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Abstract Micro Aerial Vehicles (MAVs) can be used

for aerial transportation in remote and urban spaces

where portability can be exploited to reach previously

inaccessible and inhospitable spaces. Current approaches

for path planning of MAV swung payload system ei-

ther compute conservative minimal-swing trajectories

or pre-generate agile collision-free trajectories. How-

ever, these approaches have failed to address the prospect

of online re-planning in uncertain and dynamic envi-

ronments, which is a prerequisite for real-world deploy-

ability. This paper describes an online method for ag-

ile and closed-loop local trajectory planning and con-

trol that relies on Non-Linear Model Predictive Con-

trol (NMPC) and that addresses the mentioned limi-

tations of contemporary approaches. We integrate the

controller in a full system framework, and demonstrate
the algorithm’s effectiveness in simulation and in exper-

imental studies. Results show the scalability and adapt-

ability of our method to various dynamic setups with

repeatable performance over several complex tasks that

include flying through a narrow opening and avoiding

moving humans.
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1 Introduction

The small size, agility, and low upfront costs of Micro

Aerial Vehicles (MAVs) could instigate their widespread

use and rapid deployment for payload transport in ar-

eas that are inaccessible or dangerous for humans and

conventional (aerial) vehicles. Current applications for

MAVs with slung payloads (the MAVP system) include

search and rescue (Ryan and Hedrick, 2005), package/cargo

delivery, and construction (Lee, 2018) primarily in large,

rural, obstacle-free spaces.

Operation of MAVPs in urban settings presents it-

self with notable challenges given the complex and dy-

namic environment within which they would operate. A

MAVP system is required to be able to quickly, safely,

and autonomously navigate an obstacle-ridden space

while adapting to different situations. Carriage of a

swinging payload vastly increases the system’s spatial

footprint making operation in restrictive spaces chal-

lenging. In such situations MAV trajectory planning

and control is necessary to generate the desired swing

motions to avoid collisions with obstacles. Failing to ac-

knowledge the system’s future response when perform-

ing agile flight could result in inevitable collisions as by

the time an obstacle is to be avoided, the MAV might

be unable to divert the swinging payload away. Working

around the problem, one may pre-generate trajectories

for fully defined environments (and thus static), or ac-

tively minimise swing to reduce the system’s dynamic

response, however, we will demonstrate that these un-

dermine the real-world practicality of the approaches in

dynamic environments.

https://youtu.be/AGtzSMdGI3o
https://youtu.be/AGtzSMdGI3o
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1.1 Contributions

Our main contribution is an online local motion planner

and controller for the safe, agile, and collision-free flight

of a MAVP system in dynamic, multi-obstacle settings.

Our method is formulated as a constrained optimisa-

tion using a finite-horizon Non-linear Model Predictive

Control (NMPC). The optimisation problem can be ef-

ficiently solved thanks to contemporary fast solvers.

A full system framework is outlined integrating the

NMPC controller in a combined hardware and software

based control loop. The proposed framework is veri-

fied and validated in simulated and experimental stud-

ies where we showcase our method’s scalability, adapt-

ability, and performance over various complex tasks in

static and dynamic environments. We compare it to

state of the art methods and discuss the effect of com-

putation time on the resulting system performance. Un-

like previous works, we successfully demonstrate the

safe operation and readiness of our method in realistic

settings involving a MAVP system operating amongst

multiple moving humans.

1.2 Related Work

Historically, studies of aerial vehicle control with sus-

pended payloads involved helicopter systems with ap-

plications to load transportation as shown in Cicolani

and Kanning (1992), however, with the advent of MAVs

the research into MAVP systems has gained traction.

This paper addresses MAVP motion planning for colli-

sion avoidance which we broadly classify into two types,

namely open-loop planning with feedback control, and

unified closed-loop planning and control; our method

contributes to the latter. We introduce contemporary

approaches for both followed by a general discussion of

NMPC control for MAV(P) systems and its application

to closed-loop planning and control.

1.2.1 Open-Loop MAVP Trajectory Planning

Most contemporary approaches to collision-free trajec-

tory planning for MAVP systems have addressed the

tracking of pre-generated, possibly agile, trajectories in

static workspaces. We refer to these as offline, open-loop

planning approaches as there is no in-the-loop dynamic

re-planning of trajectories.

Using pre-generated trajectories, planar and spatial

tracking of MAVP trajectories has successfully been

demonstrated through accurate modelling and stabil-

isation of the vehicle (Feng et al., 2014; Pizetta et al.,

2015) sometimes utilising swing minimisation (Bisgaard

et al., 2010; Palunko et al., 2012b; Trachte et al., 2014)

to mitigate coupling disturbance effects. The latter ap-

proach is energetically inefficient and over-conservative

as the vehicle devotes considerable control effort to re-

duce swing thus resulting in a sluggish system. To ac-

complish desirable yet feasible MAV and payload re-

sponses, the pre-generated trajectories are computed

taking the MAVP system model into account. Algo-

rithms to achieve this have included, amongst others,

optimisation and Reinforcement Learning (RL) tech-

niques. In the former, optimal trajectories are com-

puted as a cost minimisation problem subject to the

task objectives and the MAVP model which are then

encoded as full state evolutions (Foehn et al., 2017;

Palunko et al., 2012a) or a reduced dimension state us-

ing differential-flatness (Sreenath et al., 2013; Tang and

Kumar, 2015). In RL, as used in Palunko et al. (2013),

Faust et al. (2013) and Faust et al. (2017), feasible ac-

tion policies (the trajectory) are generated that enforce

the MAVP model on state transitions.

The main limitation of pre-generating MAVP tra-

jectories is the reliance on task-specific full motion plan-

ning which is consequently inherently non-adaptive at

run-time thus precluding handling of uncertain, dynamic

obstacles. Additionally, any trajectory infeasibility at

run-time is catastrophic as the planning method is un-

able to accommodate for this. Therefore, the aforemen-

tioned studies only address fully known environments

with static obstacles limiting the practical application

of these methods to limited specialised demonstrative

cases. In contrast, our method is able to rapidly re-plan

even if the local trajectories intermittently become in-

feasible due to prevailing conditions.

1.2.2 Closed-Loop MAVP Trajectory Planning

Motion planning in dynamic environments requires re-

planning at run-time to accommodate for the chang-

ing environment. Closed-loop re-planning of full mo-

tion trajectories on a global level is intractable for a

high-dimensional system, such as that of a MAVP, thus

necessitating the use of local planners with finite time-

horizons Brock and Khatib (2000). Additionally, local

planners need to cope with infeasibility during run-time

while still conforming towards a higher global planning

objective.

In De Crousaz et al. (2014), an agile and collision-

free local trajectory generator and controller method

was demonstrated in simulated and experimental setups

with static obstacles using iterative Linear Quadratic

Gaussian (iLQG) control. The optimal control iLQG

method relies on a cost function that is minimised at ev-

ery control step such that user-defined planning objec-

tives are met; the result is a local trajectory satisfying
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the objectives and system dynamics. The iLQG’s iter-

ative algorithm is exploited to generate locally optimal

linear feedback controls to achieve the real-time, closed-

loop performance. In a similar fashion to Tang and Ku-

mar (2015), De Crousaz et al. (2014) apply iLQG to

demonstrate impressive manoeuvres which included the

flight through a narrow opening. However, the study

by De Crousaz et al. (2014) did not consider planning

in a dynamic environment. Furthermore, required rotor

thrust inputs were generated at run-time which could

saturate as the method did not account for vehicle con-

straints during planning. The consequence of saturat-

ing inputs over sustained time periods is the potential

system instability and/or significant deviation of the

actual to planned trajectory. In contrast, our approach

takes into account the vehicle and environmental con-

straints to ensure the physical feasibility of the gener-

ated trajectories.

1.2.3 Non-Linear Model Predictive Control and

Unified Planning and Control of MAV(P)s

Early studies have successfully demonstrated the use

of (N)MPC for real-time MAV (Kim et al., 2002; Tzes

et al., 2012) and MAVP (Gonzalez et al., 2015; Tra-

chte et al., 2014) simple trajectory tracking. Focussing

on the latter, in Trachte et al. (2014) NMPC for

MAVP trajectory tracking control was addressed with

a comparison to LQR control; the results demonstrated

NMPC’s superior physical constraint handling for fea-

sibility guarantees, and larger attainable MAVP flight

envelope from the non-linear MAVP model descrip-

tion. Overall NMPC outperformed LQR in simulated

tasks involving swing minimisation and agile manoeu-

vres. In Gonzalez et al. (2015), studies from Trachte

et al. (2014) were extended to an experimental setup

validating the results, however, unlike in De Crousaz

et al. (2014), both studies only addressed the control

aspect of tracking pre-generated trajectories. In con-

trast, our method unifies the online planning and con-

trol extending the capability beyond simple tracking of

a pre-defined plan approach.

Traditionally, (N)MPC algorithms for unified mo-

tion planning and control of MAVs have seldom been

studied as the required real-time re-planning was com-

putationally intractable (Neunert et al., 2016). With

today’s improved computing capabilities and fast op-

timisation solvers applications have been demonstrated

for a MAV without swung payload (Naegeli et al., 2017;

Neunert et al., 2016). The method of Neunert et al.

(2016) utilises the Sequential Linear Quadratic (SLQ)

algorithm to solve an unconstrained optimal control

problem that is paired with an external high-level plan-

ner that pre-generates feasible waypoints accounting for

only static obstacles. Therefore, their method is only

deployable to MAVs in static environments for travers-

ing a specific pre-generated set of waypoints.

Building upon the NMPC planning algorithm intro-

duced by Naegeli et al. (2017), we utilise an interior-

point based algorithm from Domahidi and Jerez (2014)

within a NMPC setting to solve a constrained optimal

control problem that is subject to the constraints on the

system dynamics and environment. Introduction of con-

straints in our method allows us to perform real-time

obstacle avoidance while still providing guarantees on

the trajectory feasibility. Thus, in this work we demon-

strate the viability of real-time NMPC based unified

motion planning and control for MAVPs in dynamic,

multi-obstacle settings.

1.3 Paper Organisation

We introduce preliminaries in Section 2 with our nota-

tions and system models. In Section 3 we describe our

method for online and closed-loop, unified motion plan-

ning and control with NMPC. For the simulated and

experimental studies performed, we outline our system

setup and framework in Section 4. In Sections 5 and 6

we discuss our findings followed by concluding remarks

in Section 7.

