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ABSTRACT
Sharing rides in on-demand systems allow passengers to reduce
their fares and service providers to increase revenue, though at the
cost of adding uncertainty to the system. Notably, the uncertainty
of ride-pooling systems stems not only from travel times but also
from unique features of sharing, such as the dependency on other
passengers’ arrival time at their pick up points. In this work, we theo-
retically and experimentally analyse how late arrivals at pick up loca-
tions impact shared rides’ performance. We find that the total delay
is equally distributed among sharing passengers. However, delay
composition gradually shifts from on-board delay only for the first
passenger to waiting delay at the origin for the last passenger. Sadly,
trips with more passengers are more adversely impacted. Strate-
gic behaviour analysis reveals Nash equilibria that might emerge.
We analyse the system-wide effects and find that when lateness
increases passengers refrain from sharing and eventually opt-out.
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1. Introduction

On-demand transport systems in which rides are shared have a great potential to become
an important feature of urban mobility. All involved parties may potentially benefit from
shared rides. Users can expect lower fares, as the cost of the trip is now partially divided
over users; operators can increase their revenue, as vehicles are carrying more than one
passenger at a time; and society benefits from a reduction in the number of vehicles, and
thereby decreasing congestion and pollution.

Users, however, encounter additional travel and waiting times, which have to be com-
pensated by reduced fares in order to make such systems attractive. Notably, the actual
realisation of the shared trip might substantially differ from the planned one. Besides the
uncertainty stemming from variability in traffic travel times, which affects all car traffic,
ride-pooling has unique features that potentially induce additional sources of uncertainty,
pertaining to co-riders. In this study, we investigate how riders’ uncertain arrival times at
pick up points, possibly late, affect other passengers with whom they are sharing, and
its consequences for the overall system. Delayed shared rides have a number of negative
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Figure 1. An illustrative itinerary of a vehicle serving a shared ride for three passengers, that are first
picked up at their origins and then dropped off at their destinations.

impacts: not only does the system become less reliable, as schedules are not being fulfilled,
but it also becomes less efficient, as it takes longer to transport a given passenger demand.

As an example, let us consider a ride shared by three passengers (Figure 1). In such a ride,
passenger i, before reaching her/his destination Di, visits the origins of passengers being
picked up later Pj:j>i and destinations of passengers picked up earlier Dj:j<i, as shown in
Figure 1. When the last passenger reaches her/his destination, the vehicle is empty and
may serve another shared ride. To pool various travel requests into a single shared ride, the
vehicle will likely deviate from shortest, direct path, which induces extra travel time, yet this
is not the only source of delay. Notably, in a pooled ride, the arrival time at the destination
is also dependant on the arrival times of fellow riders to their pick up points; if any of them
is late, the vehiclewill have towait (up to a certain point). This will have a twofold impact on
co-travellers: (i) prolonging waiting time of passengers that have not been picked up yet,
and (ii) causing in-vehicle delay for those on-board.

Here, we focus on rides offered through a ride-hailing platform where at least two trav-
ellers share the same vehicle, whichwe simply denote shared rides. However, the proposed
theoretical framework and findings can be generalised onto any ride where delay of one
traveller impacts her/his co-travellers, e.g. ridesharing, where one of travellers is also a
driver, or on-demand transit with individual pick-ups (see Shaheen (2016) for a review of
terminology). In this study, we investigate how late arrivals impact individual passengers’
sharing rides aswell as the ride-pooling systemperformanceas awhole. Tomeasure this,we
first concentrate on the itinerary of a particular shared ride, with a predetermined sequence
of pick ups and drop offs, in order to understand the dynamics that emerge between the
different users assigned to a single vehicle. We make the analyses assuming that all pick
ups take place before the drop offs (so-called sequential shared rides), but we also show
show the consequences of relaxing this assumption for non-sequential rides. We explore
rides of various numbers of passengers (whichwe call the degree of the trip) and analyse the
different implications for each passenger depending on their relative position within the
itinerary.

We study two models: in the first one each passenger’s arrival is random, whereas in
the second one passengers decide strategically on their lateness. In the randommodel, we
describe the expected outcomes of the system for each passenger, and analyse how these
outcomes depend on their position within the pick up sequence and on the degree of the
trip. We run Monte-Carlo simulations, which underpin the proposed theoretical analysis,
and allow to visualise our findings illustratively. To the best of our knowledge, there is no
publicly available information on passengers’ arrival time distribution for ride-pooling ser-
vices. Therefore, we resort to assuming a theoretical, lognormal distribution to describe
passengers’ arrival time. However, the proposed method can be applied to any empiri-
cally observed distributions, and we obtain generic findings on how late arrivals impact
the performance of shared rides services.
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Our findings indicate that mean delay increases with the degree of the trip, yet remains
constant with respect to the relative position in the pick up sequence. Each additional
sharing passenger contributes to the expected delay; however, we find the relation to be
sub-linear, i.e. weaker for rides of higher degree. While the total delay with respect to the
original arrival time is the same for each sharing passenger, they have different compo-
sitions. Passengers picked up early are unlikely to wait at the origin, and are likely to get
delayed on-board the vehicle at other passengers’ pick up points. Contrary, later picked
up passengers will wait mainly at the origin, and their in-vehicle time will be less delayed.
Naturally, the results are sensitive to the distribution of passenger arrival and its parameter-
isation. Yet notably, higher variance in the arrival process penalises rides of higher degrees
more gravely.

Following on the simulation findings for randomarrivals, we turn to analysing the strate-
gic behaviour of passengers. If passengers aim at punctual arrival at the destination, their
strategies are in linewith the strategies of the system’s operator. However, if thepassengers’
valuation of waiting time is high enough, the systemmay tend to the opposite equilibrium,
where passengers arrive late to maximise their utility. Such a strategy, being optimal for
some individuals, yields negative externalities for the co-travellers and the system’s perfor-
mance as a whole, and shall be mitigated by system providers. Policy makers need to be
aware that active measures are required to prevent this user equilibrium.

Finally, we utilise these findings to conclude on implications over the system’s per-
formance. In our case study consisting of 3000 trips in Amsterdam, we simulate how
the system deteriorates with passengers’ increasingly late arrivals. The initially effective
ride-pooling system is quickly affected when passengers start to arrive late. The impact
is first visible for rides of higher degree, whose share quickly drops to zero. As late-
ness increases, passengers decide to choose non-shared, private rides, leading to higher
costs for both passengers and the service provider, yielding a sub-optimal (yet stable)
solution.

