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Social Trajectory Planning for Urban Autonomous Surface Vessels
Shinkyu Park, Michal Cap, Javier Alonso-Mora, Carlo Ratti, and Daniela Rus

Fig. 1. Roboat: Robotic boats designed to serve as a platform for trash
removal and as a new means of transportation in Amsterdam canal.

Abstract—In this paper, we propose a trajectory planning
algorithm that enables autonomous surface vessels to perform
socially compliant navigation in a city’s canal. The key idea behind
the proposed algorithm is to adopt an optimal control formulation
in which the deviation of movements of the autonomous vessel
from nominal movements of human-operated vessels is penalized.
Consequently, given a pair of origin and destination points, it
finds vessel trajectories that resemble those of human-operated
vessels. To formulate this, we adopt Kernel Density Estimation
(KDE) to build a nominal movement model of human-operated
vessels from a pre-recorded trajectory data set, and use a
Kullback-Leibler control cost to measure the deviation of the
autonomous vessel’s movements from the model.

We establish an analogy between our trajectory planning
approach and a Maximum Entropy Inverse Reinforcement
Learning (MaxEntIRL) approach to explain how our approach
can learn the navigation behavior of human-operated vessels.
On the other hand, we distinguish our approach from the
MaxEntIRL approach in that it does not require well-defined
bases, often referred to as features, to construct its cost function
as required in many of inverse reinforcement learning approaches
in the trajectory planning context. Through experiments using
a data set of vessel trajectories collected from the Automatic
Identification System (AIS), we demonstrate that the trajectories
generated by our approach resemble those of human-operated
vessels and that using them for canal navigation is beneficial
in reducing head-on encounters between vessels and improving
navigation safety.

Index Terms—trajectory planning, autonomous surface vessels,
optimal control

I. INTRODUCTION

Many cities are seeking sustainable ways to transform their
waterways to improve the public transportation capacity [1].
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Fig. 2. Examples of vessel trajectories in Dutch canals. We observe that each
trajectory typically lies on the right-hand side of the waterway. However, its
exact distance from the canal boundary or from opposite trajectories varies
from location to location, which is a potential cause of difficulties in designing
a planning algorithm that can generate similar trajectories.

One example is the Roboat project [2], which aims at devel-
oping a fleet of autonomous surface vessels that can transport
people and provide delivery and trash removal services through
the canal network in the city of Amsterdam. Fig. 1 illustrates
use cases of the Roboat project.

Autonomous vessels operating in the city’s waterway need
to perform socially compliant navigation to safely interact
among themselves and also with human-operated vessels.
Unlike road vehicles whose operations are, in general, gov-
erned by well-structured and universal guidelines/regulations
for road safety, the vessels are expected to follow region-
specific regulations and norms that are hard to be formalized
in unstructured space where lanes are not well defined. Using
illustrative examples, Fig. 2 explains difficulties in formalizing
norms for safe canal navigation.

To address this issue, in this paper, we investigate the
problem of designing a trajectory planning algorithm for find-
ing vessel trajectories that resemble those of human-operated
vessels and that allow autonomous vessels to perform socially
compliant navigation. For this reason, we refer to the algorithm
as social trajectory planning and to outcomes of it as social
trajectories.

Of relevance to our social trajectory planning problem are
learning-from-demonstration approaches in which the main
goal is for robots to learn socially compliant navigation
behavior of human demonstrators (also called experts) [3]–
[14]. Except a few [12]–[14], many of the works in the
literature focus on learning local interaction rules from human
demonstrations and use the learned rules to guarantee safety
when robots are navigating in human-populated environments.
However, as such approaches are designed for collision-
free multi-robot motion planning, which is more suitable for
shorter-term planning scenarios, the interaction rules are not
rich enough to explain the emergence of long-term and global
trajectory patterns (as illustrated in Fig. 2) and hence are not
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sufficient to model navigation behavior of human-operated
vessels for larger-scale trajectory planning.

Different from existing ones, our approach aims at syn-
thesizing long-term and global trajectories. The key idea
behind our approach is to design the trajectory planning
algorithm based on an optimal control formulation in which
the vessel’s movements – speed and heading direction – that
deviate from nominal movements of human-operated vessels
are penalized. To implement the idea, we use a pre-recorded
vessel trajectory data set to learn nominal movements of
human-operated vessels and adopt a Kullback-Leibler (KL)
control cost approach to impose such penalty. Interestingly,
the analysis presented in Section V shows that our social
trajectory planning can be viewed as a feature-less equivalent
of an Inverse Reinforcement Learning (IRL) approach.

The main contributions of this paper are summarized as
follows:

1) We propose the trajectory planning algorithm, referred
to as social trajectory planning. The algorithm leverages
a KL control cost approach to define its cost function
in which we derive the cost using a Kernal Density
Estimation (KDE) scheme and a data set of pre-recorded
vessel trajectories.

2) We provide analytical results that support our claim
that the social trajectory planning is capable of learning
navigation behavior of human-operated vessels. In par-
ticular, by establishing its relation to Maximum Entropy
Inverse Reinforcement Learning (MaxEntIRL) trajectory
planning, we show that our approach is qualified as
a learning-from-demonstration approach. On the other
hand, we distinguish our approach from existing learning-
from-demonstration approaches in that it does not require
a set of features to define its formulation. Through
experiments, we empirically verify that our approach
outperforms MaxEntIRL trajectory planning, which is a
feature-based IRL approach.

3) We demonstrate through data analysis that, in comparison
with Minimum Travel-Time (MinTravelTime) trajectory
planning – a non-learning-from-demonstration approach
– and MaxEntIRL trajectory planning, the autonomous
vessels adopting our social trajectory planning experience
less head-on encounters1 against both other autonomous
vessels (also adopting the social trajectory planning) and
human-operated vessels. This suggests that the social
trajectory planning essentially reduces the amount of
effort autonomous vessels should make to avoid collisions
against other vessels in the canal. In addition, head-on
encounters on social trajectories occur further away from
the canal boundary which suggests that in case the vessels
undergo the encounters, they would have more room to
avoid vessel-to-vessel collisions. From these analyses, we
conclude that the social trajectory planning reduces the
likelihood of vessel-to-vessel collisions stemming from
head-on encounters.