2 Preliminaries

2.1 Notation

The following notations are observed; scalars x, vectors

x, matrices X, sets X , and reference frames {X}. Time

derivatives use dot accenting. Position vectors are de-

noted by p∈R3. Unless otherwise stated, vectors are ex-

pressed in the East-North-Up (ENU) inertial frame {I}.
For vector x ∈ Rn and positive semi-definite n×n ma-

trix Q, the weighted squared norm is ‖x‖Q
∆
= x>Qx.

Rotations from frame {A} to {B} are denoted by ma-

trix RB
A∈SO(3) and basic axial rotations around x by

Rx∈SO(3).

2.2 Quadrotor with Swung Payload Model

The system comprises a quadrotor of mass mq and a

suspended point mass ml attached by a l length cable

from the quadrotor centroid. Let pq, pl be the quadro-

tor, load position, and rql = pl − pq. All reference

frames are defined in Fig. 1. The load suspension angles
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Fig. 1: Quadrotor-Payload system with the following refer-
ences frames; {I} inertial ENU, {E} vehicle-carried ENU,
{B} vehicle body frame, {S} is {E} rotated by 180◦ about
the {E} x-axis and {L} load frame with z-axis directed away
from the cable’s suspension point. Quadrotor and load posi-
tions and relative suspensions angles indicated. Euler angles
φq, θq parametrise frame {B} to {E}; constant yaw assumed.

θl, φl parametrise the orientation of {L} to {S}. Inter-

mediary frame {S} is used to avoid the singularity for

a downward equilibrium load position when comput-

ing a rotation from {L} to {E} directly. Then let the

MAVP configuration and its time derivative be given

by variables

q =
[
p>q , θl, φl

]
∈ R5

q̇ = d
dtq =

[
ṗ>q , θ̇l, φ̇l

]
∈ R5 ,

and let θq, φq be the true quadrotor pitch and roll

with yaw remaining constant. The following additional

model assumptions are adopted;

– rigid, massless cable with free suspension points,

– quadrotor centre of gravity, centroid, and cable sus-
pension point coincide,

– no aerodynamic drag effects on the cable.

A non-rigid cable would introduce switching dynam-

ics increasing the complexity of the system modelling.

A preliminary study on the cable rigidity during agile

manoeuvres, as shown in Appendix A, shows the cable

rarely slacks during flight allowing this assumption to

be made. The second assumption regarding coincidence

is made to simplify the model as the listed points tend

to physically be in close proximity. Though the effects

of the real point offsets on the system dynamics were

not considered, for the purpose of performing predic-

tions in the order of seconds, the effect was considered

to be negligible. The assumption of no cable drag stems

from the rationale that the string’s exposed surface area

to the flow is small resulting in negligible effects on the

system dynamics.

We first describe the quadrotor’s input handling and

the aerodynamic drag model. We then complete the

model by derivation of the coupled quadrotor-load dy-

namics.

2.2.1 Quadrotor Inputs

As in Klausen et al. (2015), we abstract quadrotor mo-

tor inputs and assume fast attitude and motor control

such that by actuating the quadrotor’s pitch and roll,

and setting a thrust command, we produce an iner-

tial control force Fu in any desired direction for real-

ising translational motion. Therefore, let the inputs be

a desired quadrotor pitch (radians), roll (radians), and

thrust command (meters/second) defined in {E} giving

u =
[
θ̄q, φ̄q, w̄q

]
∈ R3 .

This input choice is consistent with our chosen Par-

rot Bebop 21 quadrotor that internally controls mo-

tors based on inputs u to achieve full spatial flight; the

internal controller is schematised in Appendix B. The

input magnitude ranges are limited and hardware spe-

cific; these are accounted for in the design of the model

predictive controller using constraints as further dis-

cussed in Section 3.3. We note that our method is not

limited to the our chosen hardware and could easily be

adapted to other quadrotors.

As the hardware-specific internal controller dynam-

ics u→ Fu are not documented, we empirically model

the function. We define Fq as the purely vertical control

force generated by the four rotors when commanded by

input w̄q. The quadrotor’s true pitch, roll response and

the vertical control force Fq resulting from commanded

inputs are given by

[θq, φq, Fq] =
[
hθ(θ̄q), hφ(φ̄q), hF (w̄q)

]
(1)

where, using the method presented in Stanculeanu and

Borangiu (2011), hθ, hφ, hF are identified for the fast

dynamics and decoupled as three linear second-order

black-box models with model states and state transition

xc = [xθ,1, xθ,2, xφ,1, xφ,2, xF,1, xF,2] ∈ R6

ẋc = fc(xc,u) . (2)

Note that with hF we model w̄q → Fq directly as the

internal vertical velocity stabiliser controls the vertical

control force Fq (in {E}) generated by the motors based

on the thrust command w̄q (See Appendix B). Then

similar to Naegeli et al. (2017), using outputs from (1)

and based on equilibrium relations, the input control

force is given by

Fu =
[
m

tan(θq)
cos(φq)

g, −m tan(φq)g, Fq +mg
]
∈ R3 (3)

1 Parrot. http://developer.parrot.com/docs/SDK3/

http://developer.parrot.com/docs/SDK3/
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where m = mq+ml and g=9.81 m/s2. See Appendix C

for a derivation of this relation.

The full-form of (1) identified for the Parrot Bebop

2 quadrotor is provided in Appendix D.

2.2.2 Aerodynamic Drag Effects

We derive the drag induced forces on the MAVP sys-

tem; as in Derafa et al. (2006), assuming relatively low

quadrotor velocities ṗq (up to 5 m/s) we model a pro-

portional linear drag force on the quadrotor with drag

constant kDq giving

FDq = kDqṗq . (4)

As in Klausen et al. (2015), for the payload we only con-

sider the rotational load motion relative to the quadro-

tor, hence, its drag force is assumed to always be per-

pendicular to the moment arm (the rigid cable). The

approximation introduces swing associated damping

due to the relatively large rotational payload velocities.

This allows the load’s drag to be described in terms of

the suspension angles and its derivative which are com-

ponents of q and q̇. We also avoid defining the drag

in terms of load velocity as this term is not a variable

available in q̇. Additionally, following from our free sus-

pension point assumption, there are no payload drag

induced reactive forces or moments on the quadrotor.

We note that prolonged linear translation of the sys-

tem would make the linear drag contribution to the

load dynamics significant as the load would trail behind

the quadrotor; this could be included in future studies.

Under these simplifications, the load’s signed quadratic

drag force with drag constant kDl is given by

FDl = kDlv
2 v
|v| ≡ kDll

2ω2 ω
|ω| (5)

where v = ωl for circular motion with v, ω the linear,

angular load velocities and l the cable length. Substi-

tuting ω in (5) by the load’s suspension angular rates

and computing the induced moment at the suspension

point we obtain

[τθ, τφ] = kDll
3
[
ω2
θ
ωθ
|ωθ| , ω

2
φ
ωφ
|ωφ|

]
(6)

where ωθ = θ̇l, ωφ = φ̇l and τθ, τφ are the load’s drag

force induced moments on the suspension angles θl, φl.

With (4) and (6), the total exogenous system drag term

is

D(q̇) =
[
F>Dq, τθ, τφ

]>
. (7)

2.2.3 System Kinematics and Dynamics

The MAVP Equations of Motion (EOMs) are derived

in frame {I} according to Lagrangian mechanics. With

frame transformations

RS
L = Ry(φl)Rx(θl) (8)

RE
S = Rx(π) , (9)

and l = [0, 0, l]
>

the rigid cable vector in {L}, we

define the load position as

pl = pq + rql = pq +RE
SR

S
Ll . (10)

The payload velocity is then given by

ṗl = d
dtpl = ṗq +RE

S Ṙ
S
Ll . (11)

The Lagrangian in terms of the system kinetic and po-

tential energies is

L = 0.5
∥∥∥[ṗq, ṗl]>∥∥∥

K︸ ︷︷ ︸
kinetic energy

− g
(
mqṗ

>
q e3 +mlṗ

>
l e3

)︸ ︷︷ ︸
potential energy

(12)

where K = diag(mq(1×3), ml(1×3)) and e3 = [0, 0, 1]
>

.

Using Lagrange’s equations according to

D’Alembert’s principle, the non-linear EOMs de-

scribing the MAVP dynamics in compacted form are

given by

q̈ = M−1(q) (F −D(q̇)−C(q, q̇)−G(q)) (13)

with force F = [Fu, 0, 0]
> ∈ R5, mass M , drag D

from (7), Coriolis C and gravitational G matrix terms.

Equation (13) in its full form is presented in Klausen

et al. (2015). Using (13), the system state and state

transition are given by

xq = [q, q̇] ∈ R10

ẋq = [q̇, q̈] = fq(xq,Fu) . (14)

2.2.4 Full MAVP Model

Combining the quadrotor input and system model from

(2) and (14), we denote the full MAVP state and state

transition by

x = [xc, xq] ∈ R16

ẋ = [ẋc, ẋq] = f(x,u) . (15)

Important MAVP model related variables and pa-

rameters that we often refer to are summarised in Ta-

ble 1.
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Table 1: MAVP system variables and parameters

Notation Definition

mq,ml; g ∈ R Mass of quadrotor, load; Gravitational
acceleration

l; θl, φl ∈ R Cable length; Payload suspension angles
pq,pl ∈ R3 Position of quadrotor, payload in {I}
q, q̇ ∈ R5 MAVP configuration, and its time

derivative
u ∈ R3 Quadrotor input commands
F ,Fu ∈ Rn General, control input force in {I}
xc,xq,x ∈ Rn Quadrotor input, system, and full

MAVP model state

2.3 Obstacle Model

Obstacles with each position po are user-specified as

cuboids and subsequently modelled by enclosing ellip-

soids. Human obstacles are also specified as a cuboid

of comparable size. Ellipsoids create smooth convex

bounding volumes for (non-convex) obstacles mak-

ing them appropriate for representing objects includ-

ing trees, humans and pillars. Additionally, computa-

tionally efficient collision checks against the ellipsoid’s

quadric exist (Uteshev and Goncharova, 2018) making

them favourable for real-time applications.

