
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

Where to go next: Learning a Subgoal
Recommendation Policy

for Navigation in Dynamic Environments
Bruno Brito1, Michael Everett2, Jonathan P. How2 and Javier Alonso-Mora1

Abstract—Robotic navigation in environments shared with
other robots or humans remains challenging because the in-
tentions of the surrounding agents are not directly observable
and the environment conditions are continuously changing. Local
trajectory optimization methods, such as model predictive control
(MPC), can deal with those changes but require global guidance,
which is not trivial to obtain in crowded scenarios. This paper
proposes to learn, via deep Reinforcement Learning (RL), an
interaction-aware policy that provides long-term guidance to the
local planner. In particular, in simulations with cooperative and
non-cooperative agents, we train a deep network to recommend
a subgoal for the MPC planner. The recommended subgoal is
expected to help the robot in making progress towards its goal
and accounts for the expected interaction with other agents.
Based on the recommended subgoal, the MPC planner then
optimizes the inputs for the robot satisfying its kinodynamic
and collision avoidance constraints. Our approach is shown to
substantially improve the navigation performance in terms of
number of collisions as compared to prior MPC frameworks,
and in terms of both travel time and number of collisions
compared to deep RL methods in cooperative, competitive and
mixed multiagent scenarios.

Index Terms—Deep Reinforcement Learning, Motion and Path
Planning in Dynamic Environments or for Multi-robot Systems.

I. INTRODUCTION

Autonomous robot navigation in crowds remains difficult
due to the interaction effects among navigating agents. Unlike
multi-robot environments, robots operating among pedestrians
require decentralized algorithms that can handle a mixture
of other agents’ behaviors without depending on explicit
communication between agents.

Several state-of-the-art collision avoidance methods employ
model-predictive control (MPC) with online optimization to

Manuscript received: October 15, 2020; Revised January 18, 2021; Ac-
cepted February 14, 2021.

This paper was recommended for publication by Editor Nancy Amato
upon evaluation of the Associate Editor and Reviewers comments. This
work was supported by the European Unions Horizon 2020 research and
innovation programme under grant agreement No. 101017008, the Amsterdam
Institute for Advanced Metropolitan Solutions, the Netherlands Organisation
for Scientific Research (NWO) domain Applied Sciences (Veni 15916), and
Ford Motor Company.

1The authors are with the Cognitive Robotics (CoR) department,
Delft University of Technology, 2628 CD Delft, The Netherlands
{bruno.debrito, j.alonsomora}@tudelft.nl

2The authors are with Massachusetts Institute of Technology, Aerospace
Controls Laboratory, Cambridge, MA, USA. {mfe, jhow}@mit.edu

Code: https://github.com/tud-amr/go-mpc.git
Video: https://youtu.be/sZBbWMnwle8
Digital Object Identifier (DOI): see top of this page.

Fig. 1: Proposed navigation architecture. The subgoal planner
observes the environment and suggests the next subgoal po-
sition to the local motion planner, the MPC. The MPC then
computes a local trajectory and the robot executes the next
optimal control command, which minimizes the distance to
the provided position reference while respecting collision and
kinodynamic constraints.

compute motion plans that are guaranteed to respect important
constraints [1]. These constraints could include the robot’s
nonlinear kino-dynamics model or collision avoidance of static
obstacles and other dynamic, decision-making agents (e.g.,
pedestrians). Although online optimization becomes less com-
putationally practical for extremely dense scenarios, modern
solvers enable real-time motion planning in many situations
of interest [2].

A key challenge is that the robot’s global goal is often
located far beyond the planning horizon, meaning that a local
subgoal or cost-to-go heuristic must be specified instead.
This is straightforward in a static environment (e.g., using
euclidean/diffusion [3] distance), but the presence interactive
agents makes it difficult to quantify which subgoals will lead
to the global goal quickest. A body of work addresses this
challenge with deep reinforcement learning (RL), in which
agents learn a model of the long-term cost of actions in
an offline training phase (usually in simulation) [4]–[7]. The
learned model is fast-to-query during online execution, but the
way learned costs/policies have been used to date does not
provide guarantees on collision avoidance or feasibility with
respect to the robot dynamics.

In this paper, we introduce Goal Oriented Model Predic-
tive Control (GO-MPC), which enhances state-of-art online
optimization-based planners with a learned global guidance
policy. In an offline RL training phase, an agent learns a
policy that uses the current world configuration (the states
of the robot and other agents, and a global goal) to recom-

https://github.com/tud-amr/go-mpc.git
https://youtu.be/sZBbWMnwle8

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

mend a local subgoal for the MPC, as depicted in Fig. 1.
Then, the MPC generates control commands ensuring that the
robot and collision avoidance constraints are satisfied (if a
feasible solution is found) while making progress towards the
suggested subgoal. Our approach maintains the kino-dynamic
feasibility and collision avoidance guarantees inherent in an
MPC formulation, while improving the average time-to-goal
and success rate by leveraging past experience in crowded
situations.

The main contributions of this work are:
• A goal-oriented Model Predictive Control method (GO-

MPC) for navigation among interacting agents, which
utilizes a learned global guidance policy (recommended
subgoal) in the cost function and ensures that dynamic
feasibility and collision avoidance constraints are satisfied
when a feasible solution to the optimization problem is
found;

• An algorithm to train an RL agent jointly with an
optimization-based controller in mixed environments,
which is directly applicable to real-hardware, reducing
the sim to real gap.

