employing the learned parameters allows273

not only to observe the utility best explaining the observed behavior but also to predict and replicate human driver trajectories274

by optimizing their utility over their future actions. The result is a learned utility maximizing prediction of human behavior.275

In practice, additional regularization schemes to ensure convergence and invertability of the Hessian H are needed. A276

method of solving for the computationally challenging Hessian inversion in linear-time under the restriction of linearized277

dynamics is described in (9).278

S3.D. SVO-Based Utility Function Formulation. Recall that ϕ denotes the angle of SVO preference of an agent, as illustrated279

by the SVO ring in Figure 1, and we can quantify a persons preference to trade off own rewards for other people’s rewards as a280

measure of their SVO preference. To incorporate the SVO preference into the utility function, we generalize the utility function281

from Eq. (1) to m agents in Eq. (s1) and repeated here as282

gi(x,ui,u¬i, ϕi) = 1
m− 1

∑
j∈¬i

[cos(ϕi)ri(x,ui,uj) + sin(ϕi)rj(x,ui,uj)] ,283

where x is the state of all agents, and ri(·) and rj(·) are the reward functions. Note that Eq. (s1) weights agent i’s reward284

against the other agents’ rewards according to their SVO preference ϕi. For egoistic human drivers with ϕi ≈ 0, the utility285

function will rely mostly on their own reward ri(·) with little weight given to other agent rewards. On the other hand, altruistic286

human drivers with ϕi ≈ π
2 will choose control policies that prioritize other agents’ rewards. When considering adversarial287

or sadistic agents, this behavior manifests as minimizing the rewards of the other agents. Note that mapping of the SVO288

preference into the utility function is quite intuitive: In the case of two agents it encodes how willing the agent is to give up an289

increase in their personal reward, ∂r1(x,u∗
1 ,u

∗
2)

∂u1
, for an increase in the autonomous system’s reward, ∂r2(x,u∗

1 ,u
∗
2)

∂u1
for some u1.290

We can see this by investigating the case for two agents, a horizon of N = 1: The utility-maximization yields291

∂g(x,u1,u2, ϕ1)
∂u1

∣∣∣∣
u=u∗

=
(

cos(ϕ1)∂r1(x,u1,u2)
∂u1

+ sin(ϕ1)∂r2(x,u1,u2)
∂u1

)∣∣∣∣
u=u∗

= 0, [s25]292

and solving for the SVO preference293

ϕ1 = arctan 2
(
−∂r1(x,u1,u2)

∂u1
,
∂r2(x,u1,u2)

∂u1

)∣∣∣∣
u=u∗

. [s26]294

This relationship describes the tangent on the SVO circle corresponding to the SVO preference ϕ1, which is another intuitive295

interpretation. In the multi-car case over any horizon N , the same argument can be made: ϕ indicates how willing an agent is296

to give up their reward for the reward of (multiple) others.297

A visualization of the solution of the Stackelberg Nash Equilibrium problem with varying SVOs can be found in the main298

text. We show another example in Figure S7 where 5 agents start from their start positions indicated by circles with the299

goal of reaching their respective goal locations shown by crosses. As in the previous experiments on solving the multi-agent300
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game theoretic formulation the objective function consists of control costs (acceleration and steering), collision avoidance,301

and distance to goal location at the final time. We can now compare the impact of changing the SVO of all vehicles from302

egoistic (ϕ = 0) to prosocial (ϕ = π
4 ). We find that the vehicles execute cooperative trajectories, where some agents modify303

their actions to allow others to improve their performance. As displayed in Table S2, the overall reward increases by 24%.304

Interestingly, all agents improve. The largest improvement is observed in agents 1 and 2 since they switch sides. Because of305

this, all other agents receive cascading improvements: 3 can move directly to its goal location and does not have to wait until 1306

and 2 have passed. Subsequently, 4 can take a more direct path since 1 and 3 are already out of its way. Agent 5 is only very307

weakly influenced by the interaction and does not change its trajectory and reward.308

For our simulation experiments we set the SVO of the autonomous vehicle to ϕ = π
4 , as it is beneficial to design a prosocial309

autonomous vehicle and encourage cooperativeness among all agents.310

Agent 1 2 3 4 5 Σ

Cost SVO 0 1,419 1000 762 686 870 4,737
Cost SVO π

4 1064 533 458 679 866 3,600
∆ Improvement 355 467 304 7 4 1137
% Improvement 25.0 46.7 39.9 1.0 0.46 24.0

Table S2. Change in reward for all agents due to change in SVO from egoistic to prosocial. Due to the cascading beneficial effect prosocial
behavior has on all agents, by modifying their actions to allow others to improve performance, we can observe a decrease in the sum of all
agents’ costs. The result is cooperative behavior.