2.3.1 Obstacle Ellipsoid Definitions

Let the ellipsoid semi-principal axes (ao, bo, co) be pro-

portional to the specified cuboid dimensions (uo, vo, wo)

such that there is ellipsoid surface contact at all cuboid

corners, hence

(ao, bo, co) =
√

3
2 (uo, vo, wo) .

We define two ellipsoids with buffers β as shown in

Fig. 2;

1. the bounding ellipsoid So with dimensions

(ao + βo, bo + βo, co + βo) models the obstacle

against which collisions are checked,

2. the expanded ellipsoid Se with dimensions

(ao + βe, bo + βe, co + βe) represents a padding

identified as a high risk zone used for planning safer

trajectories.

Note by setting β, a minimum cuboid to ellipsoid

separation of β is warranted. Buffers βo, βe are used for

collision-avoidance purposes as will become clear later.

2.3.2 Obstacle Motion Prediction

Static obstacle positions are assumed to be readily

available for planning. As in Naegeli et al. (2017), we

assume a constant velocity model for dynamic obstacles

and predict their future positions based on a velocity

estimate produced by a linear Kalman Filter using mea-

sured obstacle position data.

2.4 MAVP-Obstacle Collision Avoidance Requirements

Imperative to collision avoidance is ensuring separation

between the MAVP and obstacles. By quantifying the

quadrotor, load, and cable’s proximity to an obstacle

we define mathematical requirements to guarantee a

collision-free system.

2.4.1 Point to Ellipsoid Distance

The point to an ellipsoid signed distance is ap-

proximated as the true value cannot be expressed

in closed form (Uteshev and Goncharova, 2018).

For a generic ellipsoid S with buffered dimensions

(ao + β, bo + β, co + β) and position po, the approxi-

mate signed distance to a point p based on the ellipsoid

equation is

do(p, S) = ‖p− po‖Ω − 1 (16)

where Ω = diag(1/(ao + β)2, 1/(bo + β)2, 1/(co + β)2).

When p is inside or on S, do ≤ 0, and as p is further

away from S, do increases from 0 to infinity.

2.4.2 Quadrotor and Payload Proximity

We model the quadrotor and payload individually by a

bounding sphere with an associated radius rc. Without

loss of generality, we assume an equal rc for the quadro-

tor and payload. Consider the quadrotor; using the ob-

stacle’s bounding ellipsoid So and setting βo > rc and
p = pq, then using (16) we can guarantee the quadro-

tor does not collide with the cuboid shaped obstacle

provided

do(pq, So) > 0 . (17)

Similarly, considering the payload associated bounding

sphere and position pl gives

do(pl, So) > 0 . (18)

S
o

S
e


o


e p

o
p
o

v
o

Fig. 2: Cuboid obstacle (left) with fixed position po or dy-
namic (human) obstacle (right) with constant velocity vo
each modelled by bounding So and expanded Se ellipsoid
with dimensional buffers β.
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2.4.3 Rigid Cable Proximity

Modelling the cable as a mobile finite line segment we

identify the cable’s Closest Point of Approach (CPA) to

So denoted by p∗c ; this is the cable’s most critical point

for collisions simplifying the check as a point to ellipsoid

computation. Given the cable cross-section dimensions

are negligible, no buffer is required so βo = 0. Using

(16), p∗c is computed by

p∗c = arg min
pc

(do(pc, So)) (19)

with pc ∈ {p|p = pq + s(pl − pq), s ∈ [0, 1]}.
Appendix E shows the problem (19) is expressible in

closed-form and analytically solvable. Using (19) the

cable is guaranteed to be collision-free with respect to

the cuboid obstacle provided

do(p
∗
c , So) > 0 . (20)

Requirements (17-18,20) must be satisfied with re-

spect to each obstacle to guarantee a collision-free

MAVP system.

3 Online and Closed-Loop MAVP Trajectory

Generation

3.1 Method Overview

The planning and control objective is to navigate the

MAVP system from an initial position pstart to a

user-definable goal position pgoal in a safe, agile, and

collision-free manner. To accommodate for the dynamic

environment, we perform dynamic and closed-loop lo-

cal motion planning using NMPC which is a receding

finite-horizon controller.

3.1.1 Receding Horizon Dynamic Planning

Denote by ∆t the time-step, by k the stage index, and

by N the finite planning horizon (number of stages). At

every sampling instance t we generate a local trajectory

of duration N∆t encoded as a sequence of N + 1 states

that includes the initial state x0, the transition states

xk, and a terminal state xN thus giving

x̃ := [x0, . . . ,xN ] . (21)

For state realisation, the associated input sequence up

to the terminal state is denoted by

ũ := [u0, . . . ,uN−1] . (22)

Following execution of u0, the planning is receded by∆t

to t+∆t. At the next sampling instance the new obsta-

cle positions and a new initial state estimate x0 are ob-

tained. Subsequently, a local trajectory is re-generated

by initialising the solver with a time-shifted version

of the previous solution. The time-shift in simulation

studies is a fixed simulation time step, and in real ex-

periments the actual control loop time is used. This

approach results in our method’s computationally effi-

cient closed-loop performance with robustness to model

uncertainties (Naegeli et al., 2017); we illustrate this

process in Fig. 3.

3.1.2 Local Trajectory Generation

At every sampling instance we solve a constrained op-

timisation problem. The designer encodes the desired

planning objectives in an objective function using costs

to quantify the generated trajectory’s performance. The

costs are designed to lower with an increasing satisfac-

tion of the objective. For every trajectory stage k, we

evaluate an associated scalar cost giving a cost sequence

c̃ := [c0, . . . , cN ] . (23)

Within (23), the trajectory stage costs are given by

ck = cs(xk,uk, ∗k), k ∈ [0, N − 1] (24)

where function cs is evaluated on the predicted state,

input, and any online environment variables (obstacle

positions, navigation goal, slacks etc.) that we denote

by ∗. The terminal cost is given by

cN = ct(xN , ∗N ) (25)

where function ct is evaluated on the variables of

the terminal stage N . Terminal costs are used to

achieve closed-loop stability of the finite-horizon plan-

ner (Mayne et al., 2000).

p
q

p
o

p
goal

p
start

p
l

NMPC Planned

Local Trajectory

v
o

Time t
1

p
q

p
o

p
goal

p
start

p
l

NMPC Planned

Local Trajectory

v
o

Time t
2

Fig. 3: System moves towards pgoal with t2 > t1; planned
local trajectory (grey) at the current time (left) that is up-
dated in a future time (right) with the new state and obstacle
data. Schematic projected top view with illustrative obstacle
ellipsoids shown.
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We then quantify the full trajectory’s performance

by the objective function defined as

J =
∑N

k=0
ck . (26)

Constraints are introduced to limit the solution space

for the trajectory which is encoded in x̃ and ũ thus pro-

viding (feasibility) guarantees for the computed trajec-

tory. To ensure the optimiser always returns a solution

at run-time, we may tolerate minor constraint viola-

tions by introducing non-negative slack variables that

soften the constraint (Zheng and Morari, 1995). We en-

code the slack variables associated with the trajectory

in

s̃ := [s0, . . . , sN ] . (27)

A planning violation occurs when the optimiser pro-

duces positive entries of s̃. A physical violation only

occurs when the real system breaches constraints, i.e.,

the current slack s0 of s̃ is positive. By associating a

high slack related cost in the optimisation objective

function, we avoid positive entries of s̃ and accordingly

any planning and physical violations (Zheng and

Morari, 1995).

During optimal trajectory generation we minimise

(26) while respecting the constraints resulting in a N∆t

length locally feasible trajectory. In subsequent sections

we introduce the costs and constraints after which we

formalise the optimisation algorithm in Section 3.4.

3.2 Costs

We introduce cost terms derived from our planning ob-

jectives presented in Section 3.1. We use our weighted

square norm definition from Section 2.1 with an n× n
identity matrix denoted by In to make all cost terms

scalar and positive.

3.2.1 Point-to-Point Navigation

For navigation we minimise the displacement between

the quadrotor position and goal pgoal. Let pstart be the

start position, then we normalise the cost to treat all

start to goal distances equally. The cost term is given

by

cnav =
‖pgoal − pq‖I3
‖pgoal − pstart‖I3

. (28)

Making (28) a stage cost would mean the shortest path

(straight line) is always preferred which may result in

deadlock for cases where it is necessary to go around an

obtrusive obstacle. Therefore, we use (28) only as a ter-

minal cost thus allowing curved paths to be generated

such that locally and terminally the system reaches a

more favourable position.

3.2.2 Potential Field based Obstacle Separation

For obstacle separation, we employ a MAVP to obstacle

proximity related cost analogous to a reactive potential

field (Khatib, 1986). We combine this with constraints

to guarantee collision-free trajectories as is presented

in Section 3.3.3. This two layered approach, similar to

Naegeli et al. (2017), enhances the operational safety

by pro-actively reducing the collision risk especially for

unmodelled system and obstacle dynamics.

Let p be the quadrotor, load, or cable’s CPA posi-

tion [see (19)]; for each object we compute a cost. Let po
be the obstacle’s predicted position, then the potential

cost term activates when p is in the obstacle’s expanded

ellipsoid Se, i.e., using (16), do(p, Se) < 0. We choose

the Se associated buffer βe such that βe � βo. Observ-

ing that |do(p, Se)| increases from zero to one as point

p moves from the ellipsoid surface towards its centre,

by penalising a p more towards the centre, we natu-

rally discourage p from getting closer to the smaller

bounding ellipsoid So. Given So models the actual ob-

stacle, using this method we promote separation from

the obstacle. With this insight, and using (16), the cost

is formalised as

cpf =

{
‖do(p, Se)‖I1 , if do(p, Se) < 0,

0 , otherwise.
(29)

3.2.3 Input Magnitude Regulation

The input magnitude associated cost is given by

cin =
∥∥u>∥∥

I3
. (30)

For our agile manoeuvres, we weigh this cost low. As-

sociating a high cost will improve the system’s energy-

efficiency by the conservative use of large inputs.

3.2.4 Payload Suspension Angles Regulation

The suspension angle associated cost is given by

cswing =
∥∥∥[θl, φl]

>
∥∥∥
I2
. (31)

For our agile manoeuvres, we weigh this cost low. As-

sociating a high cost will minimise the swing angles if

desired.
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3.3 Constraints

We derive planning constraints from our system and

setup limits in addition to the global planning objec-

tives.