Finally, we present simulation results demonstrating an
improvement over several state-of-art methods in challeng-
ing scenarios with realistic robot dynamics and a mixture
of cooperative and non-cooperative neighboring agents. Our
approach shows different navigation behaviors: navigating
through the crowd when interacting with cooperative agents,
avoiding congestion areas when non-cooperative agents are
present and enabling communication-free decentralized multi-
robot collision avoidance.

A. Related Work

1) Navigation Among Crowds: Past work on navigation in
cluttered environments often focuses on interaction models
using geometry [8], [9], physics [10], topologies [11], [12],
handcrafted functions [13], and cost functions [14], [14] or
joint probability distributions [15] learned from data. While
accurate interaction models are critical for collision avoidance,
this work emphasizes that the robot’s performance (time-to-
goal) is highly dependent on the quality of its cost-to-go
model (i.e., the module that recommends a subgoal for the
local planner). Designing a useful cost-to-go model in this
problem remains challenging, as it requires quantifying how
“good” a robot’s configuration is with respect to dynamic,
decision-making agents. In [4], deep RL was introduced as
a way of modeling cost-to-go through an offline training
phase; the online execution used simple vehicle and interaction
models for collision-checking. Subsequent works incorporated
other interactions to generate more socially compliant behavior
within the same framework [5], [16]. To relax the need
for simple online models, [6] moved the collision-checking
to the offline training phase. While these approaches use
pre-processed information typically available from perception
pipelines (e.g., pedestrian detection, tracking systems), other
works proposed to learn end-to-end policies [7], [17]. Al-
though all of these RL-based approaches learn to estimate
the cost-to-go, the online implementations do not provide

guarantees that the recommended actions will satisfy realistic
vehicle dynamics or collision avoidance constraints. Thus, this
work builds on the promising idea of learning a cost-to-go
model, but we start from an inherently safe MPC formulation.

2) Learning-Enhanced MPC: Outside the context of crowd
navigation, numerous recent works have proposed learning-
based solutions to overcome some of the known limitations
of optimization-based methods (e.g., nonlinear MPC) [18].
For example, solvers are often sensitive to the quality of the
initial guess hence, [19] proposes to learn a policy from data
that efficiently “warm-starts” a MPC. Model inaccuracies can
lead to sub-optimal MPC solution quality; [20] proposes to
learn a policy by choosing between two actions with the
best expected reward at each timestep: one from model-
free RL and one from a model-based trajectory optimizer.
Alternatively, RL can be used to optimize the weights of an
MPC-based Q-function approximator or to update a robust
MPC parametrization [21]. When the model is completely
unknown, [22] shows a way of learning a dynamics model to
be used in MPC. Computation time is another key challenge:
[23] learns a cost-to-go estimator to enable shortening of the
planning horizons without sacrificing much solution quality,
although their approach differs from this work as it uses local
and linear function approximators which limits its applicability
to high-dimensional state spaces.The closest related works
address cost tuning with learning. MPC’s cost functions are
replaced with a value function learned via RL offline in [24]
(terminal cost) and [25] (stage cost). [26] deployed value
function learning on a real robot outperforming an expert-
tuned MPC. While these ideas also use RL for a better cost-
to-go model, this work focuses on the technical challenge
of learning a subgoal policy required for navigation through
crowds avoiding the approximation issues and extrapolation
issues to unseen events. Moreover, this work learns to set
terminal constraints rather than setting a cost with a value
function.

3) Combining MPC with RL: Recently, there is increasing
interest on approaches combining the strengths of MPC and
RL as suggested in [27]. For instance, optimization-based
planning has been used to explore high-reward regions and
distill the knowledge into a policy neural network, rather than
a neural network policy to improve an optimization. [28]–[30].

Similar to our approach, [31] utilizes the RL policy during
training to ensure exploration and employs a MPC to optimize
sampled trajectories from the learned policy at test time.
Moreover, policy networks have be used to generate proposals
for a sampling-based MPC [32], or to select goal positions
from a predefined set [33].

Nevertheless, to the extent of our knowledge, approaches
combining the benefits of both optimization and learning-
based methods were not explored in the context of crowd
navigation. Moreover, the works exploring a similar idea
of learning a cost-to-go model do not allow to explicitly
define collision constraints and ensure safety. To overcome the
previous issues, in this paper, we explore the idea of learning
a cost-to-go model to directly generate subgoal positions,
which lead to higher long-term rewards and too give the role
of local collision avoidance and kinematics constraints to an

BRITO et al.: LEARNING A SUBGOAL RECOMMENDATION POLICY 3

optimization-based planner.
Such cost-to-go information can be formulated as learning

a value function for the ego-agent state-space providing infor-
mation which states are more valuable [25]. In contrast, we
propose to learn a policy directly informing which actions lead
to higher rewards allowing to directly incorporate the MPC
controller in the training phase.

II. PRELIMINARIES

Throughout this paper, vectors are denoted in bold lower-
case letters, x, matrices in capital, M , and sets in calligraphic
uppercase, S. ‖x‖ denotes the Euclidean norm of x and
‖x‖Q = xTQx denotes the weighted squared norm. The
variables {s,a} denote the state and action variables used in
the RL formulation, and {x,u} denote the control state and
action commands used in the optimization problem.