1A precise definition of the head-on encounter and the motivation for adopt-
ing such encounter as a performance metric are provided in Section VI-A3

This paper is organized as follows: In Section II, we
provide a comparative review of work related to our problem.
In Section III, we formally introduce the social trajectory
planning problem that aims at finding trajectories resembling
those of human-operated vessels. The key idea behind our
social trajectory planning approach is to adopt an optimal
control formulation in which a Kullback-Leibler (KL) control
cost is used to penalize the deviation of the velocity of the
autonomous vessel from those of human-operated vessels.
In Section IV, we explain how to construct the KL control
cost using a vessel trajectory data set and to numerically
compute a solution to the social trajectory planning problem.
In Section V, we examine our trajectory planning approach
from a perspective of the inverse reinforcement learning.
To analyze benefits of our approach, we perform extensive
experiments and data analysis using a data set recorded from
the Automatic Identification System (AIS), which we report in
Section VI. We end the paper with conclusions in Section VII.

II. RELATED WORK

Trajectory planning for safe autonomous vehicle navigation
has been an active research area whose topics range from
classical formulations of cost-minimizing trajectory planning
to recent developments on pedestrian-inspired and learning-
based planning for navigation in human-populated environ-
ments. In this section, we review some of recent work in
literature focusing on autonomous vehicle navigation that are
relevant to our social trajectory planning problem. We refer
the interested reader to a review article on autonomous vehicle
planning for more in-depth discussions [15].

A fundamental aspect of safe robot navigation is to require
robots to avoid collision against objects such as other robots
or pedestrians while navigating toward their destinations.
The work of [4] presents the idea of reciprocal collision
avoidance for collision-free multi-robot navigation. To allow
robots to perform more human-like navigation and obstacle
avoidance, the authors of [5], [6] propose algorithms that
incorporate observed pedestrian models. Simulation results of
[5] demonstrate a performance improvement of the algorithm
over the reciprocal collision avoidance. Experimental results
of [6] validate the efficacy of the algorithm in robot navigation
in pedestrian-populated environments.

The work of [16] proposes a collision avoidance method
that, based on the idea of equivalence relation on local paths
[17], encodes the avoidance behavior inherent to pedestrians.
In addition, using the formalism of topological braids, recent
work [18] proposes a framework that is capable of generating
legible collision-free paths for multi-robot navigation.

Furthermore, the authors of [11] introduce a deep reinforce-
ment learning framework to design a robot motion planning
algorithm. The framework, which builds on simple yet explicit
local interaction rules observed in pedestrian navigation, en-
ables robots to execute socially aware collision avoidance in
pedestrian-populated environments.

Different from the above-mentioned references, the
learning-based navigation approaches adopt the principle of
learning-from-demonstration. These approaches aim at learn-
ing navigation behavior of experts from their demonstrations
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by designing data-driven frameworks for trajectory planning
that allow robots to perform socially compliant navigation,
e.g., avoiding other obstacles via a certain side of corridors
while maintaining a safety distance to walls. Motivated by the
so-called “freezing robot” problem, the work of [19] develops
an effective robot navigation framework that considers joint
collision avoidance between robots and pedestrians, where a
pedestrian movement data set is used to train their Gaussian
process model.

Other important developments in this research area build
on the Inverse Reinforcement Learning (IRL) approaches.
Notably the work of [8]–[10] adopt different types of IRL
approaches to enable robots to learn experts’ local interac-
tion rules from their demonstrations and use them for safe
navigation in human-populated areas. Both simulation and
experimental results reported in the work demonstrate that IRL
approaches find trajectories resembling those of pedestrians
and allowing robots to safely navigate in crowded environ-
ments.

More specific to the robot planning context related to our
problem, applications of an IRL approach to route and tra-
jectory planning are discussed in [12], [13]. In particular, [12]
investigates a route planning problem based on the MaxEntIRL
approach to learn the route preference of cab drivers. The work
demonstrated the potential of MaxEntIRL as a learning-based
approach that allows robots to navigate like human drivers.
The work of [13] describes an application of MaxEntIRL in
modeling goal-directed trajectory planning of pedestrians and
proposes a robot planning framework that, using the pedestrian
trajectory planning model, enables robots to minimize the
chances of hindering pedestrian movements while executing
their assigned tasks.

The work of [14] proposes a deep neural network-based
MaxEntIRL approach for robot path planning. In particular,
the authors investigate the problem of learning a cost function
for path planning from experts’ vehicle driving demonstrations
and devise deep neural network architectures that are capable
of reconstructing a cost function using LIDAR data from the
vehicle and a driving demonstration data set.

Our approach is relevant to the learning-from-demonstration
approaches in that it aims at learning safe navigation of
human-operated vessels using a pre-recorded data set. How-
ever, it is substantially different from these approaches in
that 1) our framework finds global trajectories (rather than
local interaction rules that are more suitable for generating
trajectories over shorter time periods) for safe canal navigation,
and 2) the framework relates to the IRL-based trajectory
planning approaches, but it does not require a well-defined set
of features (either manually selected or learned from sensor
data) to learn experts’ navigation behavior.

We remark that, different from many of the references we
reviewed here, collision avoidance is not the main focus of
this paper. However, our approach can be used to compute,
for instance, a (socially compliant) reference trajectory for any
local planning algorithm, which would refine the trajectory to
ensure collision avoidance against other vessels.
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Fig. 3. A portion of Amsterdam canal map. The three orange regions on
the map indicate the segments within which we perform the validation of the
proposed approach using a vessel trajectory data set collected from AIS (see
Section VI).

X the set of admissible vessel positions
V the set of admissible vessel velocities
xt the position of the autonomous vessel at time instant t
vt the velocity of the autonomous vessel at time instant t
z a vector z ∈ X indicates a location on the canal map
u a vector u ∈ V indicates a vessel velocity

p(u | z) the distribution of velocities of human-operated vessels at loca-
tion z

TABLE I
LIST OF BASIC NOTATION

III. METHOD FOR SOCIAL TRAJECTORY PLANNING

In this section, we formally describe the social trajectory
planning approach discussed in this paper. We begin by
describing preliminaries needed to explain our approach. For
convenience, in Table I, we summarize basic notation used
throughout the paper.

A. Preliminaries

1) Admissible Position and Velocity: Given a map of the
canal as depicted in Fig. 3, we denote by X ⊂ R2 the set
of admissible vessel positions representing the locations that
are within the canal map and where the vessel can navigate.
We impose the constraint that the vessel position x = (x, y)
satisfies x ∈ X. We denote by V ⊂ R2 the set of admissible
velocity vectors representing the vessel velocities that are
within the speed limit in the canal. We require the vessel
velocity v = (vx, vy) to satisfy v ∈ V.