3.3.1 MAVP Dynamics

The process model state transition given by (15) is dis-

cretised and enforced on the trajectory state evolution

by an inter-stage equality constraint

xk+1 = f(xk,uk) (32)

where k is the stage index.

3.3.2 State and Input Limits

The state and input values are bound to the system al-

lowable ranges. Let Xmin, Xmax and Umin, Umax denote

the state and input range limits, then the following in-

equalities must be satisfied

Xmin ≤ x ≤ Xmax (33)

Umin ≤ u ≤ Umax . (34)

We specify the hardware-specific limits in Section 4.

3.3.3 Collision-Free Planning

Collision-free trajectory planning is guaranteed by con-

straining the allowable system’s spatial states. Let p be

the quadrotor, load, or cable’s CPA position [see (19)];

for each we define a constraint. Adopting the require-

ments (17-18, 20) for a collision-free MAVP system as

presented in Section 2.4, and using (16), the associated

constraint is formalised as

do(p, So) + sc > 0 (35)

with the non-negative scalar slack sc. Note that even

though (35) is defined for every obstacle, only one slack

sc is defined and used in all obstacle associated inequal-

ity constraints per timestep in our optimisation prob-

lem definition. When any do(p, So) becomes negative,

sc assumes the highest value such that all obstacle as-

sociated inequality constraints are satisfied according

to (35) for a specific timestep. Ideally sc is zero hence

the system is collision-free with respect to all obstacles.

Provided a sufficiently high penalty cost associated with

the slack, the feasible solution is recovered as shown in

Kerrigan and Maciejowski (2000). Summarising, only

one slack is necessary to differentiate between a system

in collision or collision-free state with no necessary dif-

ferentiation with respect to which obstacle that occurs.

3.3.4 Workspace Limits

For confined (indoor) operation, the quadrotor and

load position is limited to the workspace limits. As-

sume a cuboid workspace, then let Wmin, Wmax denote

the minimum and maximum workspace coordinates in

frame {I}, and between which the cuboid’s space diag-

onal is defined, then the following inequalities must be

satisfied

pq + 13sq ≥ Wmin and pq − 13sq ≤ Wmax (36)

pl + 13sl ≥ Wmin and pl − 13sl ≤ Wmax (37)

with 13 = [1, 1, 1]
>

and the non-negative scalar slacks

sq, sl. When a constraint violation occurs, the slacks as-

sume the highest value required to satisfy the associated

workspace inequalities. Under workspace convexity, we

also guarantee the rigid cable remains inside W. Note

that the inequalities are written in short form, however,

for implementation each vector dimension would each

have an individually defined inequality.

3.3.5 Scalability to Large Obstacle Rich Workspaces

We set a maximum omnidirectional obstacle detection

range originating from the quadrotor position whereby

we disregard any obstacles beyond the range for plan-

ning purposes. Therefore, the previously introduced ob-

stacle related costs and constraints are dynamically im-

plemented.

3.4 Optimisation Algorithm

Local trajectory generation is formulated as a con-

strained optimisation problem subject to the following

costs and constraint definitions;

3.4.1 Costs

We define the stage and terminal cost functions based

on the cost term definitions (28-29, 65, 30-31). Let w

denote a user-definable weighting used to assign relative

importance to costs and their associated objective, then

the stage cost function, as introduced in (24), is defined

as

cs(xk,uk, ∗k) = wincin + wswingcswing

+w>pfcpf +w>slacks, k ∈ [0, N − 1]
(38)

wherewpf and cpf are vectors of weights and costs equal

in size to the number of obstacles, and w>slacks all the

slacks associated cost where s = [sc, sq, sl] ∈ R3. The
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terminal cost function, as introduced in (25) is defined

as

ct(xN , ∗N ) = wnavcnav + wincin + wswingcswing

+w>pfcpf +w>slacks .
(39)

3.4.2 Constraints

We impose the system dynamics, and state/input

constraints, as introduced in Section 3.3, on the

optimiser. By function g(xk,uk, ∗k) we denote all

additional inequality constraints as defined in (35-37)

which are functions of state, input and additional (time

specific) variables/parameters, e.g., obstacle positions

and workspace limits.

Combining our previously introduced trajectory

variables (21-22, 27), we denote the optimisation vari-

able by

z̃ = [x0, . . . ,xN ,u0, . . . ,uN−1, s0, . . . , sN ]

≡ [x̃, ũ, s̃] .
(40)

With the estimated initial state x0, we optimise z̃

such that the objective function (26) is minimised re-

sulting in a locally optimal and feasible trajectory. With

costs and constraints stacked together over all stages

and obstacles, the optimisation problem that is solved

at every planning time instance t is formally defined as

min
z̃

J = ct(xN , ∗N ) +Σ
N−1
k=0 cs(xk,uk, ∗k)

s.t. x0 = x(t) (Initial Estimated State)

xk+1 = f(xk,uk) (Discretised Dynamics)

g(xk,uk, ∗k) ≥ 0 (Inequality Constraints)

xk ∈ X (State Constraints)

uk ∈ U (Input Constraints)

sk ≥ 0 (Slack Constraints).

(41)

3.5 Theoretical Analysis

3.5.1 Problem Dimensionality

Variable z̃ is optimised at every planning time instance

encoding the optimised local trajectory in its solution.

As given by (40), z̃ comprises a sequence of N+1 states

x ∈ R16, N inputs u ∈ R3 and N + 1 slacks s ∈ R3,

hence z̃ ∈ R22N+19.

3.5.2 Optimality and Feasibility

We use a fast non-linear programming based optimiser,

namely FORCES Pro (Zanelli et al., 2017), on our

non-convex optimal control problem. FORCES Pro

implements a primal-dual interior-point constrained op-

timisation algorithm which is outlined in Appendix F.

Consequently, the computed trajectories are only lo-

cally optimal over the planning horizon N with the

possibility of deadlocks when the planned trajectory

converges to any local optima in the solution space.

When this occurs, our planner holds the MAVP at this

locally optimal state until a solution becomes available

as a result of the changing environment or external per-

turbation to the system.

Planning feasibility is warranted over the full N

stages when all optimised slacks s̃ are zero. When full

planning feasibility is not realised, provided that at

least the current slack s0 is zero, the current system

state and inputs will be feasible. Re-planning at a fu-

ture instance can re-establish full planning feasibility.

A comprehensive overview of the optimality and sta-

bility of (N)MPC algorithms is available in Mayne et al.

(2000).

4 System Setup and Framework

We outline our particular implementation of the system

model and NMPC controller for simulated and experi-

mental studies, including a state estimator.

4.1 System Properties and Hardware

The MAVP system properties used for all studies are

given in Table 2. The maximum pitch, roll and thrust

command inputs are derived from quadrotor’s system

limits as used in this study. The MAVP hardware is

shown in Fig. 4.

4.2 Workspace

We perform studies in a simulated and real workspace

measuring 6.0×3.0×2.6 m (L×W×H). The real indoor

Table 2: MAVP system properties as used for study

Quad. Mass 500 g Quad. Drag Const. kDq 0.28
Load Mass 11 g Load Drag Const. kDl 0.00177
Cable Length 0.77 m Max.

∣∣θ̄q∣∣, ∣∣φ̄q∣∣ Input 15◦

Max. |w̄q| Input 1 m/s Detection Range 3.5 m
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workspace has an OptiTrack2 Motion Capturing Sys-

tem (MCS) that can track markers for obtaining rigid-

body pose measurements in SE(3) at around 120 Hz.

4.3 Programmed Control System Framework

The control framework is schematised in Fig. 5; in Ap-

pendix B the on-board control component is expanded

upon. The off-board components run on an Intel i7-

3610QM Quad Core 3.3GHz processor PC, and is pro-

grammed in MATLAB with an efficient C language

solver FORCES Pro performing the online NMPC

computations (Zanelli et al., 2017). All studies are per-

formed on the same computer with at maximum one

core being utilised by FORCES Pro at run-time. The

on-board components run on the MAVP hardware; for

simulated studies we replicate this with our system

model. In experiments, communication between hard-

ware is performed over a ROS based network. As it

is shown in Section 5, the controller loop time was on

median in the order of 10−2 s, therefore, for simulation

and controller design, explicit Runge-Kutta 2nd order

integration of the system model is used. Runge-Kutta

2nd was chosen as a preliminary examination of the

predicted system response showed it provided a good

balance between loop time performance and dynamics

approximation. An in-depth comparison of other dis-

cretisation methods is beyond the scope of this paper

and should be investigate in future studies. The imple-

mented NMPC cost weights are given in Table 3.

2 OptiTrack Prime 17W. http://www.optitrack.com

Payload

Cable

4 x Markers

4 x Markers

Quadrotor

Fig. 4: Parrot Bebop 2 quadrotor with cable suspended load
and attached tracking markers.

Motion
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Input

Controller
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Fig. 5: Control system framework with the off-board NMPC
controller and state estimator sharing a MAVP model, and
the on-board MAVP system. Quadrotor input controller per-
forms closed-loop low-level control. External motion captur-
ing produces measurements necessary for state estimation.

4.4 Cascaded Kalman Filter State Estimator

Kalman Filtering (KF) based state estimation of x is

performed using the system process model, and MCS

based sub-millimetre measurements of the quadrotor

and load’s pose in SE(3) (Point, 2009). As the Par-

rot Bebop’s standard interface lacks a high frequency

output of internal sensor measures to off-board clients,

they were unusable for our state estimation routine.

The MAVP system for which we present process models

in Section 2.2 comprises (i) a quadrotor specific input

controller, and (ii) the general non-linear MAVP sys-

tem. We distribute the state estimation over two KFs

permitting individual treatment of the subsystems and

maintaining modularity.

A Linear KF is used to estimate state xc of the

quadrotor input model (2). The MCS provides mea-

sures of real pitch θq and roll φq for estimating states

xθ1 , xθ2 , xφ1
, xφ2

. Lacking necessary measurements of

the vertical control force Fq, states xF,1, xF,2 are only

predicted without performing the KF measurement up-

date step. Similar to Bisgaard et al. (2007), a non-linear

Unscented KF is used to estimate the MAVP states

xq of the system model (14). Measures for state vari-

able q are directly reconstructed from MCS data using

the kinematic relations introduced in Section 2.2.3. Us-

ing the process model, the Unscented KF is primar-

ily tuned to provide noise reduced estimates of the

time derivatives of q in xq. The Unscented KF directly

uses the non-linear and observable process model for

state prediction without performing linear approxima-

tions as traditionally required by the Extended KF thus

usually improving the prediction accuracy (Julier and

Uhlmann, 1997). The full cascaded KF based estimator

design is schematised in Fig. 6.