A. Problem Formulation

Consider a scenario where a robot must navigate from an
initial position p0 to a goal position g on the plane R2,
surrounded by n non-communicating agents. At each time-step
t, the robot first observes its state st (defined in Sec.III-A2)
and the set of the other agents states St =

⋃
i∈{1,...,n} s

i
t, then

takes action at, leading to the immediate reward R(st,at) and
next state st+1 = h(st,at), under the transition model h.

We use the superscript i ∈ {1, . . . , n} to denote the i-
th nearby agent and omit the superscript when referring to
the robot. For each agent i ∈ {0, n}, pit ∈ R2 denotes its
position, vit ∈ R2 its velocity at step t relative to a inertial
frame, and ri the agent radius. We assume that each agent’s
current position and velocity are observed (e.g., with on-
board sensing) while other agents’ motion intentions (e.g., goal
positions) are unknown. Finally, Ot denotes the area occupied
by the robot and Oit by each surrounding agent, at time-step
t.The goal is to learn a policy π for the robot that minimizes
time to goal while ensuring collision-free motions, defined as:

π∗ = argmax
π

E

[
T∑
t=0

γtR(st, π(st,St))

]
s.t. xt+1 = f(xt,ut), (1a)

sT = g, (1b)

Ot(xt) ∩Oit = ∅ (1c)
ut ∈ U , st ∈ S, xt ∈ X , (1d)
∀t ∈ [0, T], ∀i ∈ {1, . . . , n}

where (1a) are the transition dynamic constraints considering
the dynamic model f , (1b) the terminal constraints, (1c) the
collision avoidance constraints and S, U and X are the set of
admissible states, inputs (e.g., to limit the robot’s maximum
speed) and the set of admissible control states, respectively.
Note that we only constraint the control states of the robot.
Moreover, we assume other agents have various behaviors
(e.g., cooperative or non-cooperative): each agent samples
a policy from a closed set P = {π1, . . . , πm} (defined in
Sec.II-C) at the beginning of each episode.

B. Agent Dynamics

Real robotic systems’ inertia imposes limits on linear and
angular acceleration. Thus, we assume a second-order unicycle
model for the robot [34]:

ẋ = v cosψ v̇ = ua
ẏ = v sinψ ω̇ = uα
ψ̇ = ω

(2)

where x and y are the agent position coordinates and ψ is
the heading angle in a global frame. v is the agent forward
velocity, ω denotes the angular velocity and, ua the linear and
uα angular acceleration, respectively.

C. Modeling Other Agents’ Behaviors

In a real scenario, agents may follow different policies
and show different levels of cooperation. Hence, in contrast
to previous approaches, we do not consider all the agents
to follow the same policy [6], [35]. At the beginning of an
episode, each non-ego agent either follows a cooperative or a
non-cooperative policy. For the cooperative policy, we employ
the Reciprocal Velocity Obstacle (RVO) [36] model with a
random cooperation coefficient1 ci ∼ N (0.1, 1) sampled at
the beginning of the episode. The “reciprocal” in RVO means
that all agents follow the same policy and use the cooperation
coefficient to split the collision avoidance effort among the
agents (e.g., a coefficient of 0.5 means that each agent will
apply half of the effort to avoid the other). In this work,
for the non-cooperative agents, we consider both constant
velocity (CV) and non-CV policies. The agents following a
CV model drive straight in the direction of their goal position
with constant velocity. The agents following a non-CV policy
either move in sinusoids towards their final goal position or
circular motion around their initial position.

III. METHOD

Learning a sequence of intermediate goal states that lead
an agent toward a final goal destination can be formulated
as a single-agent sequential decision making problem. Be-
cause parts of the environment can be difficult to model
explicitly, the problem can be solved with a reinforcement
learning framework. Hence, we propose a two-level planning
architecture, as depicted in Figure 1, consisting of a sub-
goal recommender (Section III-A2) and an optimization-based
motion planner (Section II-C). We start by defining the RL
framework and our’s policy architecture (SectionIII-A2). Then,
we formulate the MPC to execute the policy’s actions and
ensure local collision avoidance (SectionIII-B).

A. Learning a Subgoal Recommender Policy

We aim to develop a decision-making algorithm to provide
an estimate of the cost-to-go in dynamic environments with
mixed-agents. In this paper, we propose to learn a policy
directly informing which actions lead to higher rewards.

1This coefficient is denoted as αB
A in [8]

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

Fig. 2: Proposed network policy architecture.

1) RL Formulation: As in [4], the observation vector is
composed by the ego-agent and the surrounding agents states,
defined as:
st = [dg,pt − g, vref, ψ, r] (Ego-agent)

sit =
[
pit,v

i
t, r

i, dit, r
i + r

]
∀i ∈ {1, n} (Other agents)

(3)

where st is the ego-agent state and sit the i-th agent state at
step t. Moreover, dg = ‖pt − g‖ is the ego-agent’s distance
to goal and dit =

∥∥pt − pit
∥∥ is the distance to the i-th agent.