2) Control Policy and Trajectory: Given the sets X and V
of admissible positions and velocity vectors, respectively, we
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Vessel Trajectory Estimation
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Kernel Density Estimation
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Value Iteration
for Trajectory Generation
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Fig. 4. An overview of the social trajectory planning: (i) from an AIS data set, we interpolate and estimate vessel trajectories, (ii) using KDE, from the
estimated trajectories, we construct the KL control cost for (3), and (iii) by finding the optimal policy µ for (3) using the value iteration, we compute a
social trajectory.

call by a control policy a mapping µ : X→ V with which a
vessel trajectory (x0, · · · , xTf) can be computed according to

xt = x0 +

t−1∑
τ=0

µ(xτ ), t ∈ {0, · · · , Tf} (1)

where x0 is the initial position of the vessel and we require
that (x0, · · · , xTf) is contained in X.

B. Social Trajectory Planning

Our social trajectory planning aims for the following goal:
Given an origin xo ∈ X and a destination xd ∈ X, find a control
policy µ : X→ V that minimizes a cost J (µ) for which its
resulting trajectory (x0, · · · , xTf), determined by (1), satisfies
the following two requirements:
• Global Navigation: It holds that x0 = xo and there is a

finite terminal time index Tf such that xTf = xd.
• Safety: It holds that xt ∈ X, vt ∈ V for all t in
{0, · · · , Tf}.

The cost J (µ) should encapsulate how well the autonomous
vessel performs socially compliant navigation under the con-
trol policy µ; hence, the key in the social trajectory planning
is to design an appropriate cost function J . In what follows,
we explain the design of the function J using the Kullback-
Leibler (KL) control cost [20], which is used to impose
restrictions on the movements of the vessel.

The KL control cost (2) defined below measures the devia-
tion of the velocity v of the autonomous vessel from velocities
of human-operated vessels at its position x on the canal map.

DKL (δ (u− v | x) ‖ p (u | x))

:=

∫
V
δ (u− v | x) ln δ (u− v | x)

p (u | x) du

= − ln p (v | x) +
∫
V
δ (u− v | x) ln δ (u− v | x) du (2)

where δ(u − v | x) is the dirac delta function (centered at v)
that is regarded as the distribution of the autonomous vessel’s
velocity at its position x, and p(u | x) is the probability density
function which describes the distribution of human-operated
vessels’ velocities at x.

Noting that the second term in (2) does not depend on v
and is, in fact, a constant, the KL control cost is equivalent to
− ln p (v | x) up to the constant term. The key idea in the KL
control cost approach is to construct an appropriate distribution
p(u | z) at every admissible location z in X and impose
restrictions on the velocity v of the autonomous vessel using it.
In Section IV-A, based on a Kernel Density Estimation (KDE)
scheme, we describe how p(u | z) can be computed from a data
set consisting of trajectories of human-operated vessels.

Using the KL control cost (2), we define the cost J (µ) by2

J (µ) := λTf︸︷︷︸
penalty due to travel time

+

Tf∑
t=0

− ln p (vt | xt)︸ ︷︷ ︸
KL control cost

(3)

In light of (2), the second term, which we refer to as the KL
control cost, quantifies the deviation of the velocity vt of the
autonomous vessel from velocities of human-operated vessels
at its current position xt and at time instant t. The cost (3)
expresses the trade-off between the total travel time and the
KL control cost where the positive constant λ determines the
importance of the travel-time penalty against the KL control
cost. Once we find the control policy µ minimizing (3), using
(1), we can generate a trajectory (x0, · · · , xTf) for which the
requirements on the global navigation and safety are satisfied.

In the cost function (3), a higher value of λ assigns more
emphasis on the total travel time. Hence, as the value of
λ becomes larger, the resulting trajectory becomes closer to
a minimum travel-time trajectory. Vessel movements along
such trajectory would frequently violate what are considered
as socially acceptable. For instance, as we will show in
Section VI, the vessels traveling along minimum travel-time
trajectories experience more head-on encounters with one
another than those traveling along social trajectories.

On the other hand, as the value of λ becomes smaller, the
resulting trajectory has longer travel time but induces smaller
KL control cost, suggesting that the autonomous vessel moves
more like human-operated vessels.

2In addition to the KL control cost, the cost function (3) penalizes the travel
time to ensure that resulting trajectories terminate at given destination points.
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IV. CONTROL POLICY SYNTHESIS FOR SOCIAL
TRAJECTORY PLANNING

Two key technical aspects in the social trajectory planning
are 1) constructing an appropriate KL control cost and 2)
computing a control policy µ minimizing the cost function
(3). For this purpose, we adopt the following methods:
• Given a data set of vessel trajectories collected from

the Automatic Identification System (AIS) [21], we in-
terpolate and estimate the pose and velocity of a vessel
associated with each trajectory data.

• Kernel Density Estimation (KDE) to construct the prob-
ability density function p (u | z) using the estimated tra-
jectories. The probability density function will be used to
construct the KL control cost as in (3).

• Value iteration to implement dynamic programming and
to numerically find an optimal solution to the social
trajectory planning.

Fig. 4 illustrates an overview of our social trajectory plan-
ning approach.

A. Kernel density estimation using AIS data set

We describe how to compute the probability density func-
tion p (u | z) from an AIS data set using the KDE scheme
[22]. The data set consists of multiple sequences of time-
stamped location data (GPS coordinates) where each sequence
is associated with a vessel identified by a unique vessel ID. We
denote the number of registered vessels and the location data
(transformed in a Cartesian coordinate system), respectively,
by M and {y(i)tj }

Ni
j=1, where Ni is the number of data points

associated with vessel i and y
(i)
tj ∈ R2 represents the location

data of the vessel at time instant tj .
1) Trajectory Estimation: As a first step, given the data

points {y(i)tj }
Ni
j=1, we interpolate the position x

(i)
t and estimate

the linear velocity v
(i)
t , the heading direction θ

(i)
t , and the

rotational velocity ω(i)
t , which will be used in the KDE step.