S3.E. Estimating SVO by Observing Driving. In the previous sections, we established how to interactively plan and predict311

given an agent’s SVO ϕ. If the autonomous vehicle does not know the other agent’s SVO, it will need to estimate this quantity312

to act accordingly.313

We present two probabilistic measurement functions to estimate the likelihood of an agent’s SVO and integrate both into314

recursive filters to achieve good estimation results. We compare results, and give an intuition why actively controlling the SVO315

of an autonomous vehicle can be beneficial in traffic negotiation. The two methods for formulating the measurement likelihood316

are:317

1. Employing the previously described method to solve for Nash Equilibria and planning trajectories with variable SVOs318

from a past point of view and estimating which SVO fits closest to the observed part of trajectories. Intuitively, proposed319

SVOs closer to the true SVOs will yield closer matching trajectories.320

2. Using a Maximum Entropy model, frequently employed in Inverse Reinforcement Learning (IRL) to generate the SVO321

estimate based on past observations.322

While the Maximum Entropy likelihood function only employs past measurements, the prediction based method takes into323

account both past and future trajectories. The motivation is intuitive: Human drivers plan their actions into the future, such324

that they have their own prediction about the future in mind when deciding how to allocate resources among themselves325

and others. Therefore, it is reasonable to assume that it is necessary to take this effect into consideration when estimating a326

driver’s SVO. The advantage comes at the cost of increased computational burden since for each prediction based likelihood327

evaluation the game theoretic optimization needs to be executed. The Maximum Entropy likelihood function on the other hand328

is computationally efficient since no optimization is necessary. Additionally, SVO likelihoods can be evaluated independently,329

therefore scaling linearly with the number of vehicles. Whereas in the prediction based approach likelihoods can only be330

evaluated jointly over all SVOs and the method scales exponentially in the number of agents.331

To integrate both likelihood functions in a recursive filtering framework we need to formulate the SVO dynamics, which can332

be also considered as the SVO transition probability. We want to make minimal assumptions on how SVO preferences may333

change over time, thus we formulate the SVO dynamics for both approaches as a Gaussian distribution on a circle, or more334

precisely, according to the von Mises distribution335

p(ϕki |ϕk−1
i ) ∝M(ϕki |ϕk−1

i , σ2). [s27]336

The von Mises distribution is a close approximation to the wrapped normal distribution, which is the circular analogue to the337

normal distribution.338

We start from the classical filtering problem and formulate the nonlinear filtering equations over r state measurements339

instead of a single state measurement. To update our predictions about the SVO state, we write340

p(ϕk−r|x0:k−1) =
∫
p(ϕk−r|ϕk−r−1)p(ϕk−r−1|x0:k−1) dϕk−r, [s28]341

which is used in both of our approaches to estimate the SVO.342

The update function to get the new distribution p(ϕk−r|x0:k) by updating p(ϕk−r|x0:k−1) based on a new measurement xk
in both filters is constructed as

p(ϕk−r|x0:k) = p(xk−r:k|ϕk−r)p(ϕk−r|x0:k−1)∫ π
−π p(x

k−r|ϕk−r)p(ϕk−r|x0:k−1)dϕk−r
, [s29]
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where the measurement function p(xk−r:k|ϕk−r) is evaluated over the last r state measurements xk−r:k instead of a single state
measurement xk−r to generate a likelihood of the SVO ϕk−r. We have found this modification to be necessary to generate
accurate SVO estimates. The measurement function is approximated as

p(xk−r:k|ϕk−r) =
∫
p(xk−r:k, ϕk−r+1:k|ϕk−r)dϕk−r+1:k

=
∫
p(xk−r:k|ϕk−r:k)p(ϕk−r+1:k|ϕk−r)dϕk−r+1:k

=
∫
p(xk−r:k|ϕk−r:k)

k−1∏
j=k−r

p(ϕj+1|ϕj)dϕk−r+1:k

≈ p(xk−r:k|ϕk−r+1:k = ϕk−r, ϕk−r)

≈ p(xk−r:k|ϕk−r), [s30]

where, for the sake of computational tractability, we assume only a small change in SVO over the observed horizon r,343

ϕk−r+1:k ≈ ϕk−r. Note that this assumption is only made in evaluating the measurement function. In general, the SVO344

dynamics are given by p(ϕki |ϕk−1
i ).345

Next, we present our prediction-based SVO estimation, then present our Maximum Entropy based SVO estimation. We use346

the notation x̂ to denote observations, and the notation x̌ to denote predicted states.347