The paper is structured as follows. In the remaining of this section we complement
the introduction by reviewing recent findings on shared rides, their performance and the
behaviour of passengers sharing rides. Next, we assert the motivation and contribution of
this work. In Section 2 we present the proposed method for quantifying the reliability of
shared rides in the presence of late arrival at pick up points. Section 3 applies the proposed
method in a series of numerical simulations. We discuss our findings and draw conclusions
in Section 4.

1.1. Related studies

On-demandmobility platforms dynamicallymatch supply and demand in a two-sidedmar-
ket, enabling flexible on-demand transport services. Given the significant market share of
ride-hailing services and their instant operations, shared rides1 are potentially becoming
both practically available and attractive for both sides of this two-sided market (Welch,
Gehrke, and Widita 2020). The premise of shared rides is that passengers can reduce
their fares and service providers can increase revenues. Furthermore, shared rides are
expected to align with policy objectives, such as increasing accessibility and reducing con-
gestion. Notwithstanding, the potential of shared rides is yet to be realised in large-scale
operations.
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The problem of matching travel requests into shared rides is increasingly addressed in
the literature: for an up-to-date and extensive (and broader) review we refer the reader to
Wang and Yang (2019), Narayanan, Chaniotakis, and Antoniou (2020). We here specifically
refer to two recent contributions that we leverage on in this study. To pool the trip requests
into shared rides served by vehicles we use the real-time, scalable algorithm of Alonso-
Mora et al. (2017). To make sure the trips are pooled into shared rides that are attractive
to passengers, we apply the method of Kucharski and Cats (2020).

Despite algorithmic readiness, themarket of shared rides is still fairly limited as reflected
in the low percentage of shared rides in real-world operations. For instance, (Li et al. 2019)
study the case of Chengdu, China, finding that only 6% of ride-hailing trips are shared. This
can be attributed to the extra delay (about 10 min on average), detour (about 1.55 km on
average), and degraded travel time reliability caused by ride-sharing. They apply the so-
called 95th buffer index to quantify travel time reliability, and find out that the reliability
of shared rides is worse than that of private rides, because of delays and detours. In partic-
ular, they find that sharing a ride increases the time buffer index (which means the need
to budget extra travel time) by 37–61% to ensure an on-time arrival. This concurs with the
findings of a study amongover 500 users of a ride-sharing service in Italy, where service reli-
ability and its implications for time planning was one of the users’ main concerns (Gargiulo
et al. 2015).While this downside of shared rides has been often recognised since early futur-
istic studies on pooled rides (Horowitz and Sheth 1977), it hitherto has not been directly
addressed, and the underlying dynamics remain unknown.

While shared on-demand services offer a flexible mean of public transport, their reliabil-
ity is expected to have a critical impact on their attractiveness. In the absence of timetables,
there is no well-established notion of reliability. Reliability in the context of shared rides
has been addressed by few studies so far: Bansal et al. (2019) investigate how the differ-
ence between the stated and actual pick up times affects passengers’ choices and how a
service provider can leverage on this information to increase its ridership; Alonso-González
et al. (2020b) analyse and quantify the Value of Reliability (VoR) of on-demand services
using a stated preference survey, arguing that flexibility induces an extra risk related to
service reliability and availability; the results of Kim, Rasouli, and Timmermans (2017) under-
score the importance of reliability for successful market adoption; Liu et al. (2018) explores
how collected travel time information may improve reliability of shared autonomous taxis;
Pimenta et al. (2017) study reliability of travel times for a shared system that works over a
line; Liu et al. (2019) focus on changes inducedby traffic conditions; Tu et al. (2019) explored
empirical data from Chengdu to assess trade-off between reliability and time-savings for
ride-pooling; Javanshour, Dia, and Duncan (2019) explore the impact of demand uncer-
tainty and Fielbaum and Alonso-Mora (2020) study how travel times change due to the
en-route updating of routes when new requests arrive.

The problem of node delays in sequential schedules has a resemblance to problems
addressed in the context of supply-chain management. In that context, the system’s per-
formance depends on the realisation of an uncertain and stochastic process of customers’
arrivals (Heilporn, Cordeau, and Laporte 2011), which can lead to instances of cascading
failure or ripple effects (Dolgui, Ivanov, and Sokolov 2018). This leads to the need for design-
ing optimal service levels that account for the propagation of supply-and-demand-side
uncertainties in supply-chains (Rezapour, Allen, and Mistree 2015).
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1.2. Motivation and contribution of this study

Key questions regarding shared rides’ reliability have not been answered yet. For instance,
it is not clear if (and how) reliability changes with the number of passengers sharing a trip
and with the sequence of pick ups and drop offs. Moreover, it is unknown how a single late
passenger impacts the shared-ride performance for all her/his fellow passengers. It is also
unclear the long-term consequences for the ride-pooling system, i.e. how travel strategies
will change when passengers learn others’ behaviours, how the system’s performance will
be impacted, and how passengers will react to a likely lower perceived utility.

While some of the sources of delay are present in other modes of transport as well (such
as congestion, present in both public and private transport, or late vehicle arrival, present
in public transport), others are unique to shared rides systems. Results from other stud-
ies may be transferred regarding the former, while the latter calls for a dedicated research.
Contrary to public transport, vehicles serving shared requests may wait for passengers at
pick up locations.While travel time delay is additive and each additional segment of a route
sequence adds to the total delay, the delay at nodes is not cumulative. Instead it is driven by
the most delayed passenger who dominates other delays, that typically cancel out, as well
as early arrivals, before the scheduled time. Since the primary objective of shared rides is to
maximise occupancy, if the impact of unreliability is stronger for rides of higher degree then
this is of profound practical importance. Those novel aspects calls for dedicated methods
and analyses. In this paper, we focus on those phenomena unique for shared rides (depen-
dency on other travellers arrivals), and provide generic methods that can be extended to
cover for the other said sources of unreliability.

After posing those questions, we analytically examine their answers and consequences.
Inevitably, passengers will learn the system dynamics and adapt their strategies to max-
imise their individual utilities. Whether their optimal strategies will be optimal also for the
system and for co-travellers may have far-reaching ramifications for service performance
and operations. Overlooking reliability aspects in the analysis of shared rides systems may
result in overestimating their potential, i.e. the actual performance may be significantly
worse than the one implied by an analysis that assumes punctuality.

While high-fidelity large datasets on ride-hailing trips are widely available for public use
(NYC, Chicago, Chengdu, etc.) none of them reports pick up waiting times. Therefore, we
do not know if passengers and/or vehicles arrive on time or delayed. Therefore, we employ
theoretical distributions inspired by studies on late arrivals in public transport. As soon as
actual waiting times become available our generic method may be applied accordingly.