Consider finding
{(

x
(i)
t , θ

(i)
t , v

(i)
t , ω

(i)
t

)}tNi
t=t1

that minimizes

Ni∑
j=1

∥∥∥x(i)tj − y
(i)
tj

∥∥∥2︸ ︷︷ ︸
interpolation distortion

+

tNi−1∑
τ=t1

[ ∥∥∥RotT (θ(i)τ+1) v
(i)
τ+1 −RotT (θ(i)τ ) v(i)τ

∥∥∥2︸ ︷︷ ︸
penalty on linear acceleration

+
∥∥∥ω(i)

τ+1 − ω(i)
τ

∥∥∥2︸ ︷︷ ︸
penalty on angular acceleration

+
∥∥∥RotT2 (θ(i)τ ) v(i)τ

∥∥∥2︸ ︷︷ ︸
penalty on lateral motion

]
(4)

subject to x
(i)
t+1 = x

(i)
t + v

(i)
t

θ
(i)
t+1 = θ

(i)
t + ω

(i)
t

where given the heading angle θ, the matrix Rot(θ) represents
the rotation matrix defined by

Rot(θ) =
(
Rot1(θ) Rot2(θ)

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

Note that Rot2(θ) used in (4) denotes the second column of
Rot(θ).

The second term in (4) is the regularization that penalizes
the linear and angular accelerations and lateral motion of
vessel i. The penalty on the acceleration is to enforce the
estimated trajectory to be sufficiently smooth, and the penalty
on the lateral motion is to take into account the fact that vessels
in general cannot move laterally. The left plot in Fig. 4 depicts
vessel trajectories estimated based on (4) using the AIS data
set in one canal segment. Each blue rectangle and gray curve,
respectively, represent the initial pose and estimated trajectory
of a vessel.

2) Kernel Density Estimation (KDE): After we interpolate
vessel trajectories and estimate linear and angular velocities
from the data, we estimate the probability density function
p (u | z). We use the KDE scheme in which we adopt the
Gaussian kernel to represent each vessel’s velocity distribution.

We assume that the velocity of each vessel i at each time
instant t is distributed according to a Gaussian distribution
centered at the velocity data point v(i)t . Based on the assump-
tion, we adopt the Gaussian kernel KGaussian(u− v

(i)
t ) defined

as

KGaussian(u− v
(i)
t )

:=
1

Z(i)
t

exp

[
− 1

2α
(u− v

(i)
t )T (u− v

(i)
t )

]
(5)

where α is a parameter specifying the bandwidth of the
Gaussian kernel, which we select to match the (estimated)
variance (= 0.2916m2/s2) of v(i)t , and Z(i)

t is the normalizing
factor given by

Z(i)
t =

∫
R2

exp

[
− 1

2α
(u− v

(i)
t )T (u− v

(i)
t )

]
du

On the other hand, we approximate the shape of each
vessel i with a rectangle rotated by the vessel’s heading angle
θ
(i)
t and represent the points on the canal map occupied by

the vessel at each time instant t using the following indicator
function: For each location z in X,

I
(i)
t (z) :=

{
1 if RotT (θ(i)t )(z− x

(i)
t ) ∈ Bw,l

0 otherwise
(6)

where

Bw,l =
{
(z1, z2) ∈ R2

∣∣ − l/2 ≤ z1 ≤ l/2,
− w/2 ≤ z2 ≤ w/2

}
is the set of points constituting a 2-dimensional rectangle with
width w and length l for which we select w and l to match
them with the width and length of each vessel i, respectively.

Combining (5) and (6), we define K(i), which represents
the velocity distribution of vessel i at location z, as follows:

K(i) (u | z)

=


∑tNi
τ=t1

KGaussian(u−v(i)
τ )·I(i)τ (z)∑tNi

τ=t1
I
(i)
τ (z)

if
∑tNi
τ=t1 I

(i)
τ (z) > 0

0 otherwise
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Fig. 5. An illustration of the probability density function p(u | z) at 4 different locations. The graphs in (b) depict p(u | z) evaluated at the 4 different locations
indicated by the black dots in (a). In (a), the arrows represent the vessel velocities corresponding to the modes of the probability density functions, depicted
in (b).

Assuming that the prior distribution on the vessel velocities
is uniform, based on the KDE scheme, we obtain the estimate
of the probability density function p(u | z) by combining the
uniform density function KUniform defined over V and the
velocity distribution K(i) of every vessel as follows:

p (u | z) = 1

Z(z)

[
M∑
i=1

K(i) (u | z) +KUniform (u)

]
(7)

where the normalizing factor Z is defined as

Z(z) =
M∑
i=1

∫
R2

K(i) (u | z) du + 1

which is essentially the number of vessels visiting the location
z plus 1. Indeed, when M is substantially large, the effect of
the prior KUniform(u) on computing p(u | z) becomes negligi-
ble.

Fig. 5 illustrates the estimated probability density function
p (u | z) at 4 different locations on a canal segment. At lo-
cation 1 where we observe vessels traveling in two opposite
directions to enter from and exit to a neighboring canal seg-
ment, the probability density function p (u | z) is multimodal.
At other locations, on the other hand, the probability density
functions tend to be unimodal with their modes appearing at
different points in V. In particular, as we can observe from
locations 3 and 4, the majority of the vessels passing location 3
travel South West and those passing location 4 travel North
East.

B. Value Iteration

One technical challenge in solving the social trajectory
planning problem is in finding its optimal solution. Since the
cost function (3) is not guaranteed to be convex, especially
because the KL control cost is constructed using a real-world
data set, many of convex optimization tools are not directly
applicable to find such solution. For this reason, we use the
value iteration method [23] to find the optimal solution, which
we briefly describe below.

The key step in the value iteration method is to find a
sequence {Vn}∞n=1 of value functions for which each value
function Vn : X→ R is iteratively updated according to

Vn+1(x) = min
v∈V

[λ− ln p (v | x) + Vn(x + v)] . (8)

When the sequence of value functions converges, say to V∗,
(8) yields

V∗(x) = min
v∈V

[λ− ln p (v | x) + V∗(x + v)] . (9)

According to Bellman’s principle of optimality, we can derive
the optimal control policy µ as

µ(x) = argmin
v∈V

[λ− ln p (v | x) + V∗(x + v)] .

Computational methods to implement the value iteration
(8) are described in machine learning literature. We adopt a
simplified version of the method described in [24] for our
implementation.

V. ANALYSIS ON SOCIAL TRAJECTORY PLANNING

In this section, we explain key aspects of the formulation
used to define our social trajectory planning in connection with
Inverse Reinforcement Learning (IRL), one of learning-from-
demonstration approaches. A key idea of IRL approaches on
trajectory planning is to derive a cost function using demon-
strated trajectories by experts and use it to compute optimal
trajectories that presumably resemble important features of the
experts’ demonstrations.