Table 3: Implemented default cost term weights

Navigation wnav 1.0 Inputs win 0.01
Potential Field wpf 1.2 Swing Angles wswing 0.001
Slacks wslack 10000

Linear

Kalman

Filter

Unscented

Kalman

Filterq wq

q Φq
Fqq

q

xcΦq
Φq

Measured

Inputs

Measured xq

Fu x

Control Force Transform

Fig. 6: Cascaded state estimation using Linear and Unscented
KF and measured MCS data. Linear KF estimates xc based
on the quadrotor input model, measured true pitch, roll and
inputs. Unscented KF estimates xq based on MAVP model,
measured MAVP configuration q and control force inputs
computed by (3) using the Linear KF outputs.

http://www.optitrack.com


12 Nikhil D. Potdar1 et al.

5 Simulation Study

We showcase our method’s scalability, robustness and

performance in simulated studies. This is presented as

a precursor towards our experimental results involving

flight amongst multiple human obstacles and acrobatic

manoeuvers.

The following metrics are used; let the system’s

distance-to-goal be defined as

dgoal = |pq − pgoal| , (42)

then the time-to-goal is the elapsed run-time such that

dgoal strictly remains below 0.2 m.

5.1 Scalability of The Optimisation Problem

The scalability of the optimisation problem is studied

against the number of planning stages and separately

the number of obstacles.

5.1.1 Scaling with Number of Planning Stages

The quadrotor, with a randomised initial swing θl, φl
<10◦ starts at (−2.0, 0.0, 1.1) with the dynamic ob-

stacle at (2.0, 0.0). A collinear position swap is per-

formed with the obstacle moving at 0.5 m/s such that

the head-on paths critically tests the predictive plan-

ning behaviour. The number of planning stages N is

increased from 10 by 4 to 26. Using ∆t=0.05 s, default

cost weights we perform 16 runs per case.

Results in Fig. 7 show the scaling of the NMPC

solve time with N ; it shows a positive correlation

which is expected as the optimisation variable, given

by z̃ ∈ R22N+19, increases the problem dimension with

a larger N . As shown in Fig. 8a where N=10 the sys-

tem responds late to the incoming obstacle leading to

a near-miss or collision (physical violation). The late

response means the attempted aggressive evasive be-

haviour causes the system to move far off-track, some-

times leading to workspace limit violations, and over-

all increasing the time-to-goal. As depicted in Fig. 8b,

with a higher N the collisions are averted and the sys-

tem responds in a smooth agile motion. However, with

N=26, the planner favours a greater MAVP to obstacle

separation over each generated trajectory resulting in

a lower potential field associated cost of the objective

function. As a result of the greater separation, the total

distance covered from the start to goal is greater thus

increasing time-to-goal. Important to note is that the

generated planning remains tunable through modifica-

tion of the cost function weights resulting in different

system behaviours.

Based on the results and qualitative observations,

N = 18 was used for all subsequent studies as it bal-

ances run-time and planning performance. To address

the pitfalls of using a low N , a novel assistive steering

approach can be used that guides the planned trajec-

tory away from obstacles even when the obstacle is not

within the prediction horizon; this method is outlined in

Appendix G. The results and benefits of assistive steer-

ing is discussed in Appendix H. For short prediction

horizons which are low N , the assistive steering aids

the planning performance for obstacle avoidance. For N

higher than 14 and the system speeds achieved in our

experiments, the planner’s lengthened predictive hori-

zon makes the assistive steering redundant as no benefit

are apparent. Therefore, in the experiments discussed

in this paper, we do not employ assistive steering.

5.1.2 Scaling with Number of Dynamic Obstacles

We perform a navigation task from (−2.5,−1.0, 1.0)

to (2.5, 1.0, 1.0) amongst no randomly placed obstacles

with randomised velocities≤1 m/s. We increase no from

2 by 2 to 8 with ∆t=0.05 s, N=18, default cost weights

and perform 16 runs per case.

Results in Fig. 9 indicate a positive trend in MPC

solve time with no resulting from the additional cost

and constraints introduced into the optimisation prob-

lem per additional obstacle. The time-to-goal shows an

increasing spread with no as the obstacles are more

likely to obstruct the system’s most direct path to the

goal thus requiring a re-route resulting in a lengthier

route. In Fig. 10 we show one run demonstrating the

MAVP’s agile response amongst 8 dynamic obstacles.

The outlier at six obstacles is the result of a tempo-

rary deadlock situation that is resolved by a lengthier

planned route. As mentioned, NMPC is locally opti-

mal, therefore, the deadlock situation arises from a lo-

cal minimum of the objective function that occurs when

several obstacles corner or obstruct the MAVP’s path.

In those cases, the planning may not be able to detour

around the obstruction as the objective function over

the planning length may only have a positive gradient.

This local optimality is a limiting characteristic of local

planning algorithms (LaValle, 2011). However, a benefit

of our local planning method is that the system holds

its position during deadlock and continues identifying

solutions in the evolving solution space (due to dynamic

obstacles). Therefore, in most cases it is capable of self-

resolving the deadlock given sufficient time.
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Fig. 7: Simulated NMPC solve time, time-to-goal and physical violations (collisions or breach of workspace limits) per run
with increasing planning stages and 16 runs per case.
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(a) N=10; the system is late to respond to the oncoming obstacle due to the short prediction horizon.
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(b) N=26; the long horizon pre-emptively guides the system away from the incoming obstacle’s path.

Fig. 8: Point-to-point navigation with collinear dynamic obstacle; showing planned and executed trajectory and current quadro-
tor position. Top down view.
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Fig. 9: Simulated NMPC solve time and time-to-goal with
increasing number of dynamic obstacles using N = 18 and
16 runs per case. No violations/collisions occurred. Outlier
for time-to-goal at 6 obstacles is for a run that temporarily
entered deadlock resulting in a longer path.

5.2 Performance Comparison to Contemporary

Approaches

We compare the total task completion time for three

methods; (i) our NMPC (ii) pre-generated and (iii) min-

imal swing trajectory planning and control. A naviga-

tion task is performed for a simple static obstacle and

a difficult slalom setup. For (i) we use N=18 and de-

fault cost weights, for (ii) we use our optimiser with

N=200 for sufficient stages to pre-plan the entire tra-

jectory and then simply track it, and for (iii) we use

N=18 with a high swing cost wswing = 1. We use

∆t= 0.05 and perform 4 repeated runs. Table 4 shows

a comparison of the total task completion times (off-

line computation and trajectory execution), and Fig. 11

depicts the executed trajectories using the three ap-

proaches. As expected, the pre-generated trajectory has

the shortest time-to-goal for both tasks due to its highly



14 Nikhil D. Potdar1 et al.

Quad. Load Plan Quad. Plan Load Obstacle

-3.0 -1.5 0.0 1.5 3.0
x [m]

-1.5

0.0

1.5

y
 [
m

]

t = 1.5 s

-3.0 -1.5 0.0 1.5 3.0
x [m]

-1.5

0.0

1.5

y
 [
m

]

t = 3.0 s

-3.0 -1.5 0.0 1.5 3.0
x [m]

-1.5

0.0

1.5

y
 [
m

]

t = 5.5 s; task already completed

Fig. 10: Point-to-point navigation using N=18 amongst 8 randomised dynamic obstacles moving at ≤ 1 m/s. The dynamically
planned and agile executed trajectories of the quadrotor and payload are shown with the current quadrotor position indicated.
Top down view.

optimised planning which requires large off-line com-

putation times. The minimal swing approach results

in sharp turns as the system accelerates and decel-

erates at the turning points making the motion slow

and space inefficient as substantial effort is required

to maintain a low swing angle through the turns. The

NMPC based trajectory is marginally slower and less

optimal than pre-generation, however, direct deploya-

bility means the simple task is completed within 2.65 s,

a 48% reduction, and the difficult task within 5.35 s,

a sizeable 65% reduction compared to pre-generation.

Unlike pre-generation where a task-specific trajectory

is generated, our NMPC method adapts to both tasks

without any reconfiguration. With increasing task com-

plexity and duration, greater reductions can be realised

making NMPC’s scalability unparalleled. Furthermore,

our NMPC method applies to dynamic scenarios.

5.3 Robustness to Change in Control Time Step and

Lags

We demonstrate the robustness of our method by (i)

increasing ∆t from 0.05 s to 0.20 s to simulate a slower

NMPC controller (on a less-powerful computer), and

(ii) artificially adding a 0.1 s lag between NMPC gen-

erated input commands and actually executing them.

We use the simple task from Section 5.2 for analysis

Table 4: Comparison of NMPC to pre-generated and minimal
swing approach for mean off-line computation, trajectory ex-
ecution (time-to-goal) and total task completion time over 4
repeated runs.

Algorithm Off-line [s] Time-to-goal [s] Total [s]

Simple task
NMPC N/A 2.65 2.65
Pre-Generated 2.91 2.25 5.16
Minimal Swing N/A 7.10 7.10
Difficult task
NMPC N/A 5.35 5.35
Pre-Generated 10.54 4.85 15.39
Minimal Swing N/A 18.55 18.55

and N=18 and default cost weights. Given that N is a

pre-configured design value of the MPC controller, and

that ∆t depends on the real loop-time, this study aims

to show the affects of different ∆t resulting from the use

of hardware with varying computationally capability.

Therefore, it is important to note that the lookahead

horizon N∆t is different in each case.

Comparing Fig. 12a and 12b with the different ∆t,

notice that NMPC automatically adjusts and reduces

the computed input magnitudes for the longer time step

resulting in a slower, less agile system; this is apparent

from the distance-to-goal and load angles plots. With

∆t=0.20 s, agile manoeuvres are inconceivable as large

inputs over the long time-step would result in excessive

accelerations with detrimental consequences on overall

performance. Using the process model, NMPC is able

to appropriately adapt its planning and control to the

time-step size to realise the desired motion.