In the following, we provide theoretical findings regarding the distributions of wait-
ing times and total delays, as well as the impact over the system as a whole due to its
loss of attractiveness. Different implications are obtained when lateness is assumed to be
either random or strategically decided. These findings are then tested and verified using
numerical simulations.

2. Method

In this section, we first introduce a shared ride as it is scheduled and then discuss how it
may get delayed due to late arrivals. We decompose the lateness of a single passenger into
waiting at the origin and in-vehicle components. Then, we introduce recursive formulas to
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Figure 2. Scheduled and realised ride travel time T̂i , delayed due to origin WOi and in-vehicle WVi
delays.

trace howdelay propagates across the sequence of pick ups. We discuss two cases of delay,
namely when the vehicle waits for the passenger and vice-versa. We introduce it for the
so-called sequential shared rides (where pick-ups always precede drop offs) and then pro-
vide generalisation for non-sequential shared rides. Subsequently, we introduce strategic
behaviours, wherewe assume that passengers do consider the other passengers’ delay and
interact in the formof a strategic game. Finally, wepropose amethod to assess system-wide
impacts.

2.1. Lateness of a ride and associated passengers

Consider the following ride sharing situation: Passengers i = 1, . . .N are offered a shared
ride r. Index i represents inwhich order the passengers are picked up (Figure 1). For now,we
assume that all the pick ups take place before the drop offs, and we show at the end of this
section what happens when this assumption is dropped. Each passenger has a scheduled
pick up at the origin at time P̄i and a scheduled drop off at the destination at time D̄i, which
makes a travel time T̄i = D̄i − P̄i. Nevertheless, all these times might differ from the actual
realisations of the trip due to passengers lateness:

Definition 2.1: Consider a passenger i that is supposed to be picked up at P̄i, but arrives at
the pick up point at Oi ≥ P̄i, as illustrated in Figure 2.

The lateness of this passenger is

Li = Oi − P̄i (1)
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These late arrivals induce delays in all the co-travellers. Let us denote �Ti the delay of
passenger i, which is composed of two elements:

�Ti = WOi + WVi, (2)

where WOi is the waiting time at the origin, and WVi is time spent over the vehicle waiting
for others. Waiting time at the origin is the difference between the actual pick up time Pi,
that might be late if preceding passengers were late, and the actual arrival time of the pas-
senger at the pick up location Oi, that might differ from the planned one if passenger i is
late. Note that waiting time would be zero if nobody was late. Denoting (x)+ = max{x, 0},
we can express:

WOi = (Pi − Oi)+ (3)

To find expressions for Pi and for WVi, it is useful to define Vi as the accumulated delay of
the vehicle right after picking up passenger i. We can define V0 = 0, and note that V1 =
max{V0, L1}. In general, the accumulated delay only increases with passenger i if his delay is
larger than the vehicle’s. This can be expressed as a recursive function, with the following:

Vi+1 = max{Vi, Li+1}, (4)

yielding a closed-form formulation for Vi:

Vi = max{L1, . . . , Li} (5)

The actual pick up times are then given by the latest between passenger’s and vehicle’s
arrival at the pick up point:

Pi = max{Oi, P̄i + Vi−1} (6)

Themax operator in Equation (5) suggests that the passengers’ late arrival will likely lead to
waiting times that increase with i (as more events will take place at consecutively traversed
nodes, and the outcome will be driven by the latest of them). Consequently, the delay is
a strictly non-decreasing function of i, due to the accumulation of lateness as the vehicle
serves the shared ride.

For the sakeof simplicity,we assume that passengers donot arrive at thepick up location
earlier than scheduled. As long as the vehicle arrives at the first pick up as scheduled, sub-
sequent pick ups cannot be served earlier than scheduled. Moreover, as we demonstrate
below, the total ride delay is driven by the latest passenger, so early arrivals are unlikely to
have an impact on it in rides of a high degree.

In the setting that we consider, passenger i may get delayed on-board only due to late
arrival of passengers that come after (j> i). However, for this to happen, it is required that
the lateness of the passenger being picked up exceeds the one accumulated by the vehicle,
otherwise a late arrival has no impact (due to themax formulation in Equation (5)). When all
these delays on-board the vehicle are added, what we obtain is the total vehicles’ lateness,
i.e. VN = WVi + Vi, where N is the number of users (degree of the trip). Hence:

WVi = VN − Vi (7)

Equation (7) implies that, for a given N, WVi decreases with i because Vi increases.
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Putting everything together, we can conclude one of the main aspects of these dynam-
ics. We define the delay di with respect to the original arrival time, given by the delay of the
actual trip �ti and the passenger’s lateness:

di = Li + WOi + WVi (8)

A careful analysis of the possible cases in Equations (3) and (6) (for details see the
Appendix 1), reveals that:

di = VN ∀i = 1, . . . ,N (9)

All passengers face the same delay when compared with the original departure time
that coincides with the maximum lateness among the N passengers. The intuition behind
Equation (9) is as follows: the arrival of each passenger to her/his final destination depends
only on how late is the respective vehicle. However, not all the passengers are in the same
situation: while the passengers picked up first will (likely) have to wait for the subsequent
passengers on-board the vehicle, the passengers picked up later are expected to wait for
the vehicle at their pick-up location. Note that this distinction might be important, as wait-
ing time is usually considered less convenient than in-vehicle time, with higher associated
costs, so users picked up later might be worse off.

The arrival delay for passenger i is�Ti, excluding her/his own lateness (we provide alter-
native formulations of delay, depending on the strategy in section 2.3). From Equation (9)
we conclude that:

�Ti = VN − Li (10)

Which, combined with Equation (5) provides the general expression for passengers’ delay:

�Ti = max{L1, . . . , LN} − Li (11)

We can synthesise the dynamic as follows: each time the vehicle arrives at a pick up point,
either the respective passenger has to wait for it, or the vehicle has to wait for the passen-
ger. The latter is the troublesome case, caused by a passenger that is too late in comparison
with the vehicle, increasing its accumulated delay, prolonging the on-board delay for the
preceding passengers and the waiting time for the proceeding passengers, until a new
passenger presents a higher lateness.

2.2. Randompassengers’ arrival

Assume now that passengers’ lateness follows some random distribution, i.e. Li ∼ F, where
F is the cumulative distributive function. For the sake of simplicity, let us assume that all Li
follow the same distribution (i = 1, . . . ,N) and that they are independent. We assume that
Li takes values that are greater or equal to zero (i.e.passengers never arrive early).