S3.E.1. Prediction-Based SVO Estimation. The general idea is to observe the states xk−r:k for r time steps in the past, we denote348

these measurements as x̂k−r:k, to find SVO estimates ϕ̌i for all cars that can best explain the observations349

p(xk−r:k|ϕϕϕk−r) ∝ N (xk−r:k|x̌k−r:k(ϕϕϕk−r),Σ) [s31]350

with variance Σ, given predicted trajectories x̌k−r:k(ϕϕϕk−r), following from SVOs ϕϕϕk−r. Based on Eq. (s12), for given SVO351

values ϕϕϕk−r = ϕk−r1:m , we can compute estimated control trajectories ǔk−r:k+q(ϕϕϕk) starting from an initial state xk−r by solving352

the multi-agent game theoretic problem. Followingly we can roll out the control trajectories to arrive at the predicted state353

trajectories x̌k−r:k+q(ǔk−r:k+q(ϕϕϕk−r)) from time k − r until k + q. The process is detailed in Algorithm 2. Note that the state354

xk−r of the system r time steps in the past from the current time k indicates the initial state of the optimization Eq. (s12);355

ǔk−r:k+q therefore denotes the control trajectory propagated r + q steps forward from the initial state of the optimization.356

Interestingly, trajectories are predicted q steps into the future, further than the current time k. This reflects the idea that357

human drivers take the reward-to-go accumulated over a future prediction into account and thus will affect their actions in the358

short term based on their current SVO.359

Inserting the predicted states from time k − r to k of x̌k−r:k+q(ǔk−r:k+q(ϕϕϕk−r)), i.e. x̌k−r:k(ǔk−r:k(ϕϕϕk−r)), into Eq. (s31)
yields

p(xk−r:k|ϕϕϕk−r) ∝ p(xk−r:k|x̌k−r:k(ǔk−r:k(ϕϕϕk−r))) [s32]

∝ N (xk−r:k|x̌k−r:k(ǔk−r:k(ϕϕϕk−r)),Σ).

Algorithm 2 Prediction Based SVO Measurement

1: Input: Observed states x̂k−r:k, proposed SVO ϕ̌ϕϕk−r

2: Output: p(xk−r:k = x̂k−r:k|ϕ̌ϕϕk−r)
3: ǔk−r:k+q ← Predict input based on ϕ̌ϕϕk−r and x̂k−r, Eq. (s12)
4: x̌k−r:k ← Forward propagate ǔk−r:k from initial state x̂k−r based on dynamics
5: p(xk−r:k = x̂k−r:k|ϕ̌ϕϕk−r) Evaluate likelihood Eq. (s32)

We can now formulate a particle filter as described in Algorithm 3. We chose a particle filter to make the least assumptions360

about the posterior distribution. Additionally, we expect the posterior to be multimodal, since actions can not always be361

interpreted unambiguously. Future work may explore other, potentially more efficient filtering methods of estimating the SVO362

of other drivers.363
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Algorithm 3 SVO Particle Filter Update

1: Input: m particles ϕ̌ϕϕk−r−1, corresponding weights wk−r−1, and observations x̂k−r:k
2: Output: ϕ̌, σ2

ϕ, ϕ̌ϕϕ
k−r, wk−r

3: for all m particles do
4: Sample ϕ̌ϕϕk−r[i] ←M(ϕ̌ϕϕk−r[i] |ϕ̌ϕϕ

k−r−1
[i] , σ2)

5: Update wk−r[i] ← wk−r−1
[i] × p(x̂k−r:k[i] |ϕ̌ϕϕk−r[i] ), Eq. (s32)

6: Normalize wk−r ← wk−r/
∑N

i=1 w
k−r
[i]

7: if 1/
∑N

i=1(wk−r[i] )2 < 0.5N (Sample impoverishment) then
8: Resample(ϕ̌ϕϕk−r, wk−r)
9: Compute ϕ̌←

∑N

i=1 w
k−r
[i] ϕ̌ϕϕk−r[i]

10: Compute σ2
ϕ ←

∑N

i=1 w
k−r
[i] (ϕ̌ϕϕk−r[i] − µϕ)2

We first initialize the particles ϕ̌ϕϕ0 with random weights w0. During the particle filter update step at time k, the particles364

are then perturbed in Step 3 according to the dynamics M(ϕ̌ϕϕk−r|ϕ̌ϕϕk−r−1, σ2) and scored with the measurement function365

p(xk−r:k|ϕ̌ϕϕk−r) detailed above. Step 6 triggers resampling if the effective number of particles 1/
∑N

i=1(wk[i])2 is lower than366

half of the total number of particles. Subsequently, we compute the weighted mean and weighted standard deviation of the367

posterior distribution in Steps 8 and 9 respectively.368

S3.E.2. Maximum Entropy Model for SVO Estimation. Inspired by the Maximum Entropy model popular in the inverse reinforcement369

learning literature described in Section S3.B, we can treat the SVO as a parameter to be estimated and pose the measurement370

likelihood function as371

p(xk−r:k|ϕϕϕk−r) ∝ p(uk−r:k(xk−r:k)|ϕϕϕk−r)

∝ exp(G(uk−r:k,ϕϕϕk−r))
[∫

exp
(
G(ũ,ϕϕϕk−r)