With a 0.10 s lag, notice in Fig. 12c that the system’s

distance-to-goal and load angles are similar to those

with no lag in Fig. 12a. Due to our method’s closed-loop

setup, the true system behaviour is continually used to

re-initialise the planning instance thus modelling errors

do not accumulate. If pre-generated trajectories were

used, any unaccounted lag would result in significant

deviations of the real system from the planned path due

to model mismatch. NMPC is therefore more robust to

small modelling inaccuracies making it a safer and more

practical method for real-world applications.

Increasing ∆t further to 0.25 s and lag to 0.15 s

destabilises the NMPC controller in simulation. We at-

tribute this to several causes; first large time-steps used

in combination with NMPC’s discretised process model

can result in prediction error divergence. Second, un-

modelled time lags result in the prolonged execution

of the large magnitude inputs required for agile flight

resulting in excessive, destabilising accelerations; for

short lags, the closed-loop control is able to prevent

this from occurring. By acknowledging the presence of

a long time-step and/or lag in the controller design, the
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Fig. 11: Comparison of executed trajectories for manoeuvring around an obstacle (simple) and completing a slalom course
(difficult) using NMPC with N=18, pre-generated and minimal swing planning and control. Observe that pre-generation leads
to the smoothest, most optimal path resulting from the global planning scope. NMPC response resembles pre-generation and
only initially reacts later to the presence of obstacles due to local planning. Minimal-swing response is sluggish as the turning
motions are more suited for agile behaviour. Top down view with t3 > t2 > t1 > t0 shown.
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(a) ∆t=0.05 s, no lag (standard)
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(b) ∆t=0.20 s, no lag
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(c) ∆t=0.05 s, 0.10 s lag

Fig. 12: Distance-to-goal for a simple point-to-point navigation task, load suspension angles and NMPC generated pitch and
roll inputs with N = 18 and an increased NMPC time-step from ∆t=0.05 s to 0.20 s and control to execution time lag of
0.10 s. In (b), observe that NMPC compensates for the long time-step over which inputs are executed by reducing the input
magnitudes resulting in a stable yet slower, less agile motion. Comparing (a) and (c), observe that even with a high time lag,
the MAVP responds in a stable and agile manner.

method’s prediction accuracy can be improved; this is

future work.

In the simulation study we were able to select ∆t

for a pre-configured N and show its effects on the sys-

tem dynamics approximation and system performance.

In the experimental setup the ∆t is equal to the real

control loop-time which positively correlates to N as

shown in Section 5.1. Therefore, in experimental stud-

ies it is important to tune N such that the obtained ∆t

is compatible with the discretisation method used on

the system dynamics.

6 Experimental Study

We showcase complex, agile behaviour in static and

dynamic experimental setups. First we analyse the ef-

fects of prediction accuracy on our planner’s perfor-

mance as it is integral to our discussion of the exper-

imental results. The same distance/time-to-goal defi-

nitions as introduced in Section 5 are used. Videos of

the experiments performed are at https://youtu.be/

AGtzSMdGI3o.

https://youtu.be/AGtzSMdGI3o
https://youtu.be/AGtzSMdGI3o
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6.1 Planning Prediction Accuracy over Prediction

Horizon

To demonstrate the effect of our local planner’s pre-

diction accuracy on system performance, we replicated

the simulation as described in Section 5.1.1 in a real-

world setup. Six identical runs were performed with the

NMPC planner configured to use the real time-step,

N=18 and default cost weights.

As our method is online and local, closed-loop tra-

jectory planning is achieved every cycle by using the

estimated system and dynamic obstacle states, and a

plant model for propagating these states over N plan-

ning stages. For each generated local trajectory x̃, we

compute the absolute error between the predicted and

future true measured quadrotor/payload position for

all N stages. With ∆t our time-step, for the k-th stage

we compare the predicted position to the true measure-

ments obtained for the system k∆t in the future.

As shown in Fig. 13, our planner’s prediction er-

ror of the quadrotor and payload position are in the

order of magnitude 10−2 m up to 3 stages. As stated

in Section 1, each local plan must remain feasible dur-

ing execution for a full computation cycle, therefore, it

is important that these first stages are accurately pre-

dicted. During one computation cycle of ∆t, the system

translates to the first predicted state of our plan before

we re-plan, therefore, it is critical that this prediction is

accurate to guarantee feasibility during execution. We

demonstrate with metrics in Fig. 13 that our planner

performs as desired for this critical prediction horizon.

Furthermore, as NMPC utilises plant model propa-

gation over the N stage prediction we observe that the

accumulation of inter-stage errors partially contributes

to the reduction of prediction accuracy at the higher

stage counts. Furthermore, with our local planning ap-

proach in a dynamic environment, planned trajectories

can significantly differ from cycle-to-cycle as new routes

become feasible at run-time. This can skew prediction
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(b) Payload position

Fig. 13: Absolute position error for the 18 predicted stages
of quadrotor and payload position when compared to mea-
sured true values for a point-to-point navigation task with a
collinear dynamic obstacle.

error results as a predicted trajectory may never ac-

tually be executed. These two factors results in an in-

crease of absolute position error with number of predic-

tion stages as seen in Fig. 13. We refer to this prediction

accuracy analysis in the discussion of our experimental

results to support explanation of observed system be-

haviour.

6.2 Agile Acrobatic Manoeuvres

Two complex agile manoeuvres are performed; (i) the

MAVP must fly over a high bar at 0.95 m with a vir-

tual ceiling of 1.8 m, and (ii) similar to De Crousaz et al.

(2014) and Tang and Kumar (2015) , the MAVP must

fly through a narrow 0.7×0.7 m opening. For both ma-

noeuvres, three passes over/through the obstacle are

performed in a rapid, successive and bidirectional man-

ner. The tasks are impossible to execute without reduc-

ing the system’s total vertical dimension (0.9 m when

stationary) by swinging the load. The NMPC uses the

real time-step, N = 18 and default cost weights. For

the narrow opening, the maximum pitch/roll input is

increased to 20◦.

In Fig. 14 the two agile manoeuvres and the obsta-

cle to MAVP clearance over all passes is shown. As the

planning must excite the load’s swing over a relatively

short distance, large rapid inputs are commanded. Fol-

lowing the manoeuvre, the controller is able to stabilise

the system at the goal position. As we do all compu-

tations online, and perform the passes in rapid succes-

sion, the clearances over the three passes differ while

maintaining acceptable separation to the obstacle(s).

For both manoeuvres, the entire system setup is iden-

tical with only the obstacles changed exemplifying our

method’s adaptability to different tasks.

Of the 48 tests performed over both tasks, 77% were

successfully executed. In the rare cases when the ma-

noeuvre was not successful, the system would either

end up in a deadlock in front of the obstacle or make a

momentary contact with the obstacle. Flight was recov-

erable following the contact with only four tests where

this was not the case. For our unsuccessful tests, the pri-

mary cause was traced to our local planning approach

or inaccuracies in the model resulting in the discrep-

ancy between the observed and planned motion.

As addressed in Section 3.5, local planning method

such as ours are prone to deadlocks. In this partic-

ular case, one reason could be an insufficient plan-

ning horizon necessary to compute a feasible trajectory

over/through the obstacle. Furthermore, our NMPC

optimisation algorithm utilises the time-shifted pre-

vious solution as an initial guess for the optimisa-

tion problem thus reduce computation time, however,
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Fig. 14: MAVP’s agile acrobatic manoeuvre over a high bar and through a narrow opening. Snapshot of one pass shown
(image). The quadrotor and payload clearance to obstacles (grey with pink enclosing ellipsoid) at the vertical obstacle plane
(x=0 m) over three successive passes (plot) is shown and numbered 1,2,3 and 1′,2′,3′ for each pass. Observe the agile motion
and that sufficient clearance is maintained over all passes.

this strategy contributes to an increased likelihood of

deadlocks. The latter can be mitigated at the cost of

few longer computation cycles by randomising the ini-

tial solution when deadlock situations arise. An auto-

mated and structural method to address these situa-

tions within our local planning framework is an inter-

esting topic to be addressed in future work.

The cases involving obstacle contact were only ob-

served in the flight through an opening experiment as

the margins of error were small. Our method enables

us to mitigate the effects of long horizon planning in-

accuracies by using observed system states to re-plan

rapidly. However, in this case, the prediction accuracy

over longer horizons is critical to ensure the planner

only initiates an agile manoeuvre that is feasible over

the full planned trajectory. In the rare case the plan-

ner experiences an intermittent infeasibility during run-

time, such as system-obstacle contact, it will quickly re-

cover stable controlled flight once feasible trajectories

become available.

The setup was extended to the case of a moving

high bar manoeuvre for agile dynamic obstacle avoid-

ance (see video).

6.3 MAVP Human Obstacle Avoidance

Obstacle avoidance performance is demonstrated

amongst dynamic human obstacles with (i) test cases

involving intersecting MAVP-human paths, and (ii)

random motion in a shared MAVP-human space. The

humans are represented by ellipsoids with buffers

βo=0.2 m, βe=1.0 m, and are tracked to estimate their

velocities for planning. The NMPC uses the real time-

step, default cost weights and N = 18. Note that we

define the MAVP’s closest approach to the human’s

associated ellipsoid as the smallest value of either the

quadrotor to ellipsoid, or load to ellipsoid distance.

6.3.1 One Human with Crossing Paths

A human walks perpendicularly and diagonally on a

path crossing the MAV performing a navigation task

from (−1.5, 0, 1.9) to (1.5, 0, 1.9).

In Fig. 15 we show a snapshot and the full exe-

cuted trajectory for both cases. Observe the MAVP’s

smooth, safe and agile execution of the task which in-

cludes the use of full spatial avoidance exploiting the

available horizontal and vertical space around the ob-

stacle (video shows this clearly). NMPC’s predictive ca-

pability means load is actively swung away from the

human’s direction of motion to avoid a potential load-

human collision. The minimum MAVP to human sepa-

rations for the perpendicular and diagonal crossing task

were 0.45 m and 0.61 m.

6.3.2 Two Humans Walking Randomly

Two humans walk for 150 s in random directions cross-

ing the MAVP’s path. The MAVP autonomously fol-

lows a goal position moving anti-clockwise with a 7 s

period along a circle with radius 1.5 m and a constant

1.4 m height. Experiment was conducted in a larger

workspace measuring 3.2× 3.2 m.