In this setting, we can further exploit Equations (9)–(10) to conclude on systemdynamics
that:

• For a given shared ride degree N, the delay of each passenger �Ti follows the same
distribution. This can be concluded directly from Equation (10).

• Sharing the ride with more passengers will increase the expected delay for all of them.
This can be attributed to the fact that the delay depends on the maximum lateness
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among the passengers, which is likely to increase with N (as it is the maximum value
over a larger number of draws from a random distribution).

• Nevertheless, the marginal increase in the expected value of the delay decreases with
each new passenger (derived in the Appendix 2).

2.3. Strategic passengers’ arrival

Equation (10) reveals that the arrival time at the destination, for each passenger depends
on her/his arrival time at the pick up point. This motivates us to consider not only random
lateness, but also analyse the case in which each passenger decides how late s/he is going
to arrive at the pick up location. This can be modelled as a game, where:

• Players are: passengers p1, . . . , pN, sorted by their pick up orders, and the vehicle v.
• The strategy of each passenger is to decide how late s/he is going to be Si ∈ [0, T], where

T is an exogenous parameter. The vehicle is an object rather than a subject, hence it is
affected by the strategies of the other players but it does not have own choices.

• The disutility of each passenger is her/his total waiting time, expressed as a weighted
sum of waiting at the origin and over the vehicle, plus di the delay with respect to the
original arrival time:

Ui(Si, S−i) = pWWOi(Si, S−i) + pVWVi(Si, S−i) + pddi(Si, S−i) (12)

Where pW , pV and pd are the respectiveweights. The resulting disutility is a consequence
of not only the strategy chosen by i, but also the strategies of all the other players S−i.

• The disutility of the vehicle is its total lateness, which (according to Equation (5)) is:

Uv(S1, . . . , SN) = max{S1, . . . , SN}. (13)

Theanalysis fromprevious sections allowsus toobtainexplicit expressions for thedisutil-
ity of each passenger: Waiting time at the origin is given by the difference between her/his
own lateness and the accumulated lateness of the vehicle WO(Si, S−i) = (Vi−1(S) − Si)+,
yielding

WO(Si, S−i) = (max{S1, . . . , Si−1} − Si)+ (14)

Waiting in the vehicle then becomes:

WV(Si, S−i) = max{S1, . . . , SN} − max{S1, . . . , Si} (15)

And delay with respect to the original travel time is:

di(Si, S−i) = max{Si, S−i}, (16)

where S−i = maxj �=i{Sj}.
Equations (14)–(15) imply that the terms in Equation (12) that deal with thewaiting time

decrease with Si (the more delayed you are, the less you have to wait for others), while the
third term in Equation (12) increases with Si due to Equation (16) (the more delayed you
are, the later you will arrive at your destination). We can study how these counter forces
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relate by means of the so-called best response function BRi(S−i), that selects the best strat-
egy that player i can choose for a given strategy profile of the other players. According to
Equations (14) –(16):

• On the one hand, BRi(S−i) ≤ S−i because Ui(S−i, S−i) < Ui(Si, S−i)∀Si > S−i. To see this,
note that if Si > S−i, then WO(Si, S−i) = WV(Si, S−i) = 0, but di(Si, S−i) = Si (i.e. strictly
increases with Si). In other words, it is never good to decide to arrive with a delay strictly
greater than the maximum of the other delays, because doing so would not reduce the
waiting times (that are already zero when being as delayed as the most delayed among
the rest of the players) but would delay further the arrival at the destination.

• On the other hand, BRi(S−i) ≥ S−i because Ui(S−i, S−i) < Ui(Si, S−i)∀Si < S−i. To see
this, note that if Si < S−i, then di(Si, S−i) = S−i (independent of Si). Regarding the wait-
ing times, two cases must be considered: if Si < max{S1, . . . , Si−1}, then WO(Si, S−i) =
max{S1, . . . , Si−1} − Si, that strictly decreases with Si; if not, then max{S1, . . . , Si} = Si,
implying that WV(Si, S−i) = S−i − Si, that strictly decreases with Si. In other words, it
is never good that someone is strictly more delayed than you, because you could
experience shorter waiting times without arriving later at your destination.

Therefore, we can conclude that under these assumptions, passengers always want to
be exactly as late as the most delayed co-traveller:

BR(Si, S−i) = S−i (17)

The only way Equation (17) can be fulfilled for every i is that S1 = S2 = · · · = SN = D0, for
any D0 ∈ [0, T]. That is to say, the set of pure Nash equilibria 2 are those strategy profiles in
which all travellers are uniformly delayed. However, not all the equilibria are equally good:
in each equilibrium, the players face no waiting time, but they are delayed with respect to
their original arrival byD0, so it is better if everybody is punctual; from the vehicle’s point of
view (which represents the impact over the whole system, as the vehicle is meant to serve
other requests later), the larger the lateness of the passengers, the higher the disutility.

Which equilibrium is more likely to emerge? To study this, let us assume now that users
cannot know exactly what the other travellers are doing, but they receive the information
with some random noise η. We assume that it is a single noise for all the other players, i.e.
i will select the best response according to the strategy profile {Sj + η : j �= i}. We assume
that η presents a continuous distribution and that median(η) = 0. To simplify the analy-
sis, we also consider that pW = pV . Recalling that WO + WD = di − Si (Equation (8)), the
disutility can be written now as:

Ui(Si, S−i) = pW · (di(Si, S−i) − Si) + pddi(Si, S−i) (18)

Which can be re-written including the noise and using Equation (16) as

Ui(Si, S−i) = (pW + pd) · max{Si, S−i + η} − pWSi (19)

Thebest response function is nowobtainedbyminimizing the expected value (with respect
to η) of the disutility. A careful analysis of the first-order conditions (in the Appendix 3)
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reveals that Si is the best response to S−i iff Si is a solution to the following equation
in s:

P(η ≤ s − S−i) = pW
pW + pd

(20)

If s solving Equation (20) is larger than T, then the best response is Si = T . Analogously, if
the best solution is negative, then the best response is Si = 0.