Here, we seek to learn the optimal policy for the ego-agent
π : (st,St) −→ at mapping the ego-agent’s observation of the
environment to a probability distribution of actions. We con-
sider a continuous action space A ⊂ R2 and define an action
as position increments providing the direction maximizing the
ego-agent rewards, defined as:

pref
t = pt + δt (4a)

πθπ (st,St) = δt = [δt,x, δt,y] (4b)
‖δt‖ ≤ Nvmax, (4c)

where δk,x, δk,y are the (x, y) position increments, vmax the
maximum linear velocity and θπ are the network policy
parameters. Moreover, to ensure that the next sub-goal position
is within the planning horizon of the ego-agent, we bound
the action space according with the planning horizon N of
the optimization-based planner and its dynamic constraints, as
represented in Eq. (4b).

We design the reward function to motivate the ego-agent to
reach the goal position while penalizing collisions:

R (s,a) =

 rgoal if p = pg
rcollision if dmin < r + ri ∀i ∈ {1, n}
rt otherwise

(5)

where dmin = min
i

∥∥p− pi
∥∥ is the distance to the closest

surrounding agent. rt allows to adapt the reward function as
shown in the ablation study (Sec.IV-C), rgoal rewards the agent
if reaches the goal rcollision penalizes if it collides with any
other agents. In Section. IV-C we analyze its influence in the
behavior of the learned policy.

2) Policy Network Architecture: A key challenge in colli-
sion avoidance among pedestrians is that the number of nearby
agents can vary between timesteps. Because feed-forward NNs
require a fixed input vector size, prior work [6] proposed
the use of Recurrent Neural Networks (RNNs) to compress
the n agent states into a fixed size vector at each time-step.
Yet, that approach discarded time-dependencies of successive
observations (i.e., hidden states of recurrent cells).

Here, we use the “store-state” strategy, as proposed in
[37]. During the rollout phase, at each time-step we store
the hidden-state of the RNN together with the current state
and other agents state, immediate reward and next state,
(sk,Sk,hk, rk, sk+1). Moreover, the previous hidden-state is
feed back to warm-start the RNN in the next step, as depicted
in Fig.2. During the training phase, we use the stored hidden-
states to initialize the network. Our policy architecture is
depicted in Fig. 2. We employ a RNN to encode a vari-
able sequence of the other agents states Sk and model the
existing time-dependencies. Then, we concatenate the fixed-
length representation of the other agent’s states with the
ego-agent’s state to create a join state representation. This
representation vector is fed to two fully-connected layers
(FCL). The network has two output heads: one estimates the
probability distribution parameters πθπ (s,S) ∼ N (µ, σ) of
the policy’s action space and the other estimates the state-
value function V π (st) := Est+1:∞, [

∑∞
l=0 rt+l]. µ and σ are

the mean and variance of the policy’s distribution, respectively.

B. Local Collision Avoidance: Model Predictive Control

Here, we employ MPC to generate locally optimal com-
mands respecting the kino-dynamics and collision avoidance
constraints. To simplify the notation used, hereafter, we as-
sume the current time-step t as zero.

1) State and Control Inputs: We define the ego-agent
control input vector as u = [ua, uα] and the control state
as x = [x, y, ψ, v, w] ∈ R5 following the dynamics model
defined in Section II-B.

2) Dynamic Collision Avoidance: We define a set of non-
linear constraints to ensure that the MPC generates collision-
free control commands for the ego-agent (if a feasible solution
exists). To limit the problem complexity and ensure to find
a solution in real-time, we consider a limited number of
surrounding agents Xm, with m ≤ n. Consider Xn =
{x1, . . . ,xn} as the set of all surrounding agent states, than
the set of the m-th closest agents is:

Definition 1. A set Xm ⊆ Xn is the set of the m-th closest
agents if the euclidean distance ∀xj ∈ Xm,∀xi ∈ Xn \Xm :
‖xj ,x‖ ≤ ‖xi,x‖.

We represent the area occupied by each agent Oi as a circle
with radius ri. To ensure collision-free motions, we impose
that each circle i ∈ {1, . . . , n} i does not intersect with the
area occupied by the ego-agent resulting in the following set
of inequality constraints:

cik(xk,x
i
k) =

∥∥pk,pik∥∥ ≥ r + ri, (6)

for each planning step k. This formulation can be extended
for agents with general quadratic shapes, as in [2].

3) Cost function: The subgoal recommender provides a ref-
erence position pref

0 guiding the ego-agent toward the final goal
position g and minimizing the cost-to-go while accounting for
the other agents. The terminal cost is defined as the normalized
distance between the ego-agent’s terminal position (after a

BRITO et al.: LEARNING A SUBGOAL RECOMMENDATION POLICY 5

planning horizon N) and the reference position (with weight
coefficient QN):

JN (pN , π(x,X)) =

∥∥∥∥pN − pref
0

p0 − pref
0

∥∥∥∥
QN

, (7)

To ensure smooth trajectories, we define the stage cost as a
quadratic penalty on the ego-agent control commands

Ju
k (uk) = ‖uk‖Qu , k = {0, 1, . . . , N − 1}, (8)

where Qu is the weight coefficient.
4) MPC Formulation: The MPC is then defined as a non-

convex optimization problem

min
x1:N ,u0:N−1

JN (xN ,p
ref
0) +

N−1∑
k=0

Juk (uk)

s.t. x0 = x(0), (1d), (2),

cik(xk,x
i
k) > r + ri,

uk ∈ U , xk ∈ S,
∀i ∈ {1, . . . , n}; ∀k ∈ {0, . . . , N − 1}.