In the social trajectory planning, considering that human-
operated vessels are the experts and AIS trajectory data are
their demonstrations, our approach is closely related to IRL
approaches. In what follows, we analytically show that our
formulation on the social trajectory planning, described in
Section III-B, can be cast into the form used in Maximum
Entropy IRL (MaxEntIRL) [25]. The analysis suggests that
our social trajectory planning is related to IRL approaches,
but uses different bases to construct the cost function in its
optimal control formulation (3).

1) Trajectory Planning with MaxEntIRL: For our discus-
sion, we adopt the following formulation for trajectory plan-
ning based on MaxEntIRL: Consider the reward function R
and constraints given by

R (x0, · · · , xTf
) (10)

subject to xt+1 = xt + vt

vt = µ (xt)

Tf ≤ Tmax

x0 = xo, xTf
= xd

xt ∈ X, vt ∈ V, ∀t ∈ {0, · · · , Tf}
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We note that the MaxEntIRL formulation seeks the policy µ
that derives a trajectory (x0, · · · , xTf

) from the origin xo to
the destination xd based on the reward R and subject to the
travel-time constraint Tf ≤ Tmax.

In the MaxEntIRL formulation, provided that a so-called
feature vector f : X → Rk is given, the reward R is
defined as R(x0, · · · , xTf

) = θT f(x0, · · · , xTf
), where X is

the set of trajectories (x0, · · · , xTf
) between xo and xd and

the parameter θ ∈ Rk is referred to as the feature weight.
According to the MaxEntIRL principle, the reward R defines
the probability density function p : X → R+ as

p (x0, · · · , xTf
)

=
exp (R(x0, · · · , xTf

))∫
X exp (R(x0, · · · , xTf

)) dx

=
exp

(
θT f(x0, · · · , xTf

)
)∫

X exp (θT f(x0, · · · , xTf
)) dx

. (11)

One of key aspects in MaxEntIRL is to select the feature
weight θ using a set of demonstrated trajectories, which
we denote by D ⊂ X , based on the maximum likelihood
estimation: Given the set D, using (11), we select θ as

θ = argmax
θ∈Rk

∏
(x0,··· ,xTf )∈D

p (x0, · · · , xTf
) . (12)

2) Social Trajectory Planning as IRL: Now we explain
how our social trajectory planning formulation is related to
(10). Let us begin by recalling the social trajectory planning
problem: Find a control policy µ : X→ V that minimizes

J (µ) = λTf −
Tf−1∑
t=0

ln p (vt | xt) (13)

subject to xt+1 = xt + vt

vt = µ (xt)

x0 = xo, xTf
= xd

xt ∈ X, vt ∈ V, ∀t ∈ {0, · · · , Tf}
where Tf is the total travel time.

Recall that we construct the probability density function
p(vt | xt) used in (13) from a data set on human-operated
vessel trajectories, as described in Section IV-A. Assume that
the (human-operated) vessels adopt state-dependent control
policies of the form µ : X→ V in which case the probability
density function p (vt | xt) satisfies

p (vt | xt) = p (vt | x0, · · · , xt) . (14)

Using (14), we can express the second term in (13) as follows:
Tf−1∑
t=0

ln p (vt | xt) = ln

Tf−1∏
t=0

p (vt | xt)

= ln

Tf−1∏
t=0

p (vt | x0, · · · , xt)

= ln

Tf−1∏
t=0

p (xt+1 | x0, · · · , xt)

= ln p (x1, · · · , xTf
| x0) . (15)

Note that, as x0 is fixed to xo, the last equation in (15)
is equivalent to ln p (x0, · · · , xTf

) up to the constant term
ln p (x0).

By noting that the denominator in (11) is constant, compar-
ing (11) and (15), we can re-write the cost function (13) as
follows:

J (µ) = λTf −R (x0, · · · , xTf
) + α (16)

where α is a constant that does not depend on the choice of
the policy µ.

In light of (16), the optimization (13) is identical to (10),
except we represent the travel time constraint in (10) as a
penalty term in the cost function of (13). Therefore, our social
trajectory planning finds the optimal control policy µ that
maximizes a rewardR satisfying (11) subject to the total travel
time constraint Tf ≤ Tmax, where the value of Tmax depends
on the selection of λ in (13).

On the other hand, our social trajectory approach is different
from the MaxEntIRL approach in that it does not require any
pre-defined feature vector f as in (11), but it rather estimates
the movement model p(u | z) of human-operated vessels and
uses the model to build the cost function. Indeed, since we
adopt the KDE method, which is a non-parametric estimation
scheme, our approach would, in general, require a larger data
set than feature-based IRL approaches, such as MaxEntIRL.
However, because our method accepts all vessel trajectory data
regardless of their origins and destinations, we can collect vast
vessel trajectory data sets through AIS.

VI. EXPERIMENTAL RESULTS

We perform experiments using the AIS trajectory data set
to evaluate the benefits of the social trajectory planning in
the following two aspects: 1) improving the predictability of
the autonomous vessel’s navigation behavior and 2) reducing
head-on encounters against other autonomous and human-
operated vessels. For the purpose of the evaluation, we com-
pare the performance of the social trajectory planning, where
we select λ = 1 for its cost function (3), with those of
the Minimum Travel-Time (MinTravelTime) – a non-learning-
based approach – and Maximum Entropy IRL (MaxEntIRL)
– an existing learning-from-demonstration approach which
we discussed in Section V – trajectory planning. The de-
tailed implementation of both approaches is explained in
Section VI-A2.

1) Predictability of Autonomous Vessel’s Navigation Be-
havior: In [26], the predictability of robot motion is
defined as how well an (human) observer can predict the
robot’s trajectory given that the observer knows the desti-
nation of the robot. Adapting this concept in our context,
we evaluate whether the social trajectory planning enables
autonomous vessels to adopt trajectories that are more
likely to be chosen by human-operated vessels and hence
those trajectories would be more “predictable” by human
operators.
To this end, in the first experiment, we begin by eval-
uating how much social trajectories resemble those of
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human-operated vessels. Using all three trajectory plan-
ning approaches, we compute trajectories between the ori-
gin and destination of each trajectory data from the AIS
data set. We then assess the Euclidean distances between
computed trajectories and associated trajectory data.3

Outcomes of this experiment, presented in Section VI-B,
suggest that our social trajectory planning attains the
smallest mean value of the Euclidean distances, and this
confirms that our social trajectory planning is capable
of generating trajectories that resemble those of human-
operated vessels better than the two other approaches.