)
dũ
]−1

∝ exp
(1

2gTH−1g
)
| −H|

1
2 (2π)−

dim(u)
2 . [s33]

Since the observed controls ûk−r:k, consisting of steering and acceleration inputs are not directly observable for other cars they372

have to be inferred from the state trajectory x̂k−r:k. This can be done approximately but might come at the risk of increased373

noise since the inputs are essentially derivatives of the truly observed states which are themselves subject to noise. Integration374

into a filtering framework is therefore necessary. The inverse of the Hessian can be computed in linear time (9) with respect to375

the length of the time horizon r. Nonetheless, care needs to be taken since the second order Taylor expansion employed to376

make the evaluation of the partition function of the likelihood tractable is only valid close to the true value.377

Due to its low computational complexity we can rely on a histogram filter to fully capture multiple hypothesis over the378

full SVO ring without the risk of sample impoverishment. The filtering update process is outlined in Algorithm 4. Line 3379

propagates the dynamics forward, distributing probability mass from each histogram bin to all other histogram bins according380

to the dynamics p(ϕk−r|ϕk−r−1, σ2). Similarly, line 4 distributes probability mass from each histogram bin to all other bins381

according to the measurement function Eq. (s33).382

Algorithm 4 SVO Histogram Filter Update

1: Input: m discretizations ϕ̌ϕϕk−r−1 , corresponding weights wk−r−1, and observed states x̂k−r:k
2: Output: ϕ̌, σ2

ϕ, ϕ̌ϕϕ
k−r, wk−r

3: Dynamics update wk−r ← wk−r−1 × p(ϕ̌ϕϕk−r|ϕ̌ϕϕk−r−1, σ2), Eq. (s27)
4: Measurement update wk−r ← wk−r × p(x̂k−r:k|ϕ̌ϕϕk−r), Eq. (s33)
5: Normalize wk−r ← wk−r/

∑N

i=1 w
k−r
i

6: Compute ϕ̌←
∑N

i=1 w
k−r
i ϕ̌ϕϕk−ri

7: Compute σ2
ϕ ←

∑N

i=1 w
k−r
i (ϕ̌ϕϕk−ri − µϕ)2

S3.E.3. SVO Estimation Results and Interpretation. Additionally to the SVO estimation results based on the Maximum Entropy383

model in the main text (Figure 2), we present estimation results based on the prediction based likelihood in Figure S10. We384

can see that the overall prediction resembles the same characteristics. First, car 2 becomes egoistic and competitive to signal385

the intent to merge into car 2’s lane, but car 2 is egoistic as well and does not allow for the merge to proceed. Second, car 2386

becomes prosocial or even altruistic and increases the gap size to allow car 1 to complete the merge. Nonetheless, we have found387

that the prediction-based method displays higher uncertainty and slower adaption to new measurements than the Maximum388

Entropy model based method.389
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Fig. S10. Prediction based SVO estimates over time for the merge presented in Figure 2. The solid line indicates our estimate over time, with the shaded region representing
the confidence bounds. Here, car 1 (purple) is attempting to merge into the lane with car 2 (green). We see that initially, car 2 does not cooperate with the merging car 1, and
does not allow it to merge. After a few seconds, car 2 becomes more prosocial, which corresponds to it “dropping back” and allowing the first car to merge.

S4. Quantifying Interactions Between Agents390

Here, we present a method of quantifying interactions between vehicles by computing and observing properties of an agent’s391

Hessian. The amount of interactions between agents may vary from scenario to scenario. In traffic situations, vehicles are more392

likely to interact when they are closer together, but a heuristic on distance alone doesn’t explain all interactions. Two vehicles393

driving in parallel in adjacent lanes with similar speeds are close in proximity, but do not necessarily need to interact if they394

choose to stay in their respective lanes. However, as soon as the cars need to change lanes or merge into a common lane, the395

interaction between the vehicles is much more significant.396

We presented a game theoretic model of interactions, wherein each agent is modeled as maximizing a utility function Gi.397

Here, we show that by observing an agent’s Hessian, H(Gi), we can quickly assess which agents are interacting. This is due to398

the face that the Hessian is computed as ∂2Gi/∂ui∂uj , which naturally encodes how one agent’s utility gradient ∂Gi/∂ui399

(with respect to its own controls ui) depends on the inputs uj of another agent j. Agent i’s Hessian is written400

H(Gi) =


∂2Gi
∂u2

1

∂2Gi
∂u1∂u2

. . . ∂2Gi
∂u1∂um

∂2Gi
∂u2∂u1

∂2Gi
∂u2

2
. . . ∂2Gi

∂u2∂um

...
...

. . .
...