(9)

In this work, we assume a constant velocity model estimate
of the other agents’ future positions, as in [2].

C. PPO-MPC

In this work, we train the policy using a state-of-art method,
Proximal Policy Optimization (PPO) [38], but the overall
framework is agnostic to the specific RL training algorithm.
We propose to jointly train the guidance policy πθπ and value
function VθV (s) with the MPC, as opposed to prior works [6]
that use an idealized low-level controller during policy training
(that cannot be implemented on a real robot). Algorithm 1
describes the proposed training strategy and has two main
phases: supervised and RL training. First, we randomly ini-
tialize the policy and value function parameters {θπ, θV }.
Then, at the beginning of each episode we randomly select the
number of surrounding agents between [1, nagents], the training
scenario and the surrounding agents policy. More details about
the different training scenarios and nagents considered is given
in Sec.IV-B.

An initial RL policy is unlikely to lead an agent to a
goal position. Hence, during the warm-start phase, we use
the MPC as an expert and perform supervised training to
train the policy and value function parameters for nMPC steps.
By setting the MPC goal state as the ego-agent final goal
state pref = g and solving the MPC problem, we obtain
a locally optimal sequence of control states x∗1:N . For each
step, we define a∗t = x∗t,N and store the tuple containing the
network hidden-state, state, next state, and reward in a buffer
B ← {sk,a∗t , rk,hk, sk+1}. Then, we compute advantage
estimates [39] and perform a supervised training step

θVk+1 =argmin
θV

E(ak,sk,rk)∼DMPC [
∥∥Vθ(sk)− V targ

k

∥∥] (10)

θπk+1 =argmin
θ

E(a∗k,sk)∼DMPC [‖a
∗
k − πθ(sk)‖] (11)

where θV , θπ are the value function and policy parameters,
respectively. Note that θV and θπ share the same parameter

Algorithm 1 PPO-MPC Training

1: Inputs: planning horizon H , value fn. and policy param-
eters {θV , θπ}, number of supervised and RL training
episodes {nMPC, nepisodes}, number of agents n, nmini-batch,
and reward function R(st,at,at+1)

2: Initialize states: {s00, . . . , sn0} ∼ S , {g0, . . . ,gn} ∼ S
3: while episode < nepisodes do
4: Initialize B ← ∅ and h0 ← ∅
5: for k = 0, . . . , nmini-batch do
6: if episode ≤ nMPC then
7: Solve Eq.9 considering pref = g
8: Set a∗t = x∗N
9: else

10: pref = πθ(st,St)
11: end if
12: {sk,ak, rk,hk+1, sk+1, done} = Step(s∗t ,a

∗
t ,ht)

13: Store B ← {sk,ak, rk,hk+1, sk+1, done}
14: if done then
15: episode + = 1
16: Reset hidden-state: ht ← ∅
17: Initialize: {s00, . . . , sn0} ∼ S, {g0, . . . ,gn} ∼ S
18: end if
19: end for
20: if episode ≤ nMPC then
21: Supervised training: Eq.10 and Eq.11
22: else
23: PPO training [38]
24: end if
25: end while
26: return {θV , θπ}

except for the final layer, as depicted in Fig.2. Afterwards,
we use Proximal Policy Optimization (PPO) [38] with clipped
gradients for training the policy. PPO is a on-policy method
addressing the high-variance issue of policy gradient methods
for continuous control problems. We refer the reader to [38] for
more details about the method’s equations. Please note that our
approach is agnostic to which RL algorithm we use. Moreover,
to increase the learning speed during training, we gradually
increase the number of agents in the training environments
(curriculum learning [40]).

IV. RESULTS

This section quantifies the performance throughout the
training procedure, provides an ablation study, and compares
the proposed method (sample trajectories and numerically)
against the following baseline approaches:
• MPC: Model Predictive Controller from Section III-B

with final goal position as position reference, pref = g;
• DRL [6]: state-of-the-art Deep Reinforcement Learning

approach for multi-agent collision avoidance
To analyze the impact of a realistic kinematic model during
training, we consider two variants of the DRL method [6]: the
same RL algorithm [6] was used to train a policy under a first-
order unicycle model, referred to as DRL, and a second-order
unicycle model (Eq.2), referred to as DRL-2. All experiments

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

TABLE I: Hyper-parameters.

Planning Horizon N 2 s Num. mini batches 2048
Number of Stages 20 rgoal 3

γ 0.99 rcollision -10
Clip factor 0.1 Learning rate 10−4

use a second-order unicycle model (Eq.2) in environments with
cooperative and non-cooperative agents to represent realistic
robot/pedestrian behavior. Animations of sample trajectories
accompany the paper.

A. Experimental setup

The proposed training algorithm builds upon the open-
source PPO implementation provided in the Stable-Baselines
[41] package. We used a laptop with an Intel Core i7 and
32 GB of RAM for training. To solve the non-linear and non-
convex MPC problem of Eq. (9), we used the ForcesPro [42]
solver. If no feasible solution is found within the maximum
number of iterations, then the robot decelerates. All MPC
methods used in this work consider collision constraints with
up to the closest six agents so that the optimization problem
can be solved in less than 20ms. Moreover, our policy’s
network has an average computation time of 2ms with a
variance of 0.4ms for all experiments. Hyperparameter values
are summarized in Table I.