2) Frequency and Location of Head-on Encounters: To
assess the benefits of adopting the social trajectory plan-
ning, we perform extensive experiments – total 9 × 106

different cases – to evaluate the frequency and loca-
tion of head-on encounters among autonomous vessels
and between autonomous and human-operated vessels in
which the autonomous vessels are navigating along one
of MinTravelTime, MaxEntIRL, and social trajectories.
Using outcomes of the experiment, we carry out statis-
tical analysis and draw the conclusion that the vessels
navigating along social trajectories experience less head-
on encounters and the encounters occur further away from
the canal boundary than those navigating along MinTrav-
elTime and MaxEntIRL trajectories. These results support
our claim that, compared to the two other approaches, our
social trajectory planning would reduce the chances of
vessel-to-vessel collisions, especially under low visibility
conditions in which head-on collisions are empirically
dominant [27].

A. Experiment Settings

Below, we explain the data set we used to conduct the
experiments on three canal segments, illustrated in Fig. 3.
We also provide the descriptions on the implementation of
the MinTravelTime and MaxEntIRL trajectory planning – two
planning approaches used as baselines – and the definitions of
the head-on encounter and vessel dimension.

1) Data Set and Selection of Canal Segments for Eval-
uation: The AIS data set we used for the experiments
was collected during 2017/8/12 13 : 00 ∼ 2017/8/12 17 : 00
(CEST) and contains 182, 312, and 173 trajectories for
Segments 1, 2, and 3, respectively.4 We select 4/5 of the
data uniformly randomly to compute the probability density
function p(u | z) using the method described in Section IV-A.
We use the rest as the validation data set to assess the
performance of our method in the experiments.

The admissible velocity set V contains all the velocity
vectors that are below the maximum vessel speed observed in
the data set, which is approximately 3 m/s. We select three
canal segments, as indicated in Fig. 3, that are of different size
and each has multiple regions where vessels enter the segment

3The Euclidean distance between two trajectories is defined as the average
distance between every point on one trajectory and its closest point on the
other trajectory.

4We demonstrate that a single-day data set is enough to observe the benefits
of the social trajectory planning in improving canal navigation safety.

segment length width area
1 526 m 335 m 108, 198 m2

2 505 m 156 m 29, 407 m2

3 234 m 133 m 16, 073 m2

TABLE II
THE DIMENSION OF THE CANAL SEGMENTS USED IN THE EXPERIMENTS

(SEE FIG. 3 FOR THEIR LOCATIONS ON THE CANAL MAP)

and exit to neighboring segments. The dimension of the three
segments is summarized in Table II.

2) Minimum Travel-Time (MinTravelTime) and Maximum
Entropy IRL (MaxEntIRL) Trajectory Planning: We compare
the performance of our social trajectory planning with those
of the MinTravelTime and MaxEntIRL trajectory planning.
Below we provide the descriptions of both of the approaches.

• MinTravelTime: Consider the cost function JMinTravelTime
and constraints given by

JMinTravelTime (µ) = Tf (17)
subject to xt+1 = xt + vt

vt = µ(xt)

x0 = xo, xTf = xd

xt ∈ X, vt ∈ V, ∀t ∈ {0, · · · , Tf}

where xo, xd is a given pair of origin and destination
points, and Tf denotes the total travel time. The MinTrav-
elTime trajectory planning aims at finding a control
policy µ : X → V that minimizes (17). We adopt a
similar standard value iteration method, as described in
Section IV-B, to find the optimal policy µ.

• MaxEntIRL: Consider the cost function JMaxEntIRL and
constraints given by

JMaxEntIRL (µ) = −
Tf−1∑
t=0

θT f(xt, vt) (18)

subject to xt+1 = xt + vt

vt = µ(xt)

x0 = xo, xTf = xd

xt ∈ X, vt ∈ V, ∀t ∈ {0, · · · , Tf}

By making a similar selection of the feature vector f
as in [13], we adopt 5 features f = (f1, · · · , f5): the
first feature f1 takes a (negative) constant value across
the canal map and the second feature f2 is defined by
(the negative of) the squared Euclidean norm ‖vt‖2 of
the vessel velocity vt. These two features represent the
rewards associated with the travel time and velocity of the
autonomous vessel. The rest of the features f3, f4, f5 are
defined using blurred images of the canal map, obtained
by applying Gaussin filters with all different standard de-
viations. These features are used to quantify the position
of the vessel with respect to the boundary of (or other
obstacles on) the canal map. Applying MaxEntIRL as in
[13], we compute the feature weight θ = (θ1, · · · , θ5)
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Fig. 6. 3 different types of vessel-to-vessel encounters

using trajectory data from the AIS data set.5 We adopt the
“softened” value iteration, as in [13], to compute a value
function for (18) and using it, we find a (deterministic)
policy µ that derives vessel trajectories that most likely
occur under the MaxEntIRL approach.

3) Head-on Encounter and Vessel Dimension: We define
the head-on encounter as an event in which two vessels contact
each other at the relative degree (heading angle) between
0◦ and 30◦ (see Fig. 6 for an illustration of the head-on
encounter). Based on the statistics reported in [27], this is the
most frequently occurring vessel-to-vessel encounter in water-
ways that would potentially lead to a collision under restricted
visibility conditions. Also our analysis on the frequency of
all types of encounters – overtaking, crossing, and head-on
counters (see Fig. 6 for an illustration) – suggested that the
head-on encounter is the most frequently occurred one.

In order to assess vessel-to-vessel encounters in the ex-
periments, we need to define the dimension of vessels. We
approximate the shape of every vessel as a rectangle and
determine its width and length as follows: For the human-
operated vessels recorded in the AIS data set, their width and
length are given in the data set. For autonomous vessels, we
assume that their dimension is equal to the average dimension
of the human-operated vessels, which is 5 m wide and 20 m
long.

B. Predictability of Autonomous Vessel’s Navigation Behavior

We assess the predictability of the autonomous vessel’s
trajectory under the MinTravelTime, MaxEntIRL, and social
trajectory planning. For this purpose, we compute vessel tra-
jectories using all three planning approaches between the ori-
gin and destination of each trajectory data from the validation
data set, and we evaluate the Euclidean distances between the
computed trajectories and associated trajectory data. Adapting
the definition of the predictability of robot motion from [26],
the assessment will be used to draw the conclusion that the
trajectories computed by the social trajectory planning are
closest to those adopted by the human-operated vessels and
hence would be more predictable by human operators than
the other planning approaches.

5To allow the feature weight θ to vary depending on the destination
point xd, we categorize trajectory data based on their destinations and
compute the feature weight using the data in each category. This enables
the MaxEntIRL trajectory planning to use different cost functions depending
on the destinations of the vessels.