∂2Gi
∂um∂u1

∂2Gi
∂um∂u2

. . . ∂2Gi
∂u2
m
,

 [s34]401

for a multi-agent game comprising m agents. Consider the multi-agent example shown in Figure S7, where agents move from402

initial locations (circles), to goal locations (crosses). Their cost function consists of control costs, collision avoidance costs, and403

a cost of the distance from the goal at the final time step. Figure S11 displays the Hessian (top) and its norms (bottom) for404

this scenario, with the color intensity encoding the magnitude of the norm. The larger the norm of the corresponding blocks,405

the stronger the interaction. Investigating agent 1’s Hessian, we can see that the norm of ∂2G1
∂u1∂u3

is large (white) and ∂2G1
∂u1∂u2

is406

somewhat noticeable (gray). Since the Hessian is symmetric, their symmetric counterparts show the same values. We can407

therefore deduce that agent 1 strongly interacts with agent 3, slightly with agent 2, and not significantly with any other agents.408

We can verify this observation by seeing that agent 1 and 3 are on a collision path (cf. Figure S7), and agent 1 closely follows409

agent 2. If agent 1 would change its actions, agent 2 and 3 would also change their actions. Note that there is a difference410

between occurring costs because of close proximity and interactions (in the sense of influencing each others’ actions): Although411

agent 1 and 4’s paths are very close in the beginning, they are not actively choosing to interact. They start with an initial412

velocity and heading which can not be changed too quickly, such that they do not affect each others’ actions although both413

agents are subject to high collision avoidance costs. Conversely, we find that agents 2 and 4 have strong interactions, as they414

have similar goal locations. The interaction between this pair agrees with our expectation when observing Figure S7. We also415

observe that agent 5 remains independent of the other agents, which moves in the opposite direction of the other agents.416

We can also re-run the scenario in Figure S7, except imposing that all agents exhibit a prosocial SVO value. Figure S11417

bottom shows the resulting Hessian and norms for this scenario. Here, we notice that there are more interactions across the418

group, indicated by the increase in brightness values across the images. In analyzing our traffic data from the NGSIM data set,419

we make similar observations. Two cars driving in close proximity does not necessarily yield a strong interaction. An example420

of this are two cars in adjacent lanes. Only if their actions influence each other, such as if one car chooses to merge into the421

lane of the other car, do the interactions become apparent.422
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Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Fig. S11. TOP: Greyscale representation of the Hessian of scenario of Figure S7 at the top, and norm of block-Hessians at the bottom. Here, each pixel block corresponds to
the values of the Hessian in Eq. (s34), with brighter values indicating a higher value. All agents show egoistic SVO preferences in this example. BOTTOM: Same greyscale
representations of the Hessians and norm of block-Hessians of the same scenario as above and S7, but all agents exhibit prosocial SVO preferences. In contrast to above, the
brighter squares indicate more interaction across the inter-agent pairings.

S5. Vehicle Dynamics Model423

We use a simplified car model for the vehicle dynamics, with state xi = [xi, yi, φi, δi, vi]T consisting of position xi and yi,424

orientation φi, steering angle δi and speed vi. The control inputs are acceleration ui,acc and steering angle velocity ui,steer.425

The continuous-time dynamics are given by426 
ẋi
ẏi
φ̇i
δ̇i
v̇i


︸ ︷︷ ︸

ẋi

=


vi cos(φi)
vi sin(φi)
vi
Li

tan(δi)
0
0

+


0 0
0 0
0 0
1 0
0 1

[ ui,steer
ui,acc

]
︸ ︷︷ ︸

ui

. [s35]427

S6. NGSIM Data Set Analysis and Validation428

To validate our model with human driving data, we used the Next Generation Simulation (NGSIM) data set, provided by the429

US Department of Transportation and Federal Highway Administration∗. The NGSIM data set comprises four highway and430

∗Available online at: https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
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city traffic scenarios from California and Atlanta.431

Our results are computed using the Interstate 80 Freeway Dataset†, which captures the eastbound traffic in April 2005432

during rush hour. Vehicle tracker data is provided for 500 meters of the freeway. The freeway has six traffic lanes, with the433

leftmost lane being a high-occupancy vehicle (HOV), and an on-ramp for merging traffic. Motorcycle lane-splitting, where a434

motorcycle drives between two traffic lanes, is also visible in the data. In total, there is approximately 45 minutes of trajectory435

data, with a resolution of 10 frames per second. We focus on this sample due to the number of interactions that occur during436

highway driving and merging.437

Due to errors and noise in the data set, we pre-processed the vehicle trajectories before performing the estimations and438

predictions detailed in this paper. For each vehicle, we filter for noise in local frames, smoothing the trajectories. We check for439

errors in the data set that arise from tracking errors, or in some cases, mis-attribution of vehicle id that results in duplicate or440

deleted cars.441

The heading of each vehicle is not included in the raw data, and is instead extrapolated from the filtered trajectories. We442