In Fig. 16 we show a snapshot from our experi-

ment alongside the system’s closest approach to the hu-

mans and the framework/NMPC loop time. As shown

in Fig. 16c, a safe distance is maintained by the MAVP

from the humans with no collisions over the entire run;

the minimum observed separation was 0.38 m from to

the human’s collision avoidance limit. In some cases the

humans were apprehensive about the MAVP getting

too close so they would perform a precautionary eva-

sive motion, however, as shown in Fig. 16c, the MAVP

still always maintains a safe separation. To address ob-

servable closeness, it is possible to enlarge the obstacle

associated buffers to increase the separation.

Observe from Fig. 16d that the NMPC solve time

resembles the statistics obtained from the simulated
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Fig. 15: One planning instance (left) and full executed trajectory (right) with t3 > t2 > t1 > t0 for a perpendicular and
diagonal MAVP-human path crossing. Smooth and agile planned and executed trajectories maintain a safe separation to the
moving human obstacle (shown by the bounding ellipsoid).

(a) Snapshot from exper-
iment

0

1

3.0

2

z
 [
m

]

3

1.5 3.0

y [m]

1.50.0

x [m]

0.0-1.5 -1.5
-3.0 -3.0

Human 2

Human 1

MAVP

Moving 

Goal Path

(b) Schematic of setup with
MAVP, human obstacles and
moving goal

0 50 100 150

Time [s]

0

1

2

3

4

5

6

7

M
A

V
P

 C
lo

s
e

s
t 
A

p
p

ro
a

c
h

 [
m

]

Human 1 Human 2

(c) Separation between MAVP
and ellipsoids representing hu-
mans

0 500 1000 1500 2000

Timestep

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

L
o

o
p

 T
im

e
 [
s
]

Framework NMPC

(d) Framework loop time in-
cludes the NMPC solve times

Fig. 16: MAVP follows a circular path avoiding two randomly walking human obstacles modelled as ellipsoids moving at a
mean 0.78 m/s with max. 1.45 m/s. As shown in (c), the 0.2 m buffered collision avoidance limit is never violated. The system
only intermittently enters the larger potential field ellipsoids with a 1.0 m buffer. In (d), observe the steady loop times for
the full framework (mean 71 ms) which includes the NMPC controller (mean 46 ms); brief spiking arises from situations where
significant re-planning was required.

study with two dynamic obstacles as shown in Fig. 9,

therefore, the NMPC computation performance is pre-

served going from a simulation to the experimental

setup. As the optimiser is initialised using the time-

shifted previous solution, a roughly constant solve time

is achieved. Spiking occurs when the optimiser’s iter-

ative solver requires more time to compute solutions

which primarily occurs when considerable re-planning is

required. Examples where we observed spikes included

situations where the humans would inhibit the NMPC

planner from feasibly planning a path to go to the

goal position, or the MAVP would be trapped. The

spikes only lasted one to two time-steps so observa-

tions showed the overall performance was not degraded.

Specific to experiments is a mean 25 ms overhead (on

top of NMPC solve time) associated with the frame-

work’s state estimation, communication and data pars-

ing. The low overhead means controller’s performance

is not severely affected.

Thanks to its online and receding-horizon nature,

our method can execute agile and safe continuous ma-

noeuvres and avoid dynamic obstacles such as humans.

Our method is extendable to larger spaces with more

humans/obstacles as we have already demonstrated in

simulation with eight obstacles.

7 Conclusion

In this paper, we presented an optimisation based uni-

fied motion planner and controller to accomplish on-

line, closed-loop and agile flight of a Micro Aerial Ve-

hicle slung payload system. We formulated the opti-

misation objective function, constraints and relied on

a state of the NMPC solver to achieve collision-free

flight in dynamic environments over various complex

tasks including flying through a narrow opening and

avoiding moving humans. With simulation and experi-

mental studies we demonstrate the method’s (i) scala-

bility with the planning stages and the number of ob-

stacles, (ii) robustness to different controller time-step

durations and input execution lags, (iii) adaptability

and repeatability over various complex tasks, and (iv)

fast online performance in experimental conditions. For

future studies we recommend the method’s extension
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to non-rigid cables, improving the model’s realism, ac-

curacy and consequentially the NMPC prediction per-

formance. Furthermore, a study involving variations of

the model parameters would showcase the generality

of the approach to different systems and setups. Also,

due to our reliance on off-board NMPC control and

motion capturing we limited our experiments to indoor

spaces, however, with the controller frequency achieved

off-board, we believe on-board computations would be

feasible with hardware available today. Combining our

method with contemporary obstacle detection, localisa-

tion and state estimation techniques could make urban

MAVP operation a reality.

A Analysis of Cable Slackening During

Maneuvers

A preliminary experimental study was performed to

identify whether the cable slackens during flight ma-

neuvers that were foreseen to be part of this study. The

position of the cable suspension point and attachment

to the load were recorded then the difference was used

to compute the cable length. A flight was performed

maintaining a close to constant altitude while combin-

ing (aggressive) pitch and roll inputs. The maximum

pitch and roll angle was capped at 20◦ which is the

limit set by the internal controller on the quadrotor.

Fig. 17 shows the computed cable length, suspension

angles and inputs to the system for a section of the

flight.

As shown, the cable length varies by 0.01 m during

the run, about 1.3% of the nominal value of 0.755 m. If

slackening had occurred then deep troughs would have

been visible in the cable length data, however, this was

not the case therefore assuming the cable remains taut

is a reasonable assumption. Slackening is likely when

the vehicle suddenly accelerates in various direction not

allowing sufficient time for the payload to respond, how-

ever, given the system performance limits this was not

realised.

B Quadrotor On-Board Controller

Figure 18 shows an expanded schematic of the quadro-

tor’s on-board controller. The pitch, roll input θ̄q, φ̄q
are tracked by the fast attitude controller resulting in

longitudinal and lateral control forces Fx, Fy. From our

observations, the Parrot Bebop quadrotor can perform

level flight under a pitch/roll tilt suggesting the ab-

sence of an additional vertical force component. The

quadrotor vertical velocity is stabilised by a controller

based on reference thrust command input w̄q resulting

in vertical control force Fq which when trimmed for the

system weight gives Fz. All forces F are in the world

East-North-Up inertial frame.

C Input Control Force Derivation

For modeling the input control force relations the

premise is that the quadrotor is able to perform hor-

izontal maneuvers while maintaining altitude, hence,

the total vertical thrust component must always coun-

teract the system weight when not changing elevation.

The assumption made is that the horizontal and vertical

input force components are decoupled. We also assume

elevation changes only occur at negligible roll and pitch

angles, so the system is in or near equilibrium. Let T be

the total thrust force generated by the four rotors, RB
E

define the quadrotor’s orientation and m the system

mass, then the generated thrust force vector in frame

{E} is defined as

Fu = RB
E [0, 0, T ]

>
. (43)

Additionally, as altitude is maintained then

F>u [0 , 0, 1]
> −mg = 0 . (44)

Solving for T in (44) gives,

T =
mg

cos(φ)cos(θ)
. (45)

As we assume elevation changes only occur from a

(near) equilibrium state, the vertical control input Fq
directly controls the generated vertical thrust force

component. Then using (44) and (45), the thrust force

vector is defined as

Fu =
[
m

tan(θq)
cos(φq)

g, −m tan(φq)g, Fq +mg
]
∈ R3 .

(46)

D Identified Parrot Bebop 2 Input Model

The quadrotor pitch θq, roll φq and vertical control

force Fq response to inputs pitch θ̄q, roll φ̄q and thrust

command w̄q are identified using the MATLAB sys-

tem identification toolbox. The linear second-order,

state-space, black-box models, which we denote by

hθ, hφ, hF , are given by equations (47) (48) and (49)

respectively;

ẋθ =

[
−4.301 −2.877
10.92 −10.37

]
xθ +

[
−0.6893
−16.32

]
θ̄q

θq =
[
1.763 4.586× 10−3

]
xθ +

[
0
]
θ̄q

(47)
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ẋφ =

[
−2.789 −4.978
9.302 −13.72

]
xφ +

[
−5.41
−18.04

]
φ̄q

φq =
[
1.996 0.4657

]
xφ +

[
0
]
φ̄q

(48)

ẋF =

[
−6.767 −6.546
3.031 0.311

]
xF +

[
38.75
1.841

]
w̄q

Fq =
[
0.310 2.03× 10−2

]
xF +

[
−0.121

]
w̄q .

(49)

The states xθ = [xθ,1, xθ,2], xφ = [xφ,1, xφ,2] and xF =

[xF,1, xF,2] are combined as xc = [xθ,xφ,xF ].

For system identification, we experimentally col-

lected two datasets (estimation and validation) of the

Parrot Bebop 2 response on a 5◦ amplitude 0.5 Hz

square wave pitch/roll input over 15 s, and a 1 m/s

pulse of width 1 s for the thrust command. Table 5

shows the quadrotor input model’s fit. We use NRMSE

(MATLAB’s definition) to facilitate comparison; a

100% NRMSE means a perfect fit.

Table 5: Normalised Root Mean Squared Error (NRMSE) to
estimation and validation dataset for empirically identified
linear second-order quadrotor input control model.

System
Model fit as NRMSE to dataset [%]
Estimation Validation

Pitch 94.59 93.81
Roll 91.09 89.09
Thrust command 91.38 91.56

As the thrust command activates a velocity sta-

biliser loop, the commanded value will be tracked by

the quadrotor hence a velocity input-output model can

be identified. Using this relation, to obtain a model for

the vertical force generated Fq, the velocity model’s

differential output is multiplied by the system mass.

This approach to model the thrust command response

is rudimentary so future studies would explore a better

approach to modeling this.

Figure 19 shows the second order models’ fit to the

validation data experimentally collected on the Par-

rot Bebop 2. For thrust command, the velocity input-

output model response is shown (thus prior to taking

the differential output and multiplying by the system

mass). As shown the identified model properly tracks

the quadrotor’s true pitch, roll and the vertical velocity

response when given a pitch, roll and thrust command.
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Fig. 19: Identified second order input model fit to experimen-
tally collected system response validation data on the Parrot
Bebop 2. For roll and pitch a 5◦, 0.5 Hz square wave input
was used over a duration of 15 s starting at 2 s. For the thrust
command, a 1 m/s pulse of width 1 s was used starting at 2s.

This is also reflected in the NRMSE model fit shown in

Table 5.