Equation (20) reveals a number of interesting properties. If pW = pd , i.e. if one minute
of waiting is equally bad as one minute of late arrival, then Equation (17) holds (because
median(η) = 0). If pW � pd (much larger than), then the right side of Equation (20) approx-
imates 1 and Si must be close or equal to its maximum value T ; that is to say, if waiting is
much more annoying than arriving late, users will prefer to be late just due to the misin-
formation (noise). If pW 	 pd , the right side of Equation (20) approximates 0 and Si must
be close or equal to its minimum value 0, i.e. it is better to be punctual because there is a
chance that this hastens the arrival. What about the equilibria? The analysis is divided into
cases:

• If pW = pd , as Equation (17) holds, then the same analysis as in the no-noise case is still
valid, and each situation in which all users are equally delayed are equilibria.

• If pW > pd , then Equation (20) tells us that Si should be greater than S−i for all i. Since
this is impossible, all users are choosing the maximum delay T and this is the only
equilibrium.

• If pW < pd , then Equation (20) tells us that Si should be smaller than S−i for all i. Since this
is impossible, all users are choosing theminimumdelay 0 and this is the only equilibrium.

Therefore, the two extreme equilibria are the most likely ones, depending on how users
value their punctual arrivals at the destination and the time lost waiting for the vehicle or
other users. When arriving punctually is a priority, users will be on time at their pick up
points (the best equilibrium), just because there is a chance that the other users are punc-
tual as well; in the opposite case, nobodywill take the risk of having towait, so everybody is
as late as possible, which is the worst possible equilibrium. These results remain true when
pV �= pW , if both are greater than pd or both are lower than pd .

2.4. System-wide impact of late arrival

Aswedemonstrate, late arrivals have a significant impact on travel experience. Shared-rides
are likely to be delayed and the actual arrival time becomes unreliable. This will likely have
an impact on passengers choices, which in turn affects the system as a whole.

We use a recently proposed demand-driven, off-line method to match trips into attrac-
tive shared-rides (Kucharski and Cats 2020). In this method, each passenger is treated as a
rational decision-maker thatmaximises her/his utility whenmaking travel decisions. In par-
ticular, the passenger opts for a shared ride only if the delays and detours, imposed due to
sharing, are compensated with a discounted fare of a shared ride (de Ruijter et al. 2020);
consequently, the detours and delays of shared rides are driven by the behaviour of the
travellers and their willingness to share. This method allows us to incorporate the delays
identified in the previous sections in thematching algorithm. In particular, the utility of the
shared ride, typically composed of (among others) travel and waiting time, is now updated
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with the expected delay due to the late arrival of other passengers (as in Equation (18)).
This is likely to impact the sharing utility and thus, passengers’ decisions: whether to share
or not and with whom to share.

We assume that the delay increases sub-linearly with the degree of the trip, based on
previous sections’ findings. This increase is crucial for the system’s performance, making
unreliable travel times impact the system’s performance twofold. First, late arrivals increase
the chance that a passenger opts for a non-shared ride. Second, rides of lower degrees will
become more dominant in passengers’ decisions. We analyse how varying levels of late-
ness impact, in such settings, the KPIs (key performance indicators) of shared rides, namely:
number of shared rides in the solution, passenger-hours, and number of rides of a higher
degree.

2.5. Generalisation to non-sequential shared-rides

So far, our analysis has assumed that the vehicle picks upall thepassengers beforedropping
off any, in the so-called sequential shared-rides. However, this might be a too restric-
tive requirement, so we now examine the case where this assumption is relaxed. We still
look into a single ride of a vehicle. For this analysis, the precise meaning of a ‘single ride’
implies that the vehicle has not updated its itinerary due to lateness, so this can apply
either for vehicles that serve a given set of requests before accepting new ones, or for
vehicles that are constantly being assigned to new users, that need to take lateness into
account.

The crux of the analysis in this generalised case is that lateness still occurs only at the
pick up points, when passengers arrive after the vehicle does. For a passenger i, denote ai
and bi their pick up and drop off order within the vehicle’s itinerary, respectively. As in the
original case, i will have to wait at her/his pick up point if and only if the vehicle carries an
accumulated delay larger than the one of i:

WOi = (max{Lj : aj < ai} − Li)+ (21)

Similarly, passenger iwaits on-board the vehicle only if the passengers picked upwhile s/he
is on-board present a higher delay than the accumulated delay of the vehicle right after
picking up i. An analogous analysis as in subsection 2.1 yields:

WVi = max{Lj : aj < bi} − max{Lj : aj ≤ ai} (22)

The delay with respect to the original arrival time di does not include now the passengers
that are picked up after i, i.e.:

di = max{Lj : aj < bi} (23)

Recall that Equation (9) reveals that di does not depend on i in the original sequential case.
This conclusion is no longer valid when the assumption is dropped; however, two passen-
gers i1 and i2 will still face the same delay with respect to their original arrival times if the
sets {j : aj < bi1} and {j : aj < bi2} are equal, i.e. if no one is picked up between the drop offs
of i1 and i2. That is to say, results from previous sections can be seen as the analysis over
sub-segments of the vehicle’s itinerary, whenever there is a stream of consecutive drop
offs (which is why we keep the assumption in the upcoming sections). When this is not the
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case, and someone is picked up after i1’s drop off but before i2’s, then i2 might face a longer
delay, i.e. di2 ≥ di1 . Finally, the vehicle’s total delay still depends on all the users of the ride,
given by max{L1, . . . , LN}.

3. Numerical simulations

In order to analyse the relevance of the theoretical results explained in the previous section,
we conduct Monte-carlo simulations. We simulate 2000 realisations of a shared ride, each
time independently drawing the delay of each passenger according to a given distribution,
as in Section 2.2.We assume that eachpassenger has a probabilitypof being late, andwhen
they are late, Li follows the positive part of a lognormal distribution (Figure 3). The two
parameters that define the system are p (which is fixed at 0.3 throughout the experiments)
and σ 2, the standard deviation of Li. We start with fixed σ 2 = 15 and use it as a variable in
Sections 3.3 and 3.5.

The number of users with whom the trip will be shared can range from one to ten. In
order to focus on the analysis of passengers’ arrival times, we assume that the total detour
is independent of the ride degree. It is assumed that, at first, all passengers are picked up,
and then they are dropped off in any order. We assume that travel times are either fixed or
perfectly predicted at the matching phase.