Fig. 7 depicts the comparison between the trajectories
computed by the three planning approaches and their associ-
ated trajectory data from the validation data set, and Fig. 8
summarizes the statistics on their Euclidean distances. We
observe that the social trajectories are closer to the trajectory
data than the MinTravelTime trajectories (p = .0176, one-
sided t-test) and MaxEntIRL trajectories (p = .0022, one-sided
t-test). Surprisingly, the MaxEntIRL trajectories recorded the
largest Euclidean distance among the three approaches.

This outcome suggests that our social trajectory approach
improves the predictability of the autonomous vessel’s naviga-
tion behavior compared to the MinTravelTime and MaxEntIRL
trajectory planning. On the other hand, despite the analogy
between our social trajectory planning and the MaxEntIRL tra-
jectory planning, established in Section V, the latter approach
does not perform similarly to the social trajectory planning.
In fact, the MinTravelTime approach outperforms the MaxEn-
tIRL approach. This observation emphasizes the importance
of the feature selection in the MaxEntIRL approach.

Moreover, we notice that the social trajectories attain the
mean Euclidean distance of 7.4 m from their associated
trajectory data. It appears that this is because human-operated
vessels, traveling between same origin and destination points,
would select different trajectories based on their vessel type,
dimension, traffic volume, etc. Whereas our social trajectory
planning assumes that the origin and destination are the only
factors that affect the trajectory selection. Also, unlike the
control policy µ adopted in our approach that depends only
on the current vessel position, a human operator would steer
his/her vessel depending on the past trajectory it traveled.
Hence the resulting human-operated vessel’s trajectory would
differ from one determined by the social trajectory planning.

C. Frequency and Location of Head-on Encounters

We assess the benefits of the social trajectory planning in
improving canal navigation safety. For this purpose, using the
three trajectory planning approaches, we compute trajectories
between pre-selected origin and destination points in the three
canal segments, as depicted in Fig. 9. In each segment, origin
and destination points are randomly selected from the regions
where vessels can enter the segment and exit to neighboring
segments. Then we count and record the frequency and loca-
tion of head-on encounters between every pair of trajectories.

Our analysis involves the following two different scenarios:
1) head-on encounters among autonomous vessels and 2)
head-on encounters between autonomous and human-operated
vessels, where the autonomous vessels are assigned with
the computed trajectories of the same type. Outcomes of
both the scenarios are used to conclude that, in comparison
with the MinTravelTime and MaxEntIRL trajectory planning,
the autonomous vessels navigating along social trajectories
experience substantially less frequent head-on encounters with
other autonomous and human-operated vessels. Furthermore,
our analysis suggests that the encounters take place further
away from the canal boundary under the social trajectory
planning.
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Fig. 7. Select figures depicting the comparison of MinTravelTime (red), MaxEntIRL (green), and social (blue) trajectories with respect to associated trajectory
data (gray). In each figure, the four trajectories span between a same pair of origin and destination points where the destination is marked with a gray circle.
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Fig. 8. A graph depicting the mean value of the Euclidean distances between
the trajectories computed by the MinTravelTime (red), MaxEntIRL (green),
and social (blue) trajectory planning and associated trajectory data.

1) Analysis on Head-on Encounters among Autonomous
Vessels: To assess head-on encounters among autonomous
vessels, we consider that two vessels are navigating along the
computed trajectories of the same type where the vessels are
allowed to depart from their respective origins at different time
instants, and we examine whether the vessels encounter each
other at the relative orientation between 0◦ and 30◦.

We examine approximately 6 × 106 different cases in all
three segments using the MinTravelTime, MaxEntIRL, and
social trajectory planning. Table III specifies the reduction
(in percentage) in the head-on encounter frequency for the
MaxEntIRL and social trajectory planning with respect to the
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(a) Segment 1
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Fig. 9. Trajectories between pre-defined pairs of origin and destination points computed using the MinTravelTime, MaxEntIRL, and social trajectory planning
in the three canal segments. We depict the destination points as colored circles and computed trajectories leading to each destination point as curves of the
same color as their destination points.
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(a) Head-on encounter frequency among autonomous vessels in Segments 1, 2, and 3
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(b) Head-on encounter frequency between autonomous and human-operated vessels in Segments 1, 2, and 3

Fig. 10. Histograms depicting the head-on encounter frequency (a) among autonomous vessels and (b) between autonomous and human-operated vessels with
respect to the distance to the canal boundary for the MinTravelTime (red), MaxEntIRL (green), and social (blue) trajectory planning. The dotted vertical lines
represent the medians of the frequency data and the histograms are re-scaled such a way that the largest value of the frequency is equal to unity.

segment among
autonomous vessels

between autonomous and
human-operated vessels

MaxEntIRL Social MaxEntIRL Social
1 46.9 % 53.1 % 13.0 % 36.1 %
2 -4.5 % 64.0 % -31.9 % 31.1 %
3 34.5 % 41.0 % -19.5 % 4.1 %

TABLE III
COMPARISONS ON THE HEAD-ON ENCOUNTER FREQUENCY: EACH

PERCENTAGE SPECIFIES THE REDUCTION IN THE HEAD-ON ENCOUNTER
FREQUENCY ATTAINED BY THE MAXENTIRL AND SOCIAL TRAJECTORY

PLANNING WITH RESPECT TO THE MINTRAVELTIME TRAJECTORY
PLANNING.

segment among
autonomous vessels

between autonomous and
human-operated vessels

MaxEntIRL Social MaxEntIRL Social
1 3.8 m 25.4 m -2.0 m 9.6 m
2 2.5 m 6.2 m 2.8 m 2.6 m
3 2.4 m 4.3 m 3.3 m 2.8 m

TABLE IV
COMPARISONS ON THE MEDIAN DISTANCES OF HEAD-ON ENCOUNTER

LOCATIONS FROM THE CANAL BOUNDARY: EACH ENTRY SPECIFIES THE
DIFFERENCE (SUBTRACTION) BETWEEN THE MEDIAN DISTANCES FOR THE

MAXENTIRL OR SOCIAL TRAJECTORY PLANNING AND THOSE FOR THE
MINTRAVELTIME TRAJECTORY PLANNING.

MinTravelTime trajectory planning. As can be observed in
Table III, the social trajectory planning results in significantly
less head-on encounters than the MinTravelTime and Max-
EntIRL trajectory planning in all three segments (p < .001,
chi-square test). Moreover, in Segment 2, we have observed
that the MaxEntIRL trajectory planning attains higher head-
on encounter frequency than the MinTravelTime trajectory
planning.