B. Training procedure

To train and evaluate our method we have selected four
navigation scenarios, similar to [5]–[7]:
• Symmetric swapping: Each agent’s position is randomly

initialized in different quadrants of the R2 x-y plane,
where all agents have the same distance to the origin.
Each agent’s goal is to swap positions with an agent from
the opposite quadrant.

• Asymmetric swapping: As before, but all agents are
located at different distances to the origin.

• Pair-wise swapping: Random initial positions; pairs of
agents’ goals are each other’s intial positions

• Random: Random initial & goal positions
Each training episode consists of a random number of agents
and a random scenario. At the start of each episode, each other
agent’s policy is sampled from a binomial distribution (80%
cooperative, 20% non-cooperative). Moreover, for the coop-
erative agents we randomly sample a cooperation coefficient
ci ∼ U(0.1, 1) and for the non-cooperative agents is randomly
assigned a CV or non-CV policy (i.e., sinusoid or circular).
Fig. 3 shows the evolution of the robot average reward and the
percentage of failure episodes. The top sub-plot compares our
method average reward with the two baseline methods: DRL
(with pre-trained weights) and MPC. The average reward for
the baseline methods (orange, yellow) drops as the number of
agents increases (each vertical bar). In contrast, our method
(blue) improves with training and eventually achieves higher
average reward for 10-agent scenarios than baseline methods
achieve for 2-agent scenarios. The bottom plot demonstrates
that the percentage of collisions decreases throughout training
despite the number of agents increasing.

Fig. 3: Moving average rewards and percentage of failure
episodes during training. The top plot shows our method
average episode reward vs DRL [6] and simple MPC.

C. Ablation Study
A key design choice in RL is the reward function; here,

we study the impact on policy performance of three variants
of reward. The sparse reward uses rt = 0 (only non-zero
reward upon reaching goal/colliding). The time reward uses
rt = −0.01 (penalize every step until reaching goal). The
progress reward uses rt = 0.01 ∗ (‖st − g‖ − ‖st+1 − g‖)
(encourage motion toward goal). Aggregated results in Table
II show that the resulting policy trained with a time reward
function allows the robot to reach the goal with minimum
time, to travel the smallest distance, and achieve the lowest
percentage of failure cases. Based on these results, we selected
the policy trained with the time reward function for the
subsequent experiments.

D. Qualitative Analysis
This section compares and analyzes trajectories for different

scenarios. Fig. 4 shows that our method resolves a failure mode
of both RL and MPC baselines. The robot has to swap position
with a non-cooperative agent (red, moving right-to-left) and
avoid a collision. We overlap the trajectories (moving left-
to-right) performed by the robot following our method (blue)
versus the baseline policies (orange, magenta). The MPC pol-
icy (orange) causes a collision due to the dynamic constraints
and limited planning horizon. The DRL policy avoids the
non-cooperative agent, but due to its reactive nature, only
avoids the non-cooperative agent when very close, resulting
in larger travel time. Finally, when using our approach, the
robot initiates a collision avoidance maneuver early enough to
lead to a smooth trajectory and faster arrival at the goal.

We present results for mixed settings in Fig. 5 and homoge-
neous settings in Fig. 6 with n ∈ {6, 8, 10} agents. In mixed
settings, the robot follows our proposed policy while the other
agents either follow an RVO [36] or a non-cooperative policy
(same distribution as in training). Fig. 5 demonstrates that our
navigation policy behaves differently when dealing with only
cooperative agents or both cooperative and non-cooperative.
Whereas in Fig. 5a the robot navigates through the crowd,
Fig. 5b shows that the robot takes a longer path to avoid the
congestion.

In the homogeneous setting, all agents follow our proposed
policy. Fig. 6 shows that our method achieves faster time-
to-goal than two DRL baselines. Note that this scenario was

BRITO et al.: LEARNING A SUBGOAL RECOMMENDATION POLICY 7

TABLE II: Ablation Study: Discrete reward function leads to better policy than sparse, dense reward functions. Results are
aggregated over 200 random scenarios with n ∈ {6, 8, 10} agents.

Time to Goal [s] % failures (% collisions / % timeout) Traveled distance Mean [m]
agents 6 8 10 6 8 10 6 8 10

Sparse Reward 8.00 8.51 8.52 0 (0 / 0) 1 (0 / 1) 2 (1 / 1) 13.90 14.34 14.31
Progress Reward 8.9 8.79 9.01 2 (1 / 1) 3 (3 / 0) 1 (1 / 0) 14.75 14.57 14.63
Time Reward 7.69 8.03 8.12 0 (0 / 0) 0 (0 / 0) 0 (0 / 0) 13.25 14.01 14.06

Fig. 4: Two agents swapping scenario. In blue is depicted the
trajectory of robot, in red the non-cooperative agent, in purple
the DRL agent and, in orange the MPC.

(a) (b) (c)

Fig. 5: Sample trajectories with mixed agent policies (robot:
blue, cooperative: green, non-cooperative: red). In (a), all
agents are cooperative; in (b), two are cooperative and five
non-cooperative (const. vel.); in (c), three are cooperative and
two non-cooperative (sinusoidal). The GO-MPC agent avoids
non-cooperative agents differently than cooperative agents.

never introduced during the training phase, nor have the
agents ever experienced other agents with the same policy
before. Following the DRL policy (Fig. 6a), all agents navigate
straight to their goal positions leading to congestion in the
center with reactive avoidance. The trajectories from the DRL-
2 approach (Fig. 6b) are more conservative, due to the limited
acceleration available. In contrast, the trajectories generated
by our approach (Fig. 6c), present a balance between going
straight to the goal and avoiding congestion in the center,
allowing the agents to reach their goals faster and with smaller
distance traveled.

(a) DRL [6] (b) DRL-2 (ext. of [6]) (c) GO-MPC

Fig. 6: 8 agents swapping positions. To simulate a multi-robot
environment, all agents follow the same policy.

E. Performance Results
This section aggregates performance of the various methods

across 200 random scenarios. Performance is quantified by
average time to reach the goal position, percentage of episodes
that end in failures (either collision or timeout), and the
average distance traveled.

The numerical results are summarized in Table III. Our
method outperforms each baseline for both mixed and ho-
mogeneous scenarios. To evaluate the statistical significance,
we performed pairwise MannWhitney U-tests between GO-
MPC and each baseline (95% confidence). GO-MPC shows
statistically significant performance improvements over the
DRL-2 baseline in terms of travel time and distance, and
the DRL baseline in term of travel time for six agents and
travel distance for ten agents. . For homogeneous scenarios,
GO-MPC is more conservative than DRL and MPC baselines
resulting in a larger average traveled distance. Nevertheless,
GO-MPC is reaches the goals faster than each baseline and is
less conservative than DRL-2, as measured by a significantly
lower average distance traveled.

Finally, considering higher-order dynamics when training
DRL agents (DRL-2) improves the collision avoidance per-
formance. However, it also increases the average time to goal
and traveled distance, meaning a more conservative policy that
still under-performs GO-MPC in each metric.

V. CONCLUSIONS & FUTURE WORK
This paper introduced a subgoal planning policy for guiding

a local optimization planner. We employed DRL methods
to learn a subgoal policy accounting for the interaction ef-
fects among the agents. Then, we used an MPC to compute
locally optimal motion plans respecting the robot dynamics
and collision avoidance constraints. Learning a subgoal policy
improved the collision avoidance performance among coop-
erative and non-cooperative agents as well as in multi-robot
environments. Moreover, our approach can reduce travel time
and distance in cluttered environments. Future work could
account for environment constraints.

REFERENCES

[1] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on intelligent vehicles, 2016.

[2] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive
contouring control for collision avoidance in unstructured dynamic
environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 4459–4466, 2019.

[3] Y. F. Chen, S.-Y. Liu, M. Liu, J. Miller, and J. P. How, “Motion planning
with diffusion maps,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016.

[4] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 2017, pp. 285–292.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

TABLE III: Statistics for 200 runs of proposed method (GO-MPC) compared to baselines (MPC, DRL [6] and DRL-2, an
extension of [6]): time to goal and traveled distance for the successful episodes, and number of episodes resulting in collision
for n ∈ {6, 8, 10} agents. For the mixed setting, 80% of agents are cooperative, and 20% are non-cooperative.

Time to Goal (mean ± std) [s] % failures (% collisions / % deadlocks) Traveled Distance (mean ± std) [m]
agents 6 8 10 6 8 10 6 8 10

Mixed Agents
MPC 11.2 ± 2.2 11.3 ± 2.4 11.0 ± 2.2 13 (0 / 0) 22 (0 / 0) 22 (22 / 0) 12.24 ± 2.3 12.40 ± 2.5 12.13 ± 2.3

DRL [6] 13.7 ± 3.0 13.7 ± 3.1 14.4 ± 3.3 17 (17 / 0) 23 (23 / 0) 29 (29 / 0) 13.75 ± 3.3 13.80 ± 4.0 14.40 ± 3.3
DRL-2 [6]+ 15.3 ± 2.3 16.1 ± 2.2 16.7 ± 2.2 6 (6 / 0) 10 (10 / 0) 13 (13 / 0) 14.86 ± 2.3 16.05 ± 2.2 16.66 ± 2.2

GO-MPC 12.7 ± 2.7 12.9 ± 2.8 13.3 ± 2.8 0 (0 / 0) 0 (0 / 0) 0 (0 / 0) 13.65 ± 2.7 13.77 ± 2.8 14.29 ± 2.8
Homogeneous

MPC 17.37 ± 2.9 16.38 ± 1.5 16.64 ± 1.7 30 (29 / 1) 36 (25 / 11) 35 (28 / 7) 11.34 ± 2.1 10.86 ± 2.3 10.62 ± 2.8
DRL [6] 14.18 ± 2.4 14.40 ± 2.7 14.64 ± 3.3 16 (14 / 2) 20 (18 / 2) 20 (20 / 0) 12.81 ± 2.3 12.23 ± 2.3 12.23 ± 3.2

DRL-2 [6]+ 15.96 ± 3.1 17.47 ± 4.2 15.96 ± 4.5 17 (11 / 6) 29 (21 / 8) 28 (24 / 4) 15.17 ± 3.0 15.85 ± 4.2 15.40 ± 4.5
GO-MPC 13.77 ± 2.9 14.30 ± 3.3 14.63 ± 2.9 0 (0 / 0) 0 (0 / 0) 2 (1 / 1) 14.67 ± 2.9 15.09 ± 3.3 15.12 ± 2.9

[5] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement
learning,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 6015–6022.

[6] M. Everett, Y. F. Chen, and J. P. How, “Collision avoidance in
pedestrian-rich environments with deep reinforcement learning,” IEEE
Access, vol. 9, pp. 10 357–10 377, 2021.

[7] T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios,” The International Journal of Robotics Research.

[8] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics research. Springer, 2011.

[9] J. Van Den Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal
collision avoidance with acceleration-velocity obstacles,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE.

[10] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,”
Physical review E, vol. 51, no. 5, p. 4282, 1995.

[11] C. I. Mavrogiannis and R. A. Knepper, “Multi-agent path topology in
support of socially competent navigation planning,” The International
Journal of Robotics Research, vol. 38, no. 2-3, pp. 338–356, 2019.

[12] C. I. Mavrogiannis, W. B. Thomason, and R. A. Knepper, “Social
momentum: A framework for legible navigation in dynamic multi-agent
environments,” in Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, 2018, pp. 361–369.

[13] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: Statistical models and experimental studies
of human–robot cooperation,” The International Journal of Robotics
Research, vol. 34, no. 3, pp. 335–356, 2015.

[14] B. Kim and J. Pineau, “Socially adaptive path planning in human en-
vironments using inverse reinforcement learning,” International Journal
of Social Robotics, vol. 8, no. 1, pp. 51–66, 2016.

[15] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative navigation
in dense human crowds,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 1685–1692.

[16] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

[17] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navigation
through raw depth inputs with generative adversarial imitation learning,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 1111–1117.

[18] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-
based model predictive control: Toward safe learning in control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 269–
296, 2020.

[19] N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse, “Using
a memory of motion to efficiently warm-start a nonlinear predictive
controller,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 2986–2993.

[20] G. Bellegarda and K. Byl, “Combining benefits from trajectory opti-
mization and deep reinforcement learning,” 2019.

[21] M. Zanon and S. Gros, “Safe reinforcement learninge using robust mpc,”
IEEE Transactions on Automatic Control, 2020.

[22] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” 2017.

[23] M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov, “Value
function approximation and model predictive control,” in 2013 IEEE
symposium on adaptive dynamic programming and reinforcement learn-
ing (ADPRL). IEEE, 2013, pp. 100–107.

[24] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via model-
based control,” arXiv preprint arXiv:1811.01848, 2018.

[25] F. Farshidian, D. Hoeller, and M. Hutter, “Deep value model predictive
control,” arXiv preprint arXiv:1910.03358, 2019.

[26] N. Karnchanachari, M. I. Valls, D. Hoeller, and M. Hutter, “Practical
reinforcement learning for mpc: Learning from sparse objectives in
under an hour on a real robot,” 2020.

[27] D. Ernst, M. Glavic, F. Capitanescu, and L. Wehenkel, “Reinforcement
learning versus model predictive control: a comparison on a power
system problem,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 39, no. 2, pp. 517–529, 2008.

[28] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning, 2013, pp. 1–9.

[29] ——, “Variational policy search via trajectory optimization,” in Ad-
vances in neural information processing systems, 2013.

[30] I. Mordatch and E. Todorov, “Combining the benefits of function
approximation and trajectory optimization.” in Robotics: Science and
Systems, vol. 4, 2014.

[31] Z.-W. Hong, J. Pajarinen, and J. Peters, “Model-based lookahead rein-
forcement learning,” 2019.

[32] T. Wang and J. Ba, “Exploring model-based planning with policy
networks,” in International Conference on Learning Representations.

[33] C. Greatwood and A. G. Richards, “Reinforcement learning and model
predictive control for robust embedded quadrotor guidance and control,”
Autonomous Robots, vol. 43, no. 7, pp. 1681–1693, 2019.

[34] S. M. LaValle, Planning algorithms. Cambridge university press.
[35] T. Fan, P. Long, W. Liu, and J. Pan, “Fully distributed multi-robot

collision avoidance via deep reinforcement learning for safe and efficient
navigation in complex scenarios,” arXiv preprint arXiv:1808.03841.

[36] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation. IEEE, 2008, pp. 1928–1935.

[37] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, and R. Munos,
“Recurrent experience replay in distributed reinforcement learning,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=r1lyTjAqYX

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[39] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[40] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 41–48.

[41] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” 2018.

[42] A. Domahidi and J. Jerez, “FORCES Professional,” embotech GmbH
(http://embotech.com/FORCES-Pro), July 2014.

https://openreview.net/forum?id=r1lyTjAqYX
http://embotech.com/FORCES-Pro

	INTRODUCTION
	Related Work
	Navigation Among Crowds
	Learning-Enhanced MPC
	Combining MPC with RL

	PRELIMINARIES
	Problem Formulation
	Agent Dynamics
	Modeling Other Agents' Behaviors

	METHOD
	Learning a Subgoal Recommender Policy
	RL Formulation
	Policy Network Architecture

	Local Collision Avoidance: Model Predictive Control
	State and Control Inputs
	Dynamic Collision Avoidance
	Cost function
	MPC Formulation

	PPO-MPC

	RESULTS
	Experimental setup
	Training procedure
	Ablation Study
	Qualitative Analysis
	Performance Results

	CONCLUSIONS & FUTURE WORK
	References