A general overview of how delays affect users’ and the vehicle’s travelling times can
be obtained from Figures 4–5, in which we summarise the results that emerge when
the scenario is simulated 2000 times, for a fixed ride of four passengers. The code to
reproduce the experiments and visualize the results is available at public repository
(https://github.com/rafalkucharskiPK/ExMAS)

First, Figure 4 shows the distribution of passenger arrivals (blue dashed) and vehicle
departures (green solid), which occurs when both the vehicle and the passenger are in the
respective pick up point . The first four curves are pick ups, and the last four are drop offs.
In the pick ups, for a single realisation, if the corresponding blue dashed line lies to the left
of the green solid one, it means that the user had to wait for the vehicle. Note that this hap-
pens more often for the passengers picked up in the last places, i.e. the latter passengers
wait at the origin more often than the earlier-on ones, due to the accumulated delay. In
addition, the black lines represent the scheduled pick up and drop off times, so the drop
off curves verify that the difference between the expected and the real drop offs does not
change with the pick up position (as predicted by Equation (9)).

Figure 3. Lognormal distribution of passengers’ lateness, we control the probability that this random
variable is larger than zero (30% of the cases) and the delay variability (σ 2).

https://github.com/rafalkucharskiPK/ExMAS 
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Figure 4. An itinerary of a ride shared by four passengers and its realisations. The scheduled times of consecutive pick ups and drop offs are marked with black
lines. The curves represent results from 2000Monte-carlo simulations, dashed blue for passengers’ (late) arrival at consecutive pick up points, and green solid for the
vehicle’s departure (first at pick up points and then at drop offs).

Figure 5. Distribution of the vehicle’s waiting time (blue, dotted), passengers’ waiting time (purple, dashed), and total delay (red, solid line), simulated for four
consecutive picked up passengers.
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Figure 6. Average delay varying with the number of co-riders (trip degree).

Table 1. Relative increase of the 85th percentile of the ride delay �T for
rides of increasing degree.

degree 3 4 5 6 7 8 9

�T increment 1.620 0.287 0.280 0.067 0.119 0.120 0.010

Figure 5 shows, for each consecutive passenger, its waiting time at the origin (pur-
ple dashed), the time spent waiting by the vehicle (blue dotted), and the passengers’ total
delay �Ti (red solid). Note that vehicle’s wait tends to disappear towards the last passen-
ger, because it is positive only if this passenger has the largest lateness. The total delay�Ti
is partially explained by the users’ waiting time, and its share increases from the first pas-
senger, in which the user does not have to wait for the vehicle, until the last passenger, for
whom the delay is fully explained by the waiting time, which is induced by the late arrivals
of the earlier passengers. It can be observed that the total delay has the same distribution
for all the passengers as the red curves are similar but not equal.

3.1. Impact of the degree of the trip

Wehave theoretically shown in theprevious section that passengers becomemore delayed
when there are more passengers. To show this numerically, we analyse how the vehicle’s
total delay VN changes with N (Figure 6). As predicted by the theoretical formulations, the
larger is the number of sharing travellers, themore relevant is the lateness, but this increase
becomes less significant when N is greater. In Table 1 we report the relative increments of
the 85th percentile of the delay (i.e. (�T85i − �T85i−1)/�T85i , where x85 stands for the 85th
percentile of x), to find that the relation is not linear, as growth rate decreases with i and
eventually stabilises when the degree goes beyond six.

3.2. Changes with the pick up position of the passenger

We now investigate how users’ experience changes depending on their pick up posi-
tions. We now consider a ride with a fixed degree (10 passengers) from the perspective
of consecutively picked up passengers. We run Monte-Carlo simulations and examine in
Figure 7 the outcomes in terms of: a) waiting time at the origin WOi b) waiting time while
boarding the vehicle VWi and c) total delay �Ti (recall that this is equal to the sum of the
two previous ones).
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Figure 7. Distribution of delays (box-plots of 2000 Monte-Carlo runs) for consecutive passengers in a
ride shared by ten of them. While total delay �Ti is stable (c), the origin waiting time (a) increases for
subsequent passengers and in-vehicle waiting time (b) decreases.

As predicted by our theoretical formulation, the total delay follows the samedistribution
(Figure 7(c)). It is in fact driven by the latest arriving passenger, who will contribute equally
to the each passenger’s, regardless of the position. Similarly, the total vehicle delay VN is the
sum of delays at consecutive nodes (Figure 7(b)), yet due to its cumulative nature, mainly
early passengers will contribute to this delay. Passengers picked up at final positions have
a small probability of being delayed more than all the preceding ones. This explains the
negative trend exhibited in (Figure 7(b)). The opposite trend is visible for the passengers’
waiting time at the origin (Figure 7(a)), where the first passenger has a null probability of
waiting, which then gradually grows for each consecutive passenger.

The observed trends regarding the delay composition can be of high importance. In
particular, considering that behavioural findings suggest that waiting time is perceived
differently than in-vehicle time (e.g. in the context of public transport, Fan, Guthrie, and
Levinson 2016; Yap, Cats, and van Arem 2020), a topic that needs further understanding in
the context of shared rides.

3.3. Varying lateness

In this section, we study the impact of the variance (σ 2) of the lognormal distribution, i.e.
the extent to which passengers are late. For this, we show in Figure 8 the change in the
total vehicle’s delay VN. Of course, this delay increases when lateness does, yet notably,
the change is more relevant for rides of higher degree: an almost linear growth can be
observed within each trip degree, but the slope is much steeper as the number of users
increases. These different slopes are not innocuous: if the variability is low, shared rides of
higher degree remain within an acceptable delay, but if the process is more random, then
higher degree rides may become non-viable.

3.4. Strategic arrival

Instead of delving into the possible strategies that each passenger can choose when the
lateness is decided, let us show results from a simpler case: each passenger decides only
between being punctual and being late, and if s/he is late then Li is random.
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Figure 8. Vehicle’s delayVN plotted against the variance of the lateness in passengers’ arrival, for various
ride degrees. Trends are linear for each degree, but the sensitivity (slope) is greater for rides of higher
degree.

We analyse this situation through a ride shared by five passengers, each one selecting
whether to be punctual or not. We focus on the second passenger of the shared ride, and
examine the outcomes of the strategy selected by her/him, subject to other passengers’
strategies. We describe the outcomes using three variables representing the disutility func-
tions in this game, as explained in Equations (12)–(13). Figure 9(a) reveals the arrival time at
destination (related to di), Figure 9(b) shows her/his total travelling time (dealing with WOi

and WVi ), and Figure 9(c) shows the vehicle’s disutility given by its delay VN.
In general, themore passengers deciding to be late, themore negatively it impacts both

the system (represented by the disutility of the vehicle) and other passengers. However, the
outcomes of individual strategies on their own experience are not obvious. As discussed
in Section 2.3, if the passengers aim to arrive at the destination as soon as possible, the
strategy of being punctual is dominant regardless of the strategies adopted by the co-
travellers (Figure 9(a)). Notwithstanding, if the passengers aim tominimise their own travel
time (elapsed time between their arrival at the pick up point Oi and the drop off at desti-
nation Di), results are different, and the passenger is better-off being late (Figure 9(b)). Yet,
such a strategy is likely to deteriorate the system’s performance (Figure 9(c)), since being
late contributes to the total vehicle’s delay.