also recalculate all velocities and accelerations from the filtered quantities. In comparisons between the “predicted” and “actual”443

trajectory, the actual trajectory is this processed data, not the raw data provided in the data set. Quantities such as vehicle444

class and size are taken directly from the data set.445

To generate our trajectory predictions, the ego car computes a reward function that includes as a component the road446

network geometry. Lane geometry is not explicitly given in the raw data, thus we have reconstructed the lanes based on447

trajectories. When generating the reward function for our trajectory predictions, we re-generate lanes matched to the road448

network of the data set. An exemplary cost map is shown in Figure S9.449

S7. Additional Prediction and Simulation Results450

This section provides expanded analysis and results corresponding to the results presented in Section 4 on human driving451

data from the NGSIM data set and autonomous driving simulations. We provide further detail on our baseline algorithm and452

how we benchmark the accuracy of our prediction algorithms. We also discuss trends in the SVO observed from the data set.453

Finally, we include simulation results of the autonomous driving highway merge scenario.454

S7.A. Prediction Accuracy on Interactive Merges. To better quantify our performance, we ran our algorithm against several455

variations of SVO preferences, as well as against a non-interactive baseline algorithm. For the baseline algorithm, each agent456

computes their policy as a single agent, and does not consider the interactions and rewards of the other agents in the system.457

Instead, all other agents are seen as simple dynamic obstacles, with simple lane-keeping actions and no predictions about their458

changes in acceleration. This baseline algorithm is analogous to current approaches in modeling multi-agent behavior without459

communication. We refer to this baseline algorithm as the “baseline” agent approach. For our other benchmarks, we compare460

our estimated SVO algorithm, which dynamically updates the SVO values of other agents, against our algorithm with SVO461

preferences held static throughout the interaction. This comparison highlights how the performance of the multi-agent game462

theoretic formulation increases with better SVO prediction. For each of these algorithms, we refer to them as “egoistic,”, where463

the SVO is fixed to egoistic, which highlights the performance of the multi-agent game theoretic formulation without the use of464

SVO. The “static best” approach refers to a SVO that is held static during a scenario but is set to reflect the best possible465

SVO with respect to error. This reflects the benefit of employing the SVO metric, i.e. taking others’ rewards into account466

during decision-making. And “estimated” refers to the dynamically online estimated SVO based on the estimation techniques467

presented in this work.468

From the NGSIM data set, we examined 92 merge scenarios and compared performances across all scenarios. Here, we469

predict the trajectories of the cars through the merge and compute the mean square error (MSE) along the prediction horizon.470

We present errors in Table S3, corresponding to Table 1 presented in the main article. Here, a lower value corresponds to471

lower errors in prediction and thus, better performance of the algorithm. Through both the relative and absolute tables, we472

see that the estimated SVO multi-agent game theoretic approach has the best performance of the different algorithms. We473

also see that using a multi-agent game theoretic formulation reduces prediction errors over the baseline agent model. When474

normalized against the baseline, we note that including our SVO in the multi-agent formulation increases the accuracy of the475

prediction, indicated by the lower score. The best static SVO score corresponds to the best estimate when the SVO is held476

constant throughout the interaction. For different interactions, this may yield a different static SVO. The estimated SVO477

uses our proposed online algorithm, and a key difference from the static SVO is that the cars’ SVO preference is allowed to478

change throughout the interaction. Overall, we see a performance increase of 5% of the multi-agent game theoretic approach479

with egoistic SVO compared to the baseline, a 18% improvement with a static best SVO, and 25% improvement with a480

dynamically estimated SVO. We can conclude that while the multi-agent game theoretic approach improves prediction results,481

the combination of multi-agent game theoretic and dynamically estimated SVO results in the largest benefit. The fact that the482

static best SVO is nearly 13% better than the egoistic SVO highlights the impact of SVO preferences in human decision-making.483

†https://www.fhwa.dot.gov/publications/research/operations/06137/index.cfm
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Prediction baseline multi-agent game theoretic

SVO - egoistic static best estimated

MSE position [m] 1.559 1.476 1.279 1.174
MSE longitudinal [m] 1.451 1.370 1.170 1.074
MSE angle [rad] 0.149 0.139 0.139 0.136
MSE speed [m/s] 0.988 0.943 0.827 0.803

Table S3. Absolute mean squared error (MSE) over the prediction horizon during 92 interactive merges on the NGSIM dataset.