E Derivation of the Closest Point of Approach

(CPA) of a Finite Line Segment to An Ellipsoid

Consider an ellipsoid of dimensions (a, b, c), at posi-

tion po and a parametrised finite line segment L =

{p|p = pq + s(pl − pq), s ∈ [0, 1]} where pq and pl are

the end-points. Let [u, v, w]
> ≡ pl − pq and rqo =

po − pq. Substituting L in the ellipsoid equation and

expanding vectors into x, y, z components, we approx-

imate the signed line to ellipsoid distance function by

d(s) =
(xqo + su)

2

a2
+

(yqo + sv)
2

b2
+

(zqo + sw)
2

c2
− 1 .

(50)

Minimising (50) with respect to s, we get the ellipsoid’s

closest point along the infinite expansion of line L

ŝ = arg min
ŝ∈R

d(s) = −xqoub
2c2 + yqova

2c2 + zqowa
2b2

u2b2c2 + v2a2c2 + w2a2b2
.

(51)

Then on the finite line segment we obtain the Closest

Point of Approach (CPA)

p∗c = [xq + s∗u, yq + s∗v, zq + s∗w]
>

where s∗ = min{max{ŝ, 0}, 1}.

F Primal-Dual Interior-Point Constrained

Optimisation Algorithm

The Model Predictive Controller (MPC) algorithm is

a receding and finite-horizon, constrained optimisation

problem that solves for quasi-optimal solutions. Global

optima can be found for convex problems under spe-

cific conditions. For non-convex problems, the optimiser

cannot be guaranteed to converge to the global opti-

mum but rather any minima/maxima, local or global.

A Newton-type, optimisation scheme is imple-

mented in the software package FORCES Pro that

is used to achieve real-time computational performance

Domahidi and Jerez (2014). The specific algorithm is

called Barrier Interior-Point Optimisation for which a

short theoretical exposition is provided based on the

derivation provided in Vanderbei (2012). The notation

convention may differ from the main paper and is made

clear from the context or by explicit definition in this

appendix.

F.1 Optimisation Problem Definition

Take the cost function minimisation optimisation prob-

lem with the total cost J , and with f : Rn → R subject

to p inequality and q−p equality constraints as defined

by

J = min
x∈Rn

f(x)

gi(x) ≥ bi for i = 1, . . . , p ∈ N
gi(x) = bi for i = p+ 1, . . . q ∈ N .

(52)

Rewrite an equivalent problem using slack variables

si to convert the inequality constraints to equality con-

straints.

J = min
x∈Rn

f(x)

ci(x, s) = 0 for i = 1, . . . , q ∈ N
si ≥ 0 for i = 1, . . . , p ∈ N ,

(53)
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where,

c(x, s) =
[
gi(x)− bi − si , . . . ,
gp(x)− bk − sp, gp+1(x)− bp+1 , . . . ,

gq(x)− bq
]>

.

The non-negativity constraint on the slack variables

is rewritten as a logarithmic barrier function cost term

giving

B = min
x∈Rn

f(x)− µ
p∑
i=1

ln(si)

ci(x, s) = 0 for i = 1, . . . , q ∈ N ,

(54)

which gives the equivalent barrier problem.

A small positive barrier parameter µ is introduced

such that for lim
µ→0

minB = min J , the new optimisation

problem is equivalent to the original. By definition, the

natural logarithmic is undefined for si < 0 thereby im-

plicitly satisfying the inequality si ≥ 0. Finally, incor-

porate the equality constraints into the objective func-

tion using Lagrange multipliers λ giving the Lagrange

function

L(x, s,λ) = f(x)− c(x, s)>λ− µ
p∑
i=1

ln(si) (55)

where primal variable is x with the dual variable λ ∈
Rq.

F.2 Newton-Raphson Iterative Root Finding Search

The optimisation problem is solved iteratively with a
Newton-Raphson gradient based search direction algo-

rithm. The gradients of (55) is defined by equations

∇xL ≡ ∇xf(x)−∇xcT (x, s)λ = 0 (56)

∇sL ≡ − µS−1e+ Y λ = 0 (57)

∇λL ≡ c(x, s) = 0 (58)

with S =

[
s1 0

. . .
0 sp

]
, Y =

[
I(p×p) 0(p×q−p)

]
,

where the gradients are set to equal zero. These three

necessary conditions constrained optimisation problems

are referred to as the Karush-Kuhn-Tucker (KKT) con-

ditions Kuhn (2014).

Rewriting, the above we get the reformulated con-

ditions

∇xf(x)−∇xc(x, s)>λ =0 (59)

ΛSe =µe (60)

c(x, s) =0 (61)

with Λ = diag(Y λ) =

[
λ1 0

. . .
0 λp

]
e = [1 , . . . , 1] ∈ Np .

Applying the Newton-Raphson method for root-

finding to the set of Eqs. 59 to 61, the following system

of equations is obtained with the ∆ search steps; W 0 −∇xc(x, s)>

0 Λ S

∇xc(x, s) −Z 0

∆x∆s
∆λ

 =

−

∇xf(x)−∇xc>(x, s)λ

ΛSe− µe
c(x, s)


(62)

with Z =
[
I(p×p) 0
0 0(q−p×q−p)

]
W = ∇2

xxL(x, s,λ) .

The left matrix is the Jacobian to set of Eqs. 59 to 61.

Computing the search direction given by the vec-

tor of ∆ is the most computationally expensive step of

the algorithm Domahidi et al. (2012). In practice this

is achieved through various methods, however, this is

beyond the scope of this paper.

Then the variables x, s, λ are iteratively found by

taking step of size α in the search directions identified

in Eq. 62 resulting in the updatexs
λ


(k+1)

=

xs
λ


(k)

+ α(k)

∆x∆s
∆λ


(k)

, (63)

where the step-size is regulated to achieve a converging

line-search.

F.3 Algorithm Convergence and Extensions

As the Newton-Raphson method is iterative in nature,

the KKT conditions defined by Eqs. 59 to 61 are set to

be satisfied when a certain tolerance ε is satisfied.

max
∣∣∇xf(x)−∇xc(x, s)>λ

∣∣ ≤ε1
max |ΛSe− µe| ≤ε2

max |c(x, s)| ≤ε3

As the Hessian W is not analytically defined

in FORCES Pro, an approximation method is

used resulting in a quasi-Newton method known

as the Broyden-Fletcher-Goldfarb-Shanno algorithm

Domahidi and Jerez (2014); the specific’s of which are

beyond the scope of this paper. The standard Newton
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method as presented in this appendix is sufficient to un-

derstand the general method utilised to solve the con-

strained optimisation problem.

Note in Karmarkar (1984), Karmarkar first showed

that interior-point methods are polynomial time algo-

rithms hence the number of algorithmic steps is O(nk)

for a non-negative k and n size input. Furthermore, for

interested readers, the article Forsgren et al. (2002) pro-

vides a comprehensive overview of interior-point meth-

ods for non-linear optimisation.

G Goal Directed Assistive Steering

Collision-free trajectory generation for low planning

horizons can be augmented using an assistive steer-

ing based cost term; the idea is inspired from Vector

Field Histograms Borenstein and Koren (1991). The

quadrotor position and obstacle ellipsoids are projected

onto the world horizontal plane P by the transforma-

tion TP : R3 → R2 where TP = diag(1, 1, 0). On P ,

we define a set of nd candidate angular directions for

steering

D =
{
γ| γ = i 2π

nd
, i ∈ {1, . . . , nd} ⊂ N

}
originating from our projected quadrotor position

TPpq. Checking all γ ∈ D, we determine Dfree ⊆ D
which are all the non-obstructed (free) directions in P

up to a maximum omnidirectional range from TPpq.

With γgoal the heading of the goal position from the

quadrotor position, the steering direction is chosen to

minimise the angular offset to the goal as given by

γ∗ = arg min
γ

|γ − γgoal| , γ ∈ Dfree . (64)

With ∠TP ṗq the quadrotor’s heading, the cost is eval-

uated as its deviation from γ∗ by

csteer = ‖∠TP ṗq − γ∗‖I1 . (65)

Under a short planning horizon, evasive actions for

obstacles are generally performed abruptly as there

is limited planning foresight. Steering assists planning

by guiding the system towards obstacle-free areas for

smoother trajectories; we demonstrate the utility of

steering when using low planning horizons. As the R2

steering method is only amendable to planar obstacle

avoidance, for R3 spatial avoidance we disable steering.

Extension to R3 could be done analogously.

H Effects of Steering on System Response

To address the underperformance of the system re-

sponse to incoming obstacles using a low number of

stages, assistive steering is used to guide the MAVP

towards obstacle-free regions without compromising on

run-time performance. Inclusion of the Goal Directed

Assistive Steering as introduced in Appendix G is

demonstrated by repeating the simulation study from

Section 5.1. The steering associated cost weight is set

to wsteer = 0.05, with a detection range of 3.5 m and

8 pre-defined uniformly space steering direction were

used. As with the other cost weights, wsteer was found

by manually tuning the weights. Figure 20 shows how

the NMPC solve time and time-to-goal scales with the

number of stages when using the assistive steering as-

sociated cost.

Comparing the NMPC algorithm solve times for the

case when assistive steering is disabled and enabled, as

shown in Fig. 7 and Fig. 20, respectively, demonstrates

that there is a negligible delta. Referring to Fig. 21

for the N=10 case, observe how the steering assisted

trajectory is guided away from the obstacle resulting

in a collision-free task completion. Compare this be-

haviour to the N=10 case with no steering shown in

Fig. 8a where clearly the steering guides the system

pre-emptively. In general, application of the steering

command over the entire planning length makes the

path more conservative thus increasing the time-to-goal

especially for the higher N when compared to no steer-

ing. The benefits of steering are more apparent for low

stage (N) counts where the guidance is used to im-

prove local planning. A low N with steering is a viable

method to maintain a reasonable run-time frequency

and collision-free performance. In our simulation, we al-

ways used default cost weights, however, by fine-tuning

the weights to accommodate a shorter/longer predic-

tion length, better performance may be realised.
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Fig. 20: Simulated NMPC solve time and time-to-goal per
run with increasing planning stages using assistive steering
and 16 runs per case.
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Fig. 21: Point-to-point navigation with collinear dynamic obstacle, N = 10 and assistive steering enabled; showing planned
and executed trajectory and current quadrotor position. Notice how the steering guide the system away from the obstacle even
when the MPC prediction horizon would not capture the oncoming obstacle. Top down view.
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