3.5. The consequences of late passenger arrivals for sharing

We study now the impact of late arrival, which has been quantified in the previous sec-
tions, on the global performance of shared rides system.We simulate how 3000 passengers
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Figure 9. Three outcomes of alternative strategies (being punctual - right bar, and being late - left
bar), for a passenger picked up second in a ride shared by five passengers, depending on how many
co-travellers are late: arrival time (a), travel-time (b) and vehicle delay (c).

are matched into attractive shared rides in Amsterdam we use an open-source ExMAS
algorithm3 from Kucharski and Cats (2020)). We aim to explore how do the late arrivals and
vehicle delays impact the shareability of the ride-pooling system and the time costs of the
users. We first assume that travel times are as scheduled (no lateness), and then gradu-
ally increase the magnitude of late arrival (σ 2). We reproduce the phenomena visualised
in Figure 8 and update the expected travel and waiting time accordingly as a function of
ride degree and variability σ 2. For each new variability level, we re-calculate the utilities
according to these values. Utilities are then used by passengers to make travel decisions –
choosing between a private ride and a shared ride – presumably different when variability
is included.

The results indicate that the impact of lateness is significant. Froma state inwhich almost
half of the passengers are willing to share a ride, lateness can lead to all passengers refrain-
ing from sharing (Figure 10).We observe it as a gradual increase in the total number of rides
and a decreasing number of shared rides in the solution (Figure 10(a)). The trend, however,
is non-linear: a mild increase in variability barely impacts the composition of shared rides,
yet after a certain threshold is reached, passengers gradually resign and shift towards pri-
vate (non-shared) ride. Consequently, a similar trend may be observed in the total travel
costs (passenger-hours) which remain stable until it grows rapidly when a certain thresh-
old is reached (Figure 10(b)). Notably, the threshold for rides of higher degree is reached
earlier. While for σ 2 of 10 the number of shared rides remains almost intact, the number of
rides of higher degree drops almost to zero.

This suggests that there are two system-wide effects of variability, which are reached at
two different thresholds of variability. First, when passengers start avoiding rides of high
degree, and second, when they avoid shared rides at all.

4. Discussion and conclusions

We have analysed a unique feature of service uncertainty associated with ride-pooling
services, namely how passengers’ non-punctual arrival at the pick up points impacts the
system’sperformance.Weconsidereda setting inwhich, insteadof focusingon travel times,
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Figure 10. Impact of varying lateness σ 2 of passengers onmatching of 3000 passengers into attractive
shared-rides. The percentage of travellers opting for shared vs. private rides (a), total travellers costs (b),
number of high degree rides (three or more travellers) in the solution (c).

we look at the passengers’ arrival times at their pick up points as the source of unreli-
ability. We proposed a theoretical framework to quantify the impact of late passengers,
and investigated the cases in which lateness is either random or strategically decided.
We distinguish between two components of passengers’ delay. First, a passenger may
be delayed at her/his own origin, if the vehicle is delayed and the passenger has to wait
for it. Second, in-vehicle time may be delayed as other passengers arrive late, and the
vehicle needs to wait for them while other passengers are on-board. While the former
one may also be observed in public transport, the latter phenomenon is specific to ride
sharing.

We formulate the delay as a recursive function and find the following:

(1) the total vehicle delay is commanded by the latest passenger (i.e. that arrives with the
highest delay at her/his own pick up point),

(2) passengers’ waiting time at the origin is determined by the latest passenger picked up
prior,

(3) the on-board delay of a passenger is determined by the latest passenger picked up
en-route.

If we further assume that passengers arrive following a random distribution, then each
additional passenger is likely to increase the delay of other passengers. However, the
marginal impact of each additional passenger will decrease. Until the level of eight pas-
sengers, we observed a clear increasing trend. Surprisingly, in this setting, the total travel
timedelay follows the samedistribution for all sharingpassengers that are droppedoff con-
secutively, as long as the ride degree is the same. However, the composition of this delay is
different: passengers being picked up earlier will wait for others over the vehicle, whereas
those picked up later will wait at the pick up point for the vehicle (that has already accumu-
lated some delay) to arrive. Those passengers that perceive waiting time at the origin in a
very negative way, may start avoiding rides in which they are picked up at a later stage.

We then turned to consider that passengers are strategic individual decision-makers,
resulting in interesting collective patterns. The system will benefit from passengers decid-
ing to arrive punctually, and other passengers will also benefit if others arrive punctually.
This allows us to hypothesise on the stable point of such an evolutionary game, namely
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that all passengers will decide to arrive punctually if they aim to arrive as early as possible
at their destination. However, if passengers aim to minimise their own travel time, they are
likely to pursue the strategy of arriving late at their origin, which will result in a significant
drop in the system-wide performance.

The system-wide impact of late arrival is negative. Even mild lateness of passengers
is likely to shift out other users from high degree rides, crucial to achieve higher occu-
pancy rates and thus gain efficiency and economies of scale in ride-pooling systems. High
unreliability of arrival will eventually divert passengers towards private and more reliable
services.

Notably, we found that the negative impacts are more pronounced for rides of higher
degrees. Rides shared by many passengers, even without considering reliability, are trou-
blesome because they impose a greater detour that needs to be compensated with a
discounted fare. Sadly, our findings are unfortunate for rides of a higher degree. The
average trip delay increases with the number of passengers. This happens because each
additional passenger, possibly late, might impose an additional delay (in addition to the
extra detour). Moreover, the impact of a higher lateness’ variability exacerbates with each
additional passenger. In particular, if we assume that the variance of passengers’ late arrival
is σ 2 = 40s instead of 10s, the average delay grows from 3s to 10s for rides of degree two.
The same increase in σ 2 implies, in the case of rides of degree four, an augment from 10s
to 40s, which is likely to be declined by passengers.