To visually illustrate the accuracy of the trajectory predictions, Figures S12, S13, and S14 show the ground truth trajectory484

(blue), the predicted trajectory using our estimated SVO (red dashed), and the predicted trajectories with varying static SVOs485

(black dotted) over many examples of the merge. Each subfigure in these figures represents a single merge example taken from486

the data set. A total of 17 different SVO values are compared for each merge, and as shown, this greatly impacts not only the487

lateral direction but also longitudinal direction of the predicted trajectory. Note the estimated SVO trajectory closely follows488

the ground truth trajectory. This is further validated by its minimal errors described in Table S3.489

S7.B. Merging Drivers are More Competitive. From our experiment trials, we can compare the SVO values of the vehicles, and490

separate them into populations of merging and non-merging vehicles. Figure S16 illustrates the distribution of all estimated491

SVO values for all measurements at each time step in all merges. Figure S17 displays the distribution of the estimated SVO492

averaged over each scenario. Figure S18 plots the mean SVO estimates for each merge onto the SVO ring, with merging and493

non-merging vehicles indicated in red and blue, respectively. The radius of each observation indicates the consistency of each494

mean SVO estimate during a merge, computed from the variance of SVO measurements during the respective merge. We find495

from these distributions that merging vehicles show more competitive behavior than the non-merging vehicles, which exhibit496

more cooperative and prosocial SVO preferences.497

We can test for statistical significance of this observation under the null-hypothesis that the mean SVO of merging cars is498

higher than that of non-merging cars. The one sided paired t-test rejects the null-hypothesis with p = 6.5932e− 04. Dropping499

the t-test’s assumption that the variables in question are normally distributed in the two groups the non-parametric Wilcoxon500

signed-rank test can be applied. The non-parametric Wilcoxon signed-rank test as an alternative to the t-test also rejects the501

null-hypothesis with p = 0.0018. Since all p values are below the significance threshold p < 0.005 the null hypothesis can be502

rejected with high confidence and the alternative hypothesis holds. We conclude that merging drivers exhibit a lower SVO503

than non-merging drivers. Therefore, merging drivers are more competitive than non-merging drivers. While this statement is504

fairly intuitive for day-to-day drivers it can be grounded on objective observations of the SVO metric.505

S7.C. Altruistic Driving Example. Unfortunately it is not possible to obtain ground truth labels for the SVO preferences of506

human drivers. The reason is that SVO preferences in traffic significantly change over time and even when consistent are507

hard to interpret by the eye. In Figure S15 we illustrate the trajectory predictions of a merging vehicle overlaid onto the508

actual vehicle trajectory for a single merge in which the yielding vehicle behaves fairly altruistic. We compare the baseline, and509

multi-agent game theoretic prediction results with different static SVOs with the estimated SVO approach. As expected, the510

multi-agent game theoretic approaches follow the actually executed trajectory closer than the baseline approach. The altruistic511

and estimated SVO trajectory predictions perform the best by closely following the ground truth trajectory.512
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Fig. S12. Predicted and ground truth trajectories during lane-merging. Displayed are ground truth trajectories (blue), the predicted trajectories using our estimated SVO (red
dashed), and the predicted trajectories with varying static SVOs (black dotted) for a variety of merge scenarios. Deviation of ground truth and varying static SVO predictions are
largest during lateral motion of the merge, i.e. when the actual merge is executed. The predictions based on the estimated SVO are able to follow the ground truth trajectories
very closely. By changing a single parameter alone, the SVO, a wide variety of trajectories can be predicted. Depending on what SVO is assessed, lane changes are predicted
earlier or later which is shown by the spread of predictions. Since whole trajectories are predicted, predictions capture position, time, speed, as well as acceleration and
steering angles. In the first example, predictions with other SVOs flare out to the left and right side, depending on which SVO is taken into account. The estimated SVO,
displayed in red, follows the ground truh trajectory very closely.
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Fig. S13. We show the same information as in Figure S12 but for an additional number of merges. Displayed are ground truth trajectories (blue), the predicted trajectories using
our estimated SVO (red dashed), and the predicted trajectories with varying static SVOs (black dotted) for a variety of merge scenarios. The impact of interaction may vary, as
the 7th subfigure shows: The varying static SVO predictions yield very similar trajectories and only spread at the end of the merge. In other cases such as the 3rd scenario
interactions are very strong throughout the whole merge, which shows the impact of the SVO on the predicted trajectories. By changing the SVO estimate alone, a wide variety
of trajectories can be synthesized. The SVO therefore proves to have a high impact on trajectory predictions and an important metric for autonomous driving behavior.
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Fig. S14. We show the same information as in Figure S12 but for an additional number of merges. Displayed are ground truth trajectories (blue), the predicted trajectories using
our estimated SVO (red dashed), and the predicted trajectories with varying static SVOs (black dotted) for a variety of merge scenarios.
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Fig. S15. Trajectory predictions of a merging vehicle. The vehicle leaves a highway merge lane and moves into the left adjacent lane where a vehicle yields to allow the lane
change to succeed. The merging vehicle’s actual trajectory is displayed in blue, whereas the predicted trajectories over time are overlaid as dotted lines. On the left all other
vehicles are predicted with constant velocity while the merging car is predicted by a single car optimization, i.e. the baseline algorithm. All other plots to the right rely on the
multi-agent game theoretic Nash Equilibrium formulation. The labels egoistic, prosocial, and altruistic refer to the SVO of the car that allows the predicted car to merge into its
lane, whereas all other cars are assumed to be egoistic. Of these, the best fit is achieved with the yielding vehicles SVO to be altruistic. On the right, all SVOs of all vehicles are
estimated based on the Maximum Entropy model resulting in an even closer fit. The combination of game-theoretic formulation and estimating the SVOs of other vehicles
allows the vehicle to merge. Otherwise the vehicle would have acted too conservatively and avoided the merge, which is seen in the “single” figure by the estimated trajectories
pointing straight when the car is actually moving laterally to merge.
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Fig. S16. Distribution of estimated mean SVO values for all evaluated merges. The mean is taken over all measurements captured during the full length of each merge
interaction. Merging vehicles show more competitive behavior, while the non-merging vehicles exhibit more prosocial or even cooperative behavior. The histogram of merging
vehicles is displayed in red, the histogram of non merging vehicles is shown in blue. Both are shown with 50% opacity such that the overlap appears in purple.
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Fig. S17. Distribution of estimated SVO values for all evaluated measurements at all points in time of all merges. In contrast to Figure S16, the SVO measurements are
not averaged over the length of a merge interaction but taken instantaneously at each point in time. Similarly to Figure S16, we osberve that merging vehicles show more
competitive behavior, while the non-merging vehicles exhibit more prosocial or even cooperative traits. The histogram of merging vehicles is displayed in red, the histogram of
non merging vehicles is shown in blue. Both are shown with 50% opacity such that the overlap appears in purple.
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Fig. S18. Mean SVO estimates for each scenario shown on the SVO circle. Merging (red) and non-merging (blue) data points are shown separately. The radius of each
measurement corresponds to the consistency of the SVO measurements during the respective merge. We observe that merging drivers show more competitive behavior.