Fig. 10(a) depicts the frequency of the head-on encounters
with respect to their distances from the canal boundary. From
the histograms in Fig. 10(a), we can see that the encounters

on MinTravelTime and MaxEntIRL trajectories take place
more frequently near the canal boundary. On the other hand,
the encounters on social trajectories occur more frequently
away from the canal boundary (Segment 1) or approximately
uniformly across the entire range of observed distances (Seg-
ments 2 and 3). Also, from the statistics on the median distance
of the head-on encounter locations from the canal boundary
summarized in Table IV, we observe that the social trajectory
planning attains the largest median value, which suggests that
the autonomous vessels adopting the social trajectory planning
tend to encounter one another further away from the canal
boundary.

The outcomes of the analysis suggest that the autonomous
vessels navigating along social trajectories experience head-
on encounters with other autonomous vessels (also adopting
social trajectories) less frequently. When they occur, the en-
counters take place further away from the canal boundary
which implies that the vessels would have more room to avoid
vessel-to-vessel collisions.

2) Analysis on Head-on Encounters between Autonomous
and Human-operated Vessels: We repeat a similar analysis as
in Section VI-C1 between autonomous and human-operated
vessels to validate our assertion that the social trajectory
planning incurs less head-on encounters between the two
different kinds of vessels and when they occur, the encounters
take place further away from the canal boundary. As a result, in
conjunction with the results from Section VI-C1, we conclude
that our approach improves canal navigation safety.

We examine approximately 3 × 106 different cases in
all three segments to assess head-on encounters between
autonomous and human-operated vessels. For the analysis,
we use the same trajectories as in Section VI-C1, depicted
in Fig. 9, to assign trajectories to the autonomous vessels
and trajectory data from the validation data set to assign
trajectories to the human-operated vessels. We assess the head-
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on encounter frequency and location by following the same
method as in Section VI-C1.

From the statistics summarized in Table III, as in the first
scenario, we can observe that the social trajectory planning
results in significantly less head-on encounters than the two
other approaches in all three segments (p < .001, chi-square
test). Moreover, surprisingly in the case of the MaxEntIRL
trajectory planning, the autonomous vessels undergo more
frequent head-on encounters with the human-operated vessels
in Segments 2 and 3 than the MinTravelTime trajectory
planning.

In addition, according to the statistics summarized in Ta-
ble IV and the histograms depicted in Fig. 10(b), we observe
that the encounters on the social trajectories tend to occur fur-
ther away from the canal boundary than those on MinTravel-
Time trajectories. Unlike the first scenario, the ecounters on the
MaxEntIRL trajectories occur at similar distances or further
away from the canal boundary than the social trajectories in
Segments 2 and 3; however, they attain the highest encounter
frequency among the three types of trajectories.

Based on the analysis, in conjunction with the results from
Section VI-B, we assert that our approach finds trajectories
that resemble those of human-operated vessels, but at the same
time avoids traveling areas where human-operated vessels are
navigating in opposite directions, which leads to the significant
reduction on head-on encounters with them. On the other
hand, the observation that the MaxEntIRL trajectory planning
approach attains the highest encounter frequency, especially
in Segments 2 and 3, reiterates the importance of the feature
selection in this approach for improving canal navigation
safety.

D. Discussions and Remarks

The experimental results for both of the scenarios, presented
in Sections VI-C1 and VI-C2, suggest that the social trajectory
planning would reduce the frequency of head-on encounters.
To explain a possible reason behind these observations, recall
that our approach finds the trajectories that tend to cross the
locations where the value of p(u | z) is high and avoid travers-
ing the locations where the value of p(u | z) is low. Hence, the
autonomous vessels navigating along social trajectories tend
to align more with the movements of human-operated vessels
and avoid entering areas where human-operated vessels are
frequently navigating in different directions. Consequently, our
approach enables the autonomous vessels to experience less
head-on encounters with other vessels.

Notably, in the second scenario, the improvement on the
frequency of the encounters and the median distance of the en-
counter locations from the canal boundary are less substantial
than those attained in the first scenario. Based on the analysis
given in Section VI-B, we note that some trajectory data
from the validation data set are dissimilar from the trajectories
computed by the social trajectory planning, which incurred the
mean Euclidean distance of 7.4 m. Such dissimilarity would
contribute to the smaller improvement.

As we have discussed in Section VI-B, we hypothesize that
such noticeable Euclidean distance occurred because the social

trajectory planning uses state-dependent control policies to
generate trajectories, which would not be the case when human
operators select trajectories to maneuver their vessels toward
destinations. One way to generalize the class of control poli-
cies used in the social trajectory planning and to further im-
prove its predictability performance, which we set as a future
direction of this work, is to use control policies µ that assign
the vessel velocity vt based on the vessel’s past trajectory
(xt−d+1, · · · , xt) of length d, i.e., vt = µ (xt−d+1, · · · , xt).
It will be straight-forward to extend the formulation (3) to
accommodate such class of control policies by replacing the
probability density function p(vt | xt) used to define the KL
control cost with p(vt | xt−d+1, · · · , xt). In this case, a larger
vessel trajectory data set would be required to estimate the
new function p(vt | xt−d+1, · · · , xt), and the computational
complexity of the value iteration will increase exponentially
with respect to the parameter d. Hence, the future research
direction will involve seeking a new solution that mitigates
both the sample and computational complexity.

In Section VI, we have partitioned the canal map into
segments and computed social trajectories within individual
segments. This was not only to conduct the experiments over
segments of different lengths and sizes but also to reduce the
computational complexity in solving the value iteration. One
possible way to find a trajectory for a given pair of origin and
destination points, lying in different canal segments, is first
to identify all sequences of segments that connect the origin
and destination, and to define intermediate points that lie at
the intersection of every pair of neighboring segments. Then,
by computing social trajectories between every suitable pair
of the intermediate points and by connecting the computed
trajectories, we can obtain a longer trajectory that traverses
from the origin to the destination.

VII. CONCLUSIONS

In this paper, we proposed the social trajectory planning
that enables autonomous vessels to perform safe navigation
in canal environments. The key idea is to adopt the optimal
control formulation in which the cost function is designed
to find trajectories that resemble those of human-operated
vessels. Through the experiments using the AIS trajectory data
set, we validated the effectiveness of the proposed approach
in improving safety in canal navigation. Important future
directions of this work include improving the predictability
performance of the social trajectory planning and incorporat-
ing obstacle avoidance algorithms to perform real-world canal
navigation experiments.
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