These theoretical findings shall further be empirically underpinned using data on actual
passengers’ arrival. Policy or practice implications of those findings are relevant for both
transport authorities and ride-pooling service providers. Transport authorities may take
passengers’ inclination for late arrival into consideration in the assessment of service relia-
bility aswell as in the allocation of curbside capacity. Service providersmaydevise incentive
schemes to encourage passengers to arrive punctually so that passengers internalise the
negative externalities of their late arrival. Specifically the findings from strategic behaviour
may be used to efficiently control the arrival process and thus improve the system per-
formance. The exact specification and assessment of such policies should be subject to
further research. In particular, the mobility traces, with information on the actual origin
waiting time, are needed for passengers and vehicles to estimate and calibrate the model
specifications. While the proposed method focuses on the origin arrival process, unreli-
able vehicles’ arrival times, as well as traffic-dependant travel times, are an inherent part
of the complete process. The proposed method can be extended to accommodate other
sources of uncertainty. In particular, the travel time Ti may be assumed non-deterministic,
which can be included in the method by adding the extra travelling time to the accumu-
lated lateness of the vehicle in Equation (4). If travelling times happen to be much larger
than the expected ones, passengers’ delays become irrelevant because they would have
to wait for the vehicle anyhow. Likewise, the vehicle’s arrival at the first node may be
assumed delayed (V0 �= 0): To address this aspect, vehicles may be treated as if they were
the first passenger who arrives randomly, with the remainder of the method remaining
intact.

Passengers’ preferences in the context of shared rides are increasingly understood
thanks to recent behavioural studies (e.g.Alonso-González et al. 2020a). Revealed clusters
of latent aptitudes towards sharing calls for a personalised approach to service provision.
Passengers vary in terms of their value of time, willingness to share, trips’ purposes, and
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time elasticity. This heterogeneity should be accounted for to ensure the value proposition
of tailored, attractive services. Service providers can collect and process behavioural data
to infer users’ actual arrival strategy. This opens a way to pool passengers into rides based
on their arrival strategy, where punctual passengers may be pooled together in different
groups than late ones, benefiting both groups and the system as a whole.

Finally, our analysis was performed in the context of an offline planned system, and con-
clusions may change if applied to online, in a real-time setting. For example, if some new
passengers will be picked up while others have already arrived at destinations, our results
will be valid for sub-segments of the trip (in which the assumption of pick ups before drop
offs is valid). Nevertheless, our method is generalisable, and may be used, for instance, in
the trip-to-vehicle matching process. The dispatcher can make a decision on assigning the
incoming requests to available vehicles taking into account also, for example, the accu-
mulated delay for passengers already on-board and the expected delay due to the new
incoming requests. Such anapproachmaybeembedded in the recently proposed real-time
method of Fielbaum and Alonso-Mora (2020).

Notes

1. Other authors refer to this concept as pooled rides or ride-splitting. See Shaheen (2016) for a
review of terms and definitions.

2. A pure Nash equilibrium is a set of strategies (one per player), such that no player can unilaterally
increase her/his utility by changing her/his strategy, i.e. where every player is selecting the best
response

3. https://github.com/rafalkucharskipk/ExMAS
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Appendices

Appendix 1. Proof thatDi = VN

We need to prove that Li + WOi + WVi = VN. Let us separate the analysis in two cases, depending on
whether passenger i waits for the vehicle at the pick up point.

Case 1:WOi = 0: If the passenger does not wait at the pick up point, it means that his lateness is
larger than the one accumulated by the vehicle so far. Hence, using Equation (15), we conclude that:

Vi = Li

Hence, by means of Equation (7):

Di = Li + WOi + WVi = Vi + 0 + (VN − Vi)

Which proves the result.
Case 2:WOi > 0: Equation (3) implies that Pi > Oi , and then

Pi = P̄i + Vi−1

Due to Equation (6). Furthermore, we know that Vi−1 = Vi because Therefore:

Di = Li + WOi + WVi = Li + P̄i − Oi + Vi + VN − Vi = VN + Li − (Oi − P̄i) = VN

Which proves the result.

Appendix 2. Proof that total delay increases with the number of passengers,
at decreasing rates

For this proof, we first need to note that we are comparing the outcome of two different random
variables. Strictly speaking, what we are going to show is that if we denote FN the cdf of VN, then:

• FN(x) ≥ FN+1(x) ∀x ≥ 0 (i.e. VN+1 is concentrated towards greatest numbers), and
• FN(x) − FN+1(x) ≤ FN−1(x) − FN(x) (i.e. the difference between different trip degrees decreases

when N increases).

http://www.sciencedirect.com/science/article/pii/S136655451400177X
https://scholar.google.com/scholar_lookup?title=Ride-sharing%20efficiency%20and%20level%20of%20service%20under%20alternative%20demand%2C%20behavioral%20and%20pricing%20settings\&publication_year=2020\&author=A.%20de%20Ruijter\&author=C.%20Oded\&author=A.-M.%20Javier\&author=H.%20Serge
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In fact:

FN(x) = P(VN ≤ x) = P(max{L1, . . . , LN} ≤ x) = P(L1 ≤ x, . . . , LN ≤ x) = (F(x))N

Where we are using independence in the last equality. As F(x) ∈ [0, 1], it follows directly that
FN(x) ≥ FN+1(x). For thedecreasing rates, note that FN+1(x) − FN(x) − (FN(x) − FN−1(x)) = FN−1(x) ·
(F2(x) − F(x) − F(x) + 1) = FN−1(x)(F(x) − 1)2 which is greater or equal than zero.

Appendix 3. First-order conditions for the best response when passengers
decide strategically with noise

Taking expected values and rearranging terms on Equation (19):

E(Ui(Si , S−i)) = (pW + pd)E(max{Si , S−i + η}) − pWSi

Denoting f the probability density function of η, this can be re-written as:

(pW + pd)
∫ ∞

−∞
max{Si , S−i + t}f (t)dt − pWSi

The integral is split into: ∫ Si−S−i

−∞
Sif (t)dt +

∫ ∞

Si−S−i

(S−i + t)f (t)dt

By means of the fundamental theorem of calculus, the derivative of the expected value of the utility
with respect to Si is:

(pW + pd)

[∫ Si−S−i

−∞
f (t)dt + Sif (Si − S−i) − Sif (Si − S−i)

]
− pW = (pW + pd)P(η ≤ Si − S−i) − pW

This is an increasing function of Si , meaning that the function we are aiming tominimise is convex, so
the first-order conditions are sufficient. If this function reaches zero for some Si ∈ [0, T], that Si is the
best response. The final expression equals zero iff

P(η ≤ Si − S−i) = pW
pW + pd

If the derivative does not reach zero, it means that it is either always positive or always negative. In
the former case, the disutility increases with Si so the best response is zero. In the latter, the disutility
decreases and the best response is T.
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