S7.D. Additional Autonomous Driving Simulations on Highway Merging. The first scenario is the example of highway merging,513

where an autonomous vehicle must merge into another lane of traffic within a certain distance. Figures S19 and S20 illustrate514

the difference between egoistic and prosocial behavior, respectively. For each scenario, the autonomous vehicle is car (i = 1)515

and shown in red, and must attempt to merge onto the highway around three other vehicles. In Figure S19, the magenta car516

(i = 4) is an egoistic agent and thus is expected to not accommodate the autonomous vehicle. As expected, the egoistic agent517

does not make room for the autonomous vehicle, and the autonomous vehicle must slow down in order to merge after the cars518

have passed. Figure S21(a) shows the velocity profiles of the cars over time. We notice that the red vehicle must stop, while519

the egoistic vehicle actually accelerates slightly to prevent the autonomous vehicle from merging.520

Conversely, Figure S20 illustrates the case with three other prosocial cars. In this scenario, we see the red autonomous car521

merge into a gap between the green (i = 3) and magenta (i = 4) cars. Examining the velocity profiles in Figure S21(b), we see522

that for this cooperative merge, the magenta vehicle slows down, but the green vehicle also speeds up in order to increase the523

gap, allowing the red car to merge.524
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Fig. S19. Simulation of autonomous ego vehicle (red, i = 1) merging onto highway with three egoistic vehicles. The other cars do not allow the red vehicle to merge, and it
must brake and wait for the other cars to pass to make the merge. In contrast, Figure S20, illustrates a prosocial merge.

Fig. S20. Simulation of autonomous vehicle (red, i = 1) merging onto highway with three other prosocial vehicles. To allow the red vehicle to merge, the green vehicle (i = 3)
accelerates and the magenta vehicle (i = 4) decelerates, increasing the gap. Here, each agent’s individual reward function has penalties for acceleration and braking. Unlike
Figure S19, because the agents are prosocial, they will slightly modify their actions in order to reduce the braking effort merging car 1.

Wilko Schwarting, Alyssa Pierson, Javier Alonso-Mora, Sertac Karaman, and Daniela Rus 29 of 30



(a) Egoistic (b) Prosocial

Fig. S21. Comparison of the velocity profiles for the (a) egoistic merge in Figure S19 and (b) prosocial merge in Figure S20. In (a), the autonomous vehicle (red) must brake
and wait for the other cars to pass. In (b), the cars cooperatively increase the gap, allowing the red car to merge between them. The decelerations in (b) are smaller than the
decelerations in (a), showing the flow of traffic is more smooth with the prosocial group.

S8. Movie525

Movie S1. In the movie, we provide animations of the problems presented here, to aid the reader in visualizing526

these interactions. The video shows the interactions in the highway merging scenario from the NGSIM data527

set, an animation of our dynamic SVO estimation, and animations of the autonomous driving simulations for528

both merging and left-turn scenarios.529
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