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Abstract— The advances in the area of autonomous delivery
robots combined with customers’ desire for fast delivery, bare
potential for same-day delivery operations, specifically with
small time windows between ordering and delivery. Most same-
day deliveries are operated using a single depot and with
vehicles’ routes planned and fixed when leaving the depot. In
this paper, we relax these two assumptions and focus on on-
demand grocery delivery using a fleet of autonomous vehicles or
robots. The problem features the opportunity to pick up goods
at multiple local stores or depots, for example, supermarkets
within the city, and allows robots to perform depot returns
prior to being empty, if beneficial. This allows for more agile
planning and on average shorter distance to the next depot.
We propose a novel dynamic method for the same-day delivery
problem, where we aim to deliver orders as fast as possible,
minimally within the same day. In each time step (every few
seconds or minutes) the following is executed: For each order
potential pick-up locations are identified and feasible trips, i.e.,
sequences to pick up goods and deliver orders, are calculated.
To assign trips to robots an integer-linear program is solved. We
simulate one day of service in a city under different conditions
with up to 30 autonomous robots, 30 depots and 10,500 orders.
Results underpin the advantages of the proposed method and
show its versatility with respect to different situations.

I. INTRODUCTION

The development of autonomous delivery vehicles and
robots has made big steps forward during the last years.
Many different robots are under development, tested
and deployed by different companies and universities,
like Nuro, Amazon, Starship Technologies or Postmates.
The possibility to order and have one’s parcel delivered
within the next hours, minimally within the same day, is
appreciated by many customers. During the last years many
young companies started to rise, offering grocery delivery in
minutes, such as Gorillas, Flink, Getir or GoPuff. As soon
as fleets of autonomous robots are scaled to full operations,
the planning and routing algorithm in charge of computing
robots’ plans is of major importance. Combining these two
developments bares huge potential.
This leads to planning for same-day delivery (SDD)
operations. Most of them are operated using a single depot
and with vehicles’ routes planned and fixed when leaving
the depot. In this paper, we relax these two assumptions
and focus on on-demand grocery delivery using a fleet
of autonomous vehicles or robots. SDD can generally
be described as follows: Orders are placed continuously
throughout the day and need to be delivered before the
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end of the day. To achieve the latter, parcels need to be
picked up and delivered to customers’ locations leveraging
a fleet of robots. Each robot has a maximum capacity.
For each robot, a route needs to be found such that a
given objective function is minimized or maximized, for
example maximizing the number of delivered packages or
minimizing the sum of delays. In this paper, we extend on a
SDD problem and aim to deliver orders as fast as possible,
minimally within the same day. Further, we increase options
to pick-up orders from a single depot to multiple.Moreover,
most SDD operations assume that their robots deliver all
loaded orders, afterward returning to the depot, and then
become available to load and service new customers. We
relax this assumption and allow for depot returns prior
to being empty (pre-empty depot returns). This allows to
flexibly incorporate new occurring orders within existing
plans of robots. We show that those additions can lead to
more efficient routes and cheaper operations.
We approach the above-described problem in a rolling
fashion, i.e., we divide the full-day problem into multiple
subsequent sub-problems. The problem evolves with time
as new requests arrive throughout the day. Further, the
operation is planned (solving sub-problems) and executed
(following the obtained routes) simultaneously, changing
the load and position of robots constantly. To solve a single
sub-problem at time t, we first identify potential pick-up
locations for each order. Second, potential feasible trips,
i.e., sequences to pick up goods and deliver orders, are
calculated. To assign these trips to robots an integer-linear
program is solved. As a result, each robot has a plan to
follow, i.e., which orders to pick-up and where, as well as
in which succession to deliver them.

The remainder of this paper is structured as follows:
First, the related literature and the contribution of this work
(Section II) are presented. Afterwards, the problem (Section
III) and our proposed method (Section IV) to solve it are
explained in detail. Section V presents results obtained by
running an extensive computational analysis simulating one
day of service. The paper is concluded with Section VI.

II. RELATED WORK

The same-day delivery problem can be categorized as a
dynamic and stochastic pick-up and delivery problem with
incomplete information. Thus falling into the family of
dynamic vehicle routing problems (DVRP), a comprehensive
overview can be found in [1] and [2]. [3] provides an
overview focusing specifically on dynamic pick-up and



delivery problems. Additional related problems are the meal
delivery routing problem [4]–[6], vehicle routing to transport
people (dial-a-ride problem) [7], [8] and the multi-robot
task assignment problem [9].
The SDD literature splits in two: First, work focusing on
robot dispatching or order acceptance followed by a separate
routing step e.g. [10]–[15] and second, work focusing on
SDD routing directly. [16] tackles the SDD problem using
a multi-scenario sampling approach leveraging waiting
strategies and apply it to scenarios with up to 800 requests
and up to 13 vehicles. In contrast, our approach can handle
larger problem sizes and allows to pick up orders at multiple
depots, but works myopic. Similar to our work, [17] allows
for preemptive depot returns, i.e. depot returns before
finishing the currently planned tour based on expectations
of future events. The authors proposed a method building
on approximate dynamic programming combined with an
insertion routing heuristic. Both methods allow vehicles to
return to depots before finishing their current routes, but our
approach differs on the point that pre-empty depot returns
do not use anticipation of the unknown future but only
use currently available information. The method proposed
in [17] is able to plan for a single vehicle, whereas our
approach scales up to large fleet sizes.
The multi-depot vehicle routing problem (MDVRP) is a VRP
featuring multiple depots and thereby introducing a choice
where goods are picked up. The combination of DVRP
and MDVRP is called the dynamic multi-depot vehicle
routing problem (DMDVRP). [18] and [19] decompose the
DMDVRP into multiple DVRPs by assigning each order
to one fixed depot. In contrast, we include the decision of
which depot should be used within the routing decision
itself.
The routing method proposed in this work is based on
methods for ride-sharing. An overview of these methods
can be found in [20]–[22]. More specifically, our proposed
method builds upon a routing method for transporting people
in metropolitan areas [7]. Our problem mainly differs in two
aspects. The pick-up locations of orders are not pre-defined
through themselves (nor optimized in a close area around
them, as in [23]) but limited to a smaller set in the whole
service area, the depots. Second, the urgency in serving a
request right away is lower for delivering goods than for
transporting people.

In this paper, we propose an optimization method to
route a fleet of autonomous robots performing on-demand
grocery delivery (same-day delivery operations), whose main
virtues are threefold. First, we consider multiple depots at
which orders can be picked up, and it is the method that
decides which is the optimal one for each order. Second,
we admit robots to visit a depot to receive more parcels
before distributing their loads, when this increases efficiency.
Finally, our method is able to scale up to scenarios with
thousands of requests and to find good quality solutions
online.

III. PROBLEM FORMULATION

A. Definitions

Environment: Let G = (N,A) be a weighted directed
graph where N defines a set of nodes and A defines a set of
weighted arcs. The arcs’ weights represent the traveling times
between two connected nodes. The travel time between two
locations x1, x2 ∈ N is given by the function travel(x1, x2).
The travel time equals the sum of the weights of all arcs that
need to be traversed following the shortest path between the
two locations. A depot d ∈ D is a specific node where goods
can be picked up. All H depots are summarized in the set
of depots D ⊂ N . We assume that every depot has all goods
on stock.
Robot Fleet: Robots can drive along the graph’s arcs to load
and deliver goods to customers. The amount of orders they
can load is restricted through a maximum capacity C. The
autonomous robot fleet R consists ofM identical robots. At
each time t, a single robot r ∈ R is fully described by its
current location lr,t and the orders it has loaded (picked-up
and not yet dropped-off), summarized in the set LOr,t.
Demand: Each order o = (to, go) ∈ O, where O is the
demand set, is revealed at time to ∈ [0, Tend − δT ], with
Tend the end of the day and δT a constant time span, in
which no more orders are placed, and requires that its goods
are delivered to its specified destination go ∈ N . A total
of N orders are placed. For simplicity, we do not look at
individual goods contained in the order but assume that all
orders are of the same size, set to one. This assumption can
easily be extended to variable order sizes. Note that an order
itself does not define a pick-up location po ∈ N . The demand
set O, can be split into subsets depending on the status of
each order o ∈ O. The status of an order depends on the
current time t and thus also the subsets, which we define as
follows.
• UOt is the set of all unknown orders, consisting of all

orders o ∈ O with t < to.
• The set POt consist of all orders o ∈ O that are known
t ≥ to but are not yet picked-up by any robot r ∈ R.

• The set LOt are all orders o ∈ O that are currently
loaded to a robot r ∈ R, i.e., LOt = ∪r∈RLOr,t.

• The set DOt are all orders o ∈ O that already got
delivered to their destinations go.

• The set IOt summarizes all orders that can not be
delivered within given constraints anymore.

The subsets are defined such that each order only belongs
to one subset at time t, thus they are disjoint, O = UOt ∪
POt∪LOt∪DOt∪IOt. At t = 0, the beginning of the day,
all orders are unknown UO0 = O. At t = Tend, the end of
the day, all orders are either delivered or ignored DOTend

∪
IOTend

= O and UOTend
= POTend

= LOTend
= ∅.

Times: We assume that a robot needs some constant time to
load or deliver a single order, δload and δservice respectively.
The time at which an order o ∈ O is picked up by a
robot r ∈ R is tpick,o and the time it is delivered to
its destination go is tdrop,o. The earliest time an order
can be delivered is described by tideal,o. To do so, an



Fig. 1: Visualization of the different times and time spans
for one order.

idle robot needs to be located at the closest depot to the
order’s destination, dbest,o, and start serving the customer
immediately without any detours, resulting in tideal,o = to+
δload+ travel(dbest,o, go)+δservice. Thus, the lower bound of
the drop off time is tideal,o, i.e., tdrop,o ≥ tideal,o. We define
the difference between the optimal and actual delivery time
as delay θo = tdrop,o− tideal,o ≥ 0. Further, we assign each
order a maximal drop off time tdrop,o,max = tideal,o+δdelay,
with δdelay the maximally allowed delay per order. δdelay is
predefined by the operator to ensure a desired service level.
A summary of all involved points in time for one order is
illustrated in Figure 1.

B. Problem

Consider a directed graph G = (N,A), a set of depots D,
where orders can be picked up, and a fleet of autonomous
robots R in an initial state (locations of each robot lr,0
and robot’s load LOr,0). The robot fleet R needs to serve
a demand O. The operation starts at t = 0 and ends at
t = Tend, in this time span each orders o ∈ O is revealed
at t = to ∈ [0, Tend − δT ]. Find an assignment Ω of orders
o ∈ O to robots r ∈ R, including the choice of a depot
d ∈ D to pick-up the order and the routes the robots take,
to minimize a given cost function J subject to a set of given
constraints.

Ω represents the routes of all robots, which are defined
through the orders to serve, where to pick them up, and in
which sequence the individual orders are carried out. The set
of constraints we consider are:
• Each robot has a maximum capacity of C
• Each order is allowed to have a maximum delay of
δdelay and needs to be delivered before the end of the
operation t = Tend

In our case, we assume that at the beginning of the day
(t = 0) all robots r ∈ R are distributed over all depots
d ∈ D and are empty LOr,0 = ∅ ∀r ∈ R. Situations in
which it might be unfeasible to serve all orders without
violating any constraint can occur. Orders that can not be
delivered within the given constraints will not be served. We
define the cost function J as follows, taking two opposing
interests into account: Operators’ cost and customers’ cost,
the latter measuring the service quality. The customer’s cost
of an order o ∈ O is defined as its delay θo, thus the faster an

order is delivered the better. The operator’s costs are defined
as the sum of the traveling time of each robot ttr to serve all
orders assigned to it, expressed mathematically as

∑
r∈R ttr.

The two costs are combined in a convex fashion, using a
weight β. If an order is not served a penalty α is charged. If
α is set considerably larger than the sum of the other two cost
terms the system aims at maximizing the number of orders
that are served, followed by minimizing the combination of
operators’ cost and customers’ cost. In this work, we set α
as a sufficiently large constant, as we consider the urgency
to deliver orders in SDD less than delivering as many orders
as possible.

JTend
=

(1− β) ·
∑

o∈DOTend

θo + β ·
∑
r∈R

ttr +
∑

o∈IOTend

α


(1)

Equation 1 represents the overall objective function at t =
Tend. The penalty α can be interpreted as the cost the
operator has to cover if a third party, to deliver the respective
order, is hired. Generally, the cost function and constraints
are universal and could be changed to fit other requirements.
As a result our problem combines several NP-hard problems,
including the capacitated vehicle routing problem [24], the
multi-depot vehicle routing problem [25] and dynamic opti-
mization, while looking at large fleet sizes.

IV. METHOD

A. Overview

We tackle the introduced problem in a rolling fashion,
meaning that a state of the problem is solved, then time is
propagated forward (robots follow their plans and new orders
emerge) until a next state to solve occurs. This happens
repeatedly until the end of the day. We propagate time in
fixed time steps of duration ∆t. To simplify notation, we
enumerate all decisions consecutively by k. The time at
assignment k is tk = k · ∆t. This results in K = Tend/∆t
decisions from start to end of the operation. We need to
describe the state of the problem at any time t. The state
St at time t, is fully characterized by the time itself, the
robots fleet state Rt, characterized by all the robots’ states
at t ((lr,t,LOr,t)∀r ∈ R), and the set of known but not yet
loaded orders POt at t. This results in the state definition
as

St = (t,Rt,POt).

A single decision is the assignment of currently open or-
ders to robots, considering the corresponding state S, and
optimizing the assignment according to the objective func-
tion. Solving this assignment K times consecutively gives a
solution for the overall problem formulated in Section III.
Our approach is myopic, i.e., not taking future states into
account. We regard this assumption as reasonable, as the
time passed between updating the problem and robots’ routes
is rather short. To solve one specific state of the problem,
we propose a method divided into four steps: First, potential
pick-up locations for each order are found. Second, orders
with associated pick-up locations are grouped into potential



trips, taking the current location of each robot into account. A
trip is an ordered sequence of locations to pick up and deliver
orders executed by a robot. Here all possible trips for each
robot are calculated if enough computational time is given.
Third, these potential trips are assigned to specific robots.
Last, robots execute part of their plans as time is propagated
forward. An overview of the approach is depicted in Figure
2.

B. Pick-up Locations

Each individual order o ∈ O needs to be assigned to
a specific pick-up location po ∈ D. Each depot d ∈ D
which is close enough to the order’s destination go ∈ N
such that a robot can go to the depot and deliver before
the maximum delay has passed, is a feasible option. One of
these options needs to be selected. We introduce and define
the term candidate co of an order o ∈ O as follows.
Definition: A candidate co belonging to order o ∈ O is a
tuple of the order o ∈ O itself and an associated pick-
up location pco ∈ D. Thus a candidate is described as
co = (o, pco).
A candidate co is unique, but one order o ∈ O can have
multiple candidates associated with it, each having a different
pick-up location pco ∈ D. ICo denotes the set of candidates
that belong to order o ∈ O. The set of all candidates is
denoted by C. Ct is the set of candidates at time t correspond-
ing to all placed orders o ∈ POt. We introduce a heuristic
to select a subset of pick-up locations. We consider the x
depots closest to the destination measured in travel time.
The parameter x can be tuned. This results in maximally x
candidates per placed order. If x = H all depots in reach
(not violating any constraint) are considered and if x = 1
the closest depot is used for each order. We do so to control
the number of candidates per order and thus the number of
potential trips for each vehicle, which is directly correlated
to the required computational effort.

C. Trip Generation

A trip T is an ordered sequence of locations to pick up
and deliver orders executed by a robot. To calculate potential
feasible trips for a robot, we look at sets of candidates
separately for each robot. A trip’s size l, measured as
the number of considered candidates, is thereby step-wise
increased starting at a size of one until a maximum size η
is reached. The operator sets η, additionally huge trips are
prevented by having a latest drop-off time for each order
tdrop,o,max. The result of this step is a set of potential trips
for each robot. The trip definition contains a set of candidates
co ∈ T , which are delivered in the trips route, and thus also
a set of orders o ∈ T . The algorithm to calculate all trips at
time t, the set of all feasible trips Tt, is shown in Algorithm 1.
In Algorithm 1 we use three functions: CandidateRobot(),
TwoCandidates() and bestRoute(). CandidateRobot() is
valid if a specific robot can serve a specific candidate in the
current state of the problem without violating any constraint.
TwoCandidates() checks if two candidates are combinable,
i.e., whether they can be served by a hypothetical robot

Algorithm 1: Trip Generation for decision k at tk
input : Stk , Ctk , η
output: All feasible trips Ttk
begin
Ttk = ∅ ;
foreach r ∈ R do
T` = ∅ ∀` ∈ {1, ..., η} (Set of all trips of size `);
[add trips of size 1]
foreach c ∈ Ctk do

if CandidateRobot(r, c) valid then
T1 ← T1 ∪ (c)(Add trip to set of trips)

end
end
[add trips of size 2]
foreach (ci), (cj) ∈ T1 do

if TwoCandidates(ci, cj) valid and
bestRoute(r, ci, cj) valid then
T2 ← T2 ∪ (ci, cj)

end
end
[add trips of size `]
for ` ∈ {3, ..., η} do

foreach Ti, Tj ∈ T`−1 with |Ti ∪ Tj |= `
(Two trips with ` candidates combined) do

if ∀h ∈ {1, ..., `}, {c1, ..., c`} \ ch ∈
T`−1 then

if bestRoute(r, Ti ∪Tj) valid then
T` ← T` ∪ (Ti ∪ Tj);

end
end

end
end

end
return Ttk ← ∪`∈{1,...,η}T`

end

located at a depot satisfying all the constraints. As multiple
candidates per order exist, we add an additional constraint to
the existing time and capacity constraints. For two candidates
to be combinable into one trip we require them to share their
pick-up location. This implies that two candidates do not
belong to the same order. The step of finding the sequence
to visit all locations for a given set of candidates (of one trip),
is covered by the function bestRoute(). Algorithm 1 checks
whether bestRoute() is valid, which is the case if a single
trip for robot r delivers all candidates and doesn’t violate
any constraint. If bestRoute() is valid, it returns a trip T`.
Most likely, there will be more than a single feasible route
to visit all locations of the trip. The function bestRoute(),
chooses the route that minimizes the given cost function for
the trip. The cost for visiting a sequence of locations (trip
T ∈ Tt) executed by the associated robot r ∈ R is given by
γT,r and is derived from Equation 1;

γT,r := (1− β) ·
∑
o∈T

θo + β · travel(T ) (2)



Fig. 2: Schematic overview of our solution approach. Step A assigns a number of potential pick-up locations to each order.
During step B individual candidates (combinations of orders to specific pick-up locations) are combined to feasible trips.
Step C performs an assignment of trips and individual robots. Within step D we propagate time and robots follow their
assigned plans.

where travel(T ) represents the total driven distance to
complete trip T . To come up with the different evaluated
sequences we perform an exhaustive search. For large group
sizes a routing heuristic, for example an insertion heuristic,
could be used. For robots that already contain prior load,
trips include those loaded orders. The sequence according to
which the combination of prior loaded orders and new ones
are served is thereby unconstrained. Herein the possibility
of pre-empty depot returns occurs. We only keep the route
(sequence of visited locations) that minimizes the costs (2)
of the trip for a specific robot and a set of candidates. Taking
the minimal cost route is included in the subsequent notation
of a trip T . Further, calculations for one robot are stopped
if a predefined time, ρmax, has passed. In this case, the trips
generated up to this point are considered.

D. Assignment
After calculating potential feasible trips, summarized in

Tt, we need to decide which of them should be carried
out and by which robot to minimize the overall objective
function. We call this step the assignment. This assignment
is formulated as an integer linear program (ILP), which
is solved incrementally. First, it is initialized by a greedy
solution. The greedy solution selects trips decreasingly by
their number of served candidates l and in case they serve
the same amount, increasingly by their associated costs. The
ILP is presented in Algorithm 2. Thereby, εT R denotes the
set of all feasible trip robot combinations, and εT,r is the
corresponding binary variable, taking the value 1, if the
combination is feasible. Further, we create the following sets:
ITr , the set of trips that can be serviced by a robot r ∈ R;
ITco , the set of trips that contain candidate co; IRT , the set of
robots that can service trip T ; ICo , the set of candidates that
belong to order o. Further, χco is a binary variable, taking
the value of one if the corresponding candidate is ignored,
introduced for each candidate co ∈ C and X is a set of all
variables X = {εT,r, χco ;∀εT R and ∀co ∈ C}.
Equation 3 describes the objective function for a single state.
Note that the considered costs are relative. From the costs of
a robot’s route γT,r (see Equation 2), the costs for the consid-
ered robot to serve its already loaded parcels are subtracted,
γloaded,r. Thus, we only account for changes in the robot’s

Algorithm 2: Assignment
input : Greedy assignment of trips to robots Ωgreedy
output: Assignment of trips to robots Ωoptim
begin

Initalize with Ωgreedy ;
Solve;

(3)

Ωoptim = argminχ
∑

T,r∈εTT R

(γT,r

−γloaded,r)εT,r+
∑

co∈{1,...,|Ct|}

αχco

∑
T∈ITr

εT,r ≤ 1 ∀r ∈ R (4)

∑
co∈ICo

∑
T∈ITco

∑
r∈IRT

εT,r + χco = 1 ∀o ∈ O (5)

χco ∈ {0, 1} (6)

εT,r ∈ {0, 1} (7)

return Ωoptim
end

plan. If a robot’s plan is not changed, by not assigning any
new orders, no costs are posed in the assignment. Note that
this does not affect the optimization according to the global
objective function. Equation 4 ensures that each robot is at
most assigned to one trip. Equation 5 ensures that each order
is assigned to a single robot or is rejected and the penalty α
is charged. Furthermore, it ensures that only one candidate
belonging to the same order is chosen. Equation 6 ensures
that χco is binary. χco takes the value one if its associated
order o ∈ O can not be served by any robot or is ignored.
Equation 7 defines εT,r as binary. As a result, each robot
is assigned to a trip. If a robot receives no new orders, it
will follow its current plan of delivering the currently loaded
parcels or it will be considered idle if it has none.



E. Return of Idle Robots

If some robots are considered idle after an assignment has
been done, we instruct them to move towards the closest
depot from their current location. Nevertheless, they might
still be assigned otherwise, before reaching the depot.

F. Time-Propagation

In this step, we propagate the time and all elements
affected by it, until the next decision k + 1 is triggered,
tk+1 = tk + ∆t. During this time each robot follows its
plan determined in the previous steps (the trip assigned to
it). Each order can take one of the following five states:

• An order can be picked up by a robot at a depot - As
soon as an order is picked up it is fixed to this robot, it
can not be unloaded anymore, meaning that it can not be
reassigned to any other robot. Additionally, as multiple
candidates belonging to one order exist, but only one
of them gets served, the other candidates belonging to
this order are removed.

• An order can be delivered to its destination.
• An order can be assigned to a trip, but the planned

pick-up time is later than tk+1, the time of the next
decision, thus we consider the order as not picked up,
yet. All not picked up candidates are reinserted into the
trip generation step for the next decision, thus allowing
for reassignment. Note that such reassignments are not
possible if robots cannot adapt their routes prior to being
empty.

• An order can be not assigned to any trip. This order
is reinserted into the trip generation step for the next
decision.

