
Distributed Multi-Robot Formation Splitting and Merging
in Dynamic Environments

Hai Zhu, Jelle Juhl, Laura Ferranti and Javier Alonso-Mora

Abstract— This paper presents a distributed method for
splitting and merging of multi-robot formations in dynamic
environments with static and moving obstacles. Splitting and
merging actions rely on distributed consensus and can be
performed to avoid obstacles. Our method accounts for the
limited communication range and visibility radius of the robots
and relies on the communication of obstacle-free convex regions
and the computation of an intersection graph. In addition,
our method is able to detect and recover from (permanent
and temporary) communication and motion faults. Finally, we
demonstrate the applicability and scalability of the proposed
method in simulations with up to sixteen quadrotors and real-
world experiments with a team of four quadrotors.

I. INTRODUCTION

Multi-robot systems will be employed in several appli-
cation domains, such as surveillance [1], area converge
[2], and collaborative manipulation [3]. In particular, these
applications require a team of robots to move in formation
to maintain a communication network, monitor an area, or
cooperatively carry an object.

In dynamic environments with static and moving obsta-
cles, the presence of obstacles would require strategies to
split (for example to avoid the obstacle or in case of failure
of one of the robots in the formation) and subsequently
merge (for example, to restore the original formation after
a splitting or once the faulty robot recovers from the fault)
the formation. These strategies are nontrivial given (i) the
nonconvexity of the workspace in which the formation is
moving, (ii) the limited sensing and communication re-
sources of the robots, and (iii) the presence of possible
communication or stuck faults.

A. Related Works

Extensive work exists for multi-robot formation control
[4]. These approaches include reactive methods [5], nav-
igation functions [6], potential fields [7] and controller
syntheses [8]. These formation control approaches, however,
are limited to either obstacle-free environments or planar
environments with static obstacles. In contrast, our method
allows one to consider three-dimensional dynamic environ-
ments with both static and moving obstacles via formation
splitting and merging.

Several approaches rely on optimization techniques to
solve the navigation of teams of robots. For example, the

This work is supported by NWO Veni grant 15916.
The authors are with the Department of Cognitive Robotics, Delft

University of Technology, 2628 CD, Delft, The Netherlands {h.zhu;
l.ferranti; j.alonsomora}@tudelft.nl

problem can be formulated using convex optimization tech-
niques [9]. Alternatively, the navigation can be formulated as
a centralized non-convex problem solved either offline [10],
[11] or online [12], [13], [14]. Finally, the formation con-
trol can be formulated using distributed optimization tech-
niques [3], [15]. Our design rely on distributed and online
optimization to solve the splitting and merging of a formation
in dynamic environments (with static and moving obstacles
of polygonal shape).

Several methods use splitting and merging for formation
control with obstacles. In [16], splitting and merging actions
are performed by adding additional repulsive forces among
the robots and using the flocking algorithm [17]. In [18],
the actions are performed by combining artificial potentials
with a leader-follower formation control scheme. In [19]
the actions are performed by using a switching control
law between leader mode and follower mode. Compared to
these approaches, we take into account the limited sensing
and communication range of robots and employ consensus
on convex regions to compute the formation splitting and
merging actions in a distributed fashion.

Our work builds on a distributed method for local multi-
robot formation control among obstacles [20]. In [20], the
target formation parameters are optimized in obstacle-free
convex regions. If navigation in formation is not possible, the
formation breaks into individuals and each robot navigates
to the goal independently. Differently, our method allows
the group formation to split into smaller subteams which
also navigate in formation for collision avoidance purposes
and merge back into a larger formation after avoiding the
obstacles. Compared to [20], our design builds a graph
from the intersection of the obstacle-free convex regions of
each robot. Then, our algorithm performs splitting/merging
actions using a graph partition algorithm [21]. Furthermore,
our strategy allows one to detect and handle communication
and stuck faults of individual robots.

B. Contribution

The main contribution of this paper is a real-time dis-
tributed method to split and merge a team of robots nav-
igating in dynamic environments with static and moving
obstacles. The method relies on distributed consensus (using
network flooding) to split/merge the formation and to achieve
scalability with the number of robots (as also shown in sim-
ulation). The proposed algorithm builds a graph based on the
intersection of the obstacle-free convex regions of each robot.
Then, our method decides on formation splitting/merging by
using a graph partition algorithm [21]. Limited sensing and



communication range of robots are considered, as well as
robustness to faults.

II. PRELIMINARIES

In the following, we introduce some useful definitions and
assumptions.

Robots: Similar to [20], we assume that all robots have
the same dynamic model and cylindrical non-rotating shape
of radius r and height 2h in the vertical dimension. The
position of the i-th robot at time t is denoted by pi(t) ∈ R3,
i ∈ I = {1, . . . , n} ⊂ N.

Sensing and communication range: We consider that
each robot has a limited field of view, which is modeled
as a sphere of given radius centered at the robot’s position.
The field of view of the i-th robot is denoted by Bi ⊂ R3,
i ∈ I . To account for the limited communication range of
the robots, let G = (I, E) be the communication graph
associated with the team of robots, where I indicates the set
of vertices of the graph, and E the set of edges. In particular,
each edge (i, j) ∈ E, denotes the possibility of robots i and
j to directly communicate with each other. The set of neigh-
bors of robot i is denoted by Ni = {j ∈ I | (i, j) ∈ E}.
We assume that G (the graph associated with the team of
robots) is connected, that is, for each pair of robots (i, j)
there exists a path that links the two robots. We denote by d
the diameter of G, which is the longest among all the shortest
paths between any pair of robots in the team.

Formations: As in [20], we consider a predefined set
of default formations, such as square, line, or T formations.
This predefined set of formations is known by all robots in
the team. Denote by pc(t) the position of the center (typically
the centroid) of a team in formation at time t. We assume
that a global reference center position pr for the team is
given and is known by all robots. The reference position
could be an input given by the operator, or the output of a
global planning algorithm.

Obstacles: We consider static and moving obstacles:
Static obstacles. Let O ⊂ R3 define the global map of
obstacles and Oi = Bi ∩ O the set of static obstacles seen
by Robot i. Let Õi be the set Oi dilated by half of the
robot’s volume. Õi defines the set of positions for which
Robot i would be in collision with the static obstacles within
its visibility radius.
Moving obstacles. Let Ji ⊂ N be the list of observed moving
obstacles of Robot i. For a moving obstacle j ∈ Ji at time
t, let Dj(t) ⊂ R3 be the volume it occupies, and D̃j its
dilation by half of the robot’s volume. The constant velocity
assumption is employed (but the method is not restricted to
it) to predict the future positions of moving obstacles.

Obstacle-free workspace: At current time t0, the set
of static and dynamic obstacles seen by Robot i within a
time horizon τ is defined as follows:

Ôi(t0) := Õi × [0, τ ]
⋃

t∈[0,τ ],j∈Ji

D̃i|j(t0 + t)× t ⊂ R4. (1)

where × denotes the Cartesian product of two sets. Conse-
quently, the position-time obstacle-free workspace for Robot

i is defined as follows:

Wi := R3 × [0, τ ] \ Ôi(t0) ⊂ R4. (2)

Obstacle-free convex region: Denote by Pi ∈ R3 ×
[0, τ ] the obstacle-free convex region computed by Robot
i, which is embedded in position-time space. Pi guarantees
that the transition of the robot to the new formation will
be obstacle-free and is likely to make progress in future
iterations. The computation of Pi is based on a fast iterative
method as described in detail in [20]. Note that due the to
limited field of view, each robot i in a team can computes a
different Pi.

III. FORMATION CONTROL

Our work relies on the method presented in [20]. We
summurize the main results in the remainder of this section.

Given an initial formation configuration and a reference
goal (the center of the formation), [20] computes the locally
optimal target formation parameters and navigates all robots
to the target formation, while avoiding static and dynamic ob-
stacles. The local formation control method mainly consists
of the following steps. First, all robots agree on a common
obstacle-free convex region, and then compute a target for-
mation therein. To compute the common obstacle-free region,
each robot computes an obstacle-free region with respect
to its limited field of view. Then, the robots collaboratively
compute the intersection of all regions. Second, robots are
assigned, with a distributed optimization algorithm, to target
positions within the target formation. Third, in a faster loop,
each robot navigates towards its assigned goal within the
target formation by employing a low level local planner [22]
that generates collision-free inputs according to the robots
dynamics.

Note that the common obstacle-free region (first step)
might be empty or not large enough. In this case, no
feasible target formation exists and the algorithm breaks
the formation into individual robots. In this paper, instead
of breaking the formation into individuals, we present a
method that relies on a graph partition algorithm to split
the formation into smaller subteams (which also navigate
in formation). The subteams can merge into larger teams
in formation when certain conditions are satisfied. As the
distributed formation control approach in [20], our proposed
formation splitting and merging method is also distributed.
We assume that one splitting action can lead to multiple
sub-formations, but one merging action only involves two
sub-formations to be merged.

IV. PROPOSED METHOD

A. Overview

We now present our method to compute splitting and
merging actions for a multi-robot team. Fig. 1 provides an
overview of the proposed method. In particular, the method
consists of the following steps:

1) Distributed splitting/merging decision making and
computation:



Consensus

Robot 1 Robot n

Obstacle-free convex
region

Obstacle-free convex
regionConsensus

Intersection graph 

Merging decision Merging decisionConsensus

Split/Merged formations 

Local formation control and navigation

Splitting decision Splitting decision

...

Fault detection

Fig. 1: Overview of the proposed method. The components
in blue depict the local steps, while the components in red
highlight the consensus steps.

• Each robot computes an obstacle-free convex
region in position-time space Pi [20].

• All the robots perform distributed consensus
(network flooding) to compute the intersection
of inter-robot obstacle-free convex regions
Pij = Pi ∩ Pj and P =

⋂
i∈I Pi (i, j ∈ I, i 6= j)

and construct an intersection graph Gint.
• When some conditions are satisfied (Section

IV-B), all the robots in a team decide to split
the formation into sub-formations using a graph
partition algorithm [21].

• When some conditions are satisfied (Section
IV-C), the robots in neighboring teams merge
into a larger formation.

2) Local formation control and navigation:
• Once the splitting/merging decisions are made,

the team or sub-teams of robots are controlled
to navigate to their goals using a local forma-
tion controller. The formation control algorithm
is summurized in Section III.

3) Fault detection
• Fault detection of (temporary and permanent)

communication loss and (temporary and perma-
nent) stuck fault of an individually robot in the
formation is performed when computing split-
ting/merging actions.

B. Formation Splitting

When the common convex region P of a team is empty
or too small (i.e., the team does not fit), for example due
to nearby obstacles, a feasible target formation within the
obstacle-free workspace for the team may not exist. Our
design overcomes this issue by splitting the team of robots
into smaller formations to avoid the obstacles.

Algorithm 1 details the method to compute formation
splitting actions. The algorithm consists of three main steps:

1) Computation of convex regions and network flooding:
Steps 1-5.
• Each robot i ∈ I in the team computes its

corresponding obstacle-free convex region Pi.

Algorithm 1 Formation Splitting

1: for Each robot i ∈ I do
2: Compute obstacle-free convex region Pi
3: Send Pi to all j ∈ Ni
4: Receive Pj and Pk from all j ∈ Ni and k ∈ Nj
5: end for
6: Compute Pij = Pi ∩ Pj between Robots i, j ∈ I
7: Compute the size of the intersection region
Aa(i, j) = V (Pij) = det (Pij)

8: if ∃ i, j ∈ I : Aa(i, j) < Vmin then
9: split = 1

10: Split the team using graph partition(Aa)
11: else
12: split = 0
13: end if

• Then, Pj (j ∈ I, j 6= i) is obtained by using a
network flooding algorithm that takes into account
the robots’ limited communication range.

2) Computation of intersection graph: Steps 6-7.
• After obtaining Pj (j ∈ I, j 6= i), the algorithm

builds an intersection graph Gint. The intersection
graph is an undirected graph in which each vertex
represents a robot in the team, and each edge
is Pij := Pi ∩ Pj . The intersection graph is
represented by a symmetric adjacency matrix Aa
in which Aa(i, j) = V (Pij) = det (Pij). In
general, we denote by V (P ) := det (P ) the size
of a convex region P and by Vmin the smallest
size that allows for a template formation.

3) Splitting decision making and action computation:
Steps 8-13.
• The splitting actions are computed based on Aa.

If there exists an edge in Aa such that Aa(i, j) <
Vmin, then it indicates that there is no feasible tar-
get formation within the obstacle-free workspace
for the team. Thus, a decision is made to split the
team, as follow.

Our design relies on a graph partition algorithm (step 10
graph partition(Aa)). The objective when splitting a
large team is to minimize the size of region intersections Pij
corresponding to robot pairs (i, j) that belong to different
teams after splitting. In other words, the sum of the cut
edges is supposed to be minimized while partitioning the
intersection graph Aa into subgraphs. Several algorithms
exist to solve the graph partition problem [23]. Our design
uses [21] that is based on spectral factorization combined
with a k-means clustering and can be implemented very ef-
ficiently. Fig. 2 illustrates the relationship between obstacle-
free convex regions and the corresponding intersection graph
for a team of four quadrotors. Graph partition results in
the team splitting into two line sub-formations to avoid the
obstacles.
Remark 1. Note that all the robots in the team execute the
intersection graph construction and partition with the same



0 5 10 15 20

x [m]

0

5

10

15

20

y 
[m

]

(a) Top views of the
obstacle-free convex re-
gions of each robot. The
goal of the team is pr

and the black blocks are
obstacles.

(b) Intersection graph and graph par-
tition. The solid line represents the
size of the intersection Pij , the dot-
ted line represents empty intersec-
tion, and the ∗ in Aa represent non-
zero elements.

Fig. 2: Scheme of progress from the obstacle-free convex re-
gions to the intersection graph for a team of four quadrotors.

parameters, given that the template formation information
is known by all the robots in the team. Furthermore, their
convex regions Pi are communicated via network flooding.
Therefore, even if the splitting action is computed individu-
ally by each robot, they all obtain the same splitting results.

C. Formation Merging

The conditions to be satisfied to merge two sub-formations
k and l into one larger formation are defined as follows:

• The distance of the centers of the two sub-formations
satisfies pkl =

∥∥pkc − plc
∥∥ ≤ pmax, where pmax is the

maximum allowed distance for merging.
• The size of intersection of the common obstacle convex

regions of the two sub-formations satisfies V (P kl) =
V (P k ∩ P l) ≥ Vmin, where P k =

⋂
i∈Ik Pi and P l =⋂

i∈Il Pi .
• The robots are within communication range.

The superscripts k, l denote the numbered sub-teams split
from a large formation and the subscripts i, j denote the
numbered robots in a sub-team. Algorithm 2 describes how
to compute formation merging actions for one of the sub-
teams k. The algorithm consists of three main steps:

1) Checking merging conditions: Steps 1-9.
• Each robot in a sub-team k contacts robot j of

another sub-team l within its communication range
requesting P l and the position of center plc. Then,
Robot i in sub-team k checks if the conditions for
merging defined above are satisfied. Mei denotes
the preferred sub-team in which Robot i in sub-
team k is more likely to merge with.

2) Agreement on merging request: Steps 10-14.
• Locally, if Robot i meets the merging requirements

with multiple other sub-teams, it communicates
which team it would like to merge with. In partic-
ular, its preference is the sub-team with the larger
region intersection V (P kl). At sub-team level, the
robots agree on the sub-team to merge with via
distributed consensus. Note that dk indicates the
number of communication rounds for Team k.

Algorithm 2 Formation Merging

1: for Each robot i ∈ Ik do
2: Send P k and pkc to one j ∈ I l, j ∈ Ni of all other

sub-teams l
3: Receive P l and plc from one j ∈ I l, j ∈ Ni of all

other sub-teams l
4: if

∥∥pkc − plc
∥∥ ≤ pmax and V (P k∩P l) ≥ Vmin then

5: Mei(0) = l
6: else
7: Mei(0) = 0
8: end if
9: end for

10: for m = 0, . . . , dk − 1 do
11: Send Mei(m), V (P k∩PMei(m)) to all j∈Ik, j∈Ni
12: Receive Mej(m), V (P k ∩ PMej(k)) from all j ∈

Ik, j ∈ Ni
13: Mei(m+ 1) =Mei(m) or Mej(m) that maximize

V (P k ∩ PMei(m+1))
14: end for

Finally, Sub-team k exchanges its merging request with sub-
team l. If sub-team l also requests to merge with k, both
sub-teams merge into a larger team.

D. Fault Detection

Formation splitting and merging can occur when there is
a failure with keeping the formation. We consider two types
of faults:

1) Communication loss. One of the robots in the forma-
tion is unable to communicate with the other robots
in the team. Typical causes of communication loss
are related, for example, to failures in the robot’s
communication module. The fault can be permanent
or temporary. Our design takes both occurrences into
account. Due to the loss of communication, the com-
munication graph G of the team becomes unconnected.
We proceed as follows to overcome this issue. First,
we assume that the information in the consensus steps
are labeled according to its creator. Second, we know
that in case of a connected communication graph, the
consensus steps converge in at most d communica-
tion rounds [20]. This information is used to detect
which robot in the team stops communicating. After d
communication rounds, the non-communicating robots
will be discarded from the team. In this way, the new
reduced formation can proceed towards its goal without
the faulty robots. If the fault in the communication
unit of Robot i is only temporary, the robot tries to
communicate with other neighboring teams and merge
into one of them using Algorithm 2.

2) Stuck faults. One of the robots might remain stuck.
A robot stops moving towards the goal of the
formation, for example, due to faulty actuators or
internal problems. Stuck faults can be permanent or
temporary. Our algorithm should be able to detect



these faults to prevent the whole formation to stop.
We consider both permanent and temporary actuator
faults. Let ‖∆pi‖ be the position progress towards
the goal between two consecutive time steps of Robot
i. Let ∆pmin be a predefined minimum allowable
progress distance ∆pmin in ndead consecutive time
steps. If

∑
ndead

‖∆pi‖ ≤ ∆pmin, our algorithm
considers the robot as stuck. Once a robot finds itself
stuck, it notifies the other robots in the team and
leaves the formation. If the robot starts moving again
after the detection of the stuck fault (temporary fault),
it tries to communicate with other neighboring teams
and merge into one of them using Algorithm 2.

Remark 2. Note that d, ∆pmin, and ndead are tuning pa-
rameters. Their selection is based on a trade-off between
performance of the detection and to avoid misdetections.
Note that our fault-detection strategy is able to recover
from misdetections and allows the faulty robots to re-join
a formation.

V. RESULTS

In this section, we illustrate the effectiveness of the
proposed method in both simulations and real experiments
with teams of quadrotors. A video demonstrating the results
accompanies this paper. For the quadrotors we employ the
same dynamical model and controller of [22]. We preformed
the computation with two standard computers (Quadcore
Intel i7 CPU@2.8 GHz). In one computer we executed
the method of this paper and gave the target position for
each quadrotor. In particular, we computed obstacle-free
convex regions, performed consensus rounds, determined
splitting/merging actions, and computed the target positions
for each quadrotor. These computations are performed in
a continuous manner, that is, as soon as one execution is
finished we recompute. In the second computer we received
the current state of the quadrotors and obstacles and each
quadrotor’s target position obtained from the first computer.
Then we ran the local collision avoidance planner and sent
input commands to the quadrotors. The computations are
performed in MATLAB and the communication is handled
with ROS.

A. Simulation Results

Simulation setup: We tested our approach in the fol-
lowing scenarios:
Scenario 1. This scenario considers four quadrotors operating
in dynamic environments, with three static obstacles and one
moving obstacle. The quadrotors have to track a circular
trajectory, while avoiding the obstacles. In this scenario, we
set the time horizon τ = 3 sec. Furthermore, each formation
checks whether to perform splitting and merging actions
every ff = 1 sec. The visibility distance and communication
range of robots are set as rB = 6 m and rC = 3 m
respectively.
Scenario 2. This scenario considers sixteen quadrotors op-
erating in a static environment. The quadrotors cooperate to
pass a static obstacle and a narrow corridor.

0 5 10 15
X [m]

0

5

10

15

Y
 [m

]

(a) t = 7 sec

0 5 10 15
X [m]

0

5

10

15

(b) t = 15 sec

0 5 10 15
X [m]

0

5

10

15

(c) t = 18 sec

Fig. 3: Snapshots of robots and target positions (red dots).

(a) t = 7 sec (b) t = 15 sec (c) t = 18 sec

Fig. 4: Snapshots of common obstacle-free convex regions
(red), target formation (black dots) and robot positions (blue
stars).

The individual collision avoidance planners run at 5 Hz
and each quadrotor has a preferred speed of 1.5 m/s. In
the figures, gray cuboids represent static obstacles and the
yellow quadrotors represent dynamic obstacles. The red dots
represent the target position of each drone.

Results: Fig. 3 and Fig. 4 present the results obtained
for Scenario 1. Fig. 3 shows four snapshots of the four
quadrotors at (starting from the left) 7 sec, 15 sec and 18
sec. Fig. 4 shows the obstacle-free convex regions, target
formation, and robot positions at the same time instances.
The four quadrotors start from a horizontal square formation.
At t = 7 sec, the formation starts to split into two sub-
formations, since the common convex region is too small
for a target square configuration. Each sub-formation has
two quadrotors in line to avoid the dynamic obstacle. At
t = 15 sec, the two sub-formations merge back into a square
one, given that there exists a common obstacle-free convex
region between the two teams. At t = 18 sec, the formation
continues to move in a square formation while tracking the
circular reference trajectory.

Table I provides the computation time for each quadrotor
for our MATLAB implementation. Splitting checking takes
a longer time due to the required consensus action among
all robots to compute the intersection graph. Graph partition
also takes a comparatively large part of the computation time.
However, Note that the graph partition is only executed if the
team must split. The total mean computation time is 238.6

TABLE I: Computation time [ms] of the implementation

Computations Min. Mean. Max. Std.
Convex regions 19.4 45.5 163.6 22.4
Splitting checking 60.9 72.7 120.0 13.6
Graph partition 68.6 68.6 68.6 0.0
Merging decisions 4.1 11.4 17.8 4.7
Local formation control 14.9 40.4 128.4 23.8



Fig. 5: Alternating top view of snapshots of quadrotors
(black/blue) and target positions (red) between t = [0,100] s.

ms, which shows a real time performance of our proposed
approach.

Fig. 5 presents the results obtained for Scenario 2. The
quadrotor team starts from a preferred 4×4×1 formation (top
row). When the first static obstacle is encountered, the large
formation splits into two sub-formations (bottom row), each
containing eight quadrotors with a 4 × 2 × 1 configuration
(10 sec). The obstacle is then avoided by each formation
individually. The two sub-formations re-merge into a large
one (top row) as soon as they get into communication range
and reconfigure into a 4×2×2 configuration defined by eight
vertices to squeeze through the narrow corridor (40 sec).
After leaving the narrow corridor (bottom row), the formation
returns to its preferred 4×4×1 configuration (top row).

B. Experimental Results

Experimental setup: Our experimental platform is the
Parrot Bebop 2 quadrotor. The pose of each quadrotor and
obstacle (human) is obtained using an external motion cap-
ture system (OptiTrack) at a high update rate. The human’s
velocity is obtained via a standard Kalman Filter. The local
collision avoidance planner is run at 10 Hz. The communica-
tion and visibility radius of the quadrotors are both set as 3
m to guarantee connectedness of the communication graph.

First experiment: A human serves as a dynamic ob-
stacle and walks towards a team of four quadrotors in a
square formation. Fig. 6 shows four snapshots of the exper-
iment. The large square formation splits into two line sub-
formations successfully when encountering the approaching
human. Then, both sub-formations avoid the human safely,
while progressing towards their goal. After avoiding the
human, the two sub-formations merge into a larger team in
the square formation.

Second experiment: A team of four quadrotors are
tracking a circular trajectory while one of the quadrotors
stops moving temporarily. Fig. 7 shows six snapshots of the
experiment. The four quadrotors start in a square formation
and reconfigure into a triangle formation after one of them
stops moving and leaves the team, according to our fault-
detection strategy. The triangle formation keeps tracking
the circular trajectory. When the faulty quadrotor recovers

Fig. 6: Isometric view, from left to right. Snapshots of the
quadrotor team avoiding a moving human by splitting and
afterwards merging.

Fig. 7: Isometric view, from left to right, top to bottom.
Snapshots of the quadrotor team tracking a circular trajectory
while an individual robot stops moving.

from the fault, it successfully merges into the team and the
formation returns back to the original square configuration.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel splitting and merging strategy for
a team of networked robots navigating in formation among
static and dynamic obstacles using distributed consensus and
graph partitioning. First, the robots construct an intersection
graph and decide whether to split the formation by checking
the edges of the graph. Then, two sub-formations merge
into one when the intersection of the obstacle-free convex
regions of two sub-formations contains both formations (i.e.,
it allows for a larger formation). A fault-detection strategy is
also proposed to account for communication and stuck faults.
Our design accounts for limited communication and visibility
range of the robots. The proposed method is scalable to large
teams of robots, works in real time, and is robust to faults
as both our simulations and real-world experiments show.

Our approach is a local planner and deadlocks may still
occur. Hence, as part of our future work we plan to incorpo-
rate a global planner to prevent these issues. Alternatively,
detailed robustness analysis of the method on the impact of
unforeseen disturbances and state uncertainties of the robots
should be further investigated in the future.



REFERENCES

[1] A. Jahn, R. J. Alitappeh, D. Saldaa, L. C. A. Pimenta, A. G. Santos,
and M. F. M. Campos, “Distributed multi-robot coordination for
dynamic perimeter surveillance in uncertain environments,” in Proc.
IEEE Int. Conf. Robot. Autom., 2017, pp. 273–278.

[2] A. Breitenmoser and A. Martinoli, “On combining multi-robot cover-
age and reciprocal collision avoidance,” in Proc. Int. Symp. Distrib.
Autom. Robot. Syst., 2016, pp. 49–64.

[3] J. Alonso-Mora, R. Knepper, R. Siegwart, and D. Rus, “Local motion
planning for collaborative multi-robot manipulation of deformable
objects,” in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 5495–
5502.

[4] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[5] T. Balch and R. C. Arkin, “Behavior-based formation control for
multirobot teams,” IEEE Trans. Robot. Autom., vol. 14, no. 6, pp.
926–939, 1998.

[6] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed
multi-robot task assignment and formation control,” in Proc. IEEE Int.
Conf. Robot. Autom., 2008, pp. 128–133.

[7] T. Balch and M. Hybinette, “Social potentials for scalable multi-robot
formations,” in Proc. IEEE Int. Conf. Robot. Autom., 2000, pp. 73–80.

[8] M. A. Hsieh, V. Kumar, and L. Chaimowicz, “Decentralized con-
trollers for shape generation with robotic swarms,” Robotica, vol. 26,
no. 5, pp. 691–701, 2008.

[9] J. Derenick, J. Spletzer, and V. Kumar, “A semidefinite programming
framework for controlling multi-robot systems in dynamic environ-
ments,” in Proc. IEEE Conf. Decis. Control., 2010, pp. 7172–7177.

[10] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a
swarm of agile micro quadrotors,” Auton. Robot., vol. 35, no. 4, pp.
287–300, 2013.

[11] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Automated composition of motion primitives for multi-robot systems
from safe LTL specifications,” in Proc. IEEE Int. Conf. Intell. Robot.
Syst., 2014, pp. 1525–1532.

[12] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in Proc. IEEE Int. Conf. Intell. Robot. Syst.,
2012, pp. 1917–1922.

[13] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path
planning via incremental sequential convex programming,” in Proc.
IEEE Int. Conf. Robot. Autom., 2015, pp. 5954–5961.

[14] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment
and trajectory planning for large teams of interchangeable robots,”
Auton. Robot., vol. 37, no. 4, pp. 401–415, 2014.

[15] S. S. Kia, J. Cortés, and S. Martı́nez, “Distributed convex optimiza-
tion via continuous-time coordination algorithms with discrete-time
communication,” Automatica, vol. 55, pp. 254–264, 2015.

[16] Z. Chen, T. Chu, and J. Zhang, “Swarm splitting and multiple targets
seeking in multi-agent dynamic systems,” in Proc. IEEE Conf. Decis.
Control., 2010, pp. 4577–4582.

[17] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algo-
rithms and theory,” IEEE Trans. Autom. Control., vol. 51, no. 3, pp.
401–420, 2006.

[18] K. Raghuwaiya, J. Vanualailai, and B. Sharma, “Formation splitting
and merging,” in Proc. Int. Conf. Swarm. Intell., 2016, pp. 461–469.

[19] P. Ogren, “Split and join of vehicle formations doing obstacle avoid-
ance,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, pp. 1951–1955.

[20] J. Alonso-Mora, E. Montijano, T. Nageli, O. Hilliges, M. Schwager,
and D. Rus, “Distributed multi-robot formation control in dynamic
environments,” Auton. Robot., Jul 2018. [Online]. Available: https:
//doi.org/10.1007/s10514-018-9783-9

[21] J. P. Hespanha, “An efficient MATLAB algorithm for graph
partitioning,” University of California, Tech. Rep., 2004. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
87.6722&rep=rep1&type=pdf

[22] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. Beardsley, “Collision
avoidance for aerial vehicles in multi-agent scenarios,” Auton. Robot.,
vol. 39, no. 1, pp. 101–121, 2015.

[23] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent
advances in graph partitioning,” in Algorithm. Eng. Springer, Cham,
2016, pp. 117–158.