• An order can be ignored, meaning that it can not be
picked up such that all constraints can be satisfied within
the current plan. This is the case if an order o ∈ O can’t
be delivered until the latest drop-off time tdrop,o,max =
tideal,o + δdelay.

tdrop,o,max is mainly influenced by the value of δdelay. The
smaller δdelay is set, the harder it is to combine multiple
candidates to be served by one robot. On the other hand, if
δdelay is set too large, the number of possible combinations
becomes vast, which can hinder solving the problem in the
first place. A good balance has to be found by the operator.
We distinguish between δdelay,real, defined by the service level
and δdelay,heuristic, the maximum delay at which the method
performs well. In case of δdelay,heuristic < δdelay,real we allow a
candidate to be reinserted into the problem after it has been
ignored. The candidate gets reinserted with a new release
time of t, the current time. Each candidate can be ignored
up to a limit of ζ times,

ζ = (δdelay,real − (δdelay,real mod δdelay,heuristic))/δdelay,heuristic.

If a candidate got ignored ζ times it is removed from the
problem. It is noteworthy that if an order gets not assigned
to a robot it is not necessarily ignored.

Fig. 3: A visual representation of the underlying graph G =
(N,A) is shown. The set D of 20 depots is highlighted in
yellow.

V. RESULTS

In this section we first analyze one simulation run, repre-
senting a day of on-demand grocery delivery in Amsterdam,
in detail (Section V-A). To investigate the benefits of the
proposed method, we evaluate the approach by comparing it
with a scenario that uses a single depot and a scenario that
does not allow for pre-empty depot returns, (Section V-B).
In Section V-C we present the results of a sensitivity analysis
of the main parameters.

A. Base Scenario: One Scenario in Detail

To analyze the proposed algorithm we simulate a potential
day in a city center. We represent the city as a directed graph
containing 2706 nodes and 5632 edges, shown in Figure
3. The travel times between nodes are calculated as their
distance divided by a constant speed of 36km

h . The simulated
demand pattern features 10,000 orders, homogeneously dis-
tributed in space and covers a time span from 8 a.m. to 9 p.m.,
including a noon and a stronger evening peak. The last 10
minutes, prior the end of the day Tend, no more orders are
placed, δT = 10. 20 depots to pick up orders are distributed
over the whole service area following a greedy k-center
algorithm. 30 autonomous robots with a maximum capacity
of ten are used. The maximum trip size η equals the capacity
of the robots. A maximum delay, δdelay,real, of 24 minutes is
allowed and δdelay,heuristic is chosen as eight minutes, resulting
in a ζ of three. Per order, the five closest depots to the final
destination, (x = 5), are considered. To load and service an
order, we assume δload = 15 sec, implying that all orders are
prepared and need to be loaded only, and δservice = 30 sec,
assuming that all customers are ready to grab their groceries
at the front door. The algorithm runs in time spans ∆t of 100
seconds. The penalty to ignore an order is set to equal 104

seconds. We weighted the two different objectives equally
with β = 0.5. These values have been chosen to reach a
service rate close to 100%, while limiting resources such
that the system is forced to work as efficient as possible. To
solve the ILP, described in Algorithm 2, we leverage Mosek
(7.1) [26]. We run the solver to optimality (around 75% of
the times), with a maximum time budget of 50 seconds. To



Fig. 4: Distributions of time to pick-up, time of parcels spend
loaded to a robot, the total delivery time and delay of the
base scenario.

evaluate the capabilities of the proposed method, we look at
four different performance measures.
First, we evaluate the service rate, which is defined by the
percentage of placed orders that got served. For this scenario,
a service rate of 99.02% was achieved, which equals an
absolute number of 98 ignored orders. Most ignored orders
happen during peak times.
Second, we analyze different time spans (time KPIs) involved
in the delivery process. Figure 4 shows the distributions of
the time until pick-up (Avg: 5 min 51 s), the time a parcel
is loaded onto a robot (Avg: 3 min 45 s), the delivery time
(Avg: 10 min 21 s) and the associated delay (Avg: 8 min 14 s).
For comparison, the average distance of all nodes to their
closest depot is 1 min 22 s.
Third, we analyze how each robot is utilized by the proposed
method. We summarize by calculating the mean number of
loaded parcels of all robots over time to 1.78 loaded parcels
per robot.
Fourth, we analyze the total traveled distance. In the base
scenario a distance of 8,930.86 km is traveled by all 30 robots
together. Results of the base scenario are illustrated in Figure
5 in purple.

B. Comparison

To investigate the benefits of our proposed method, we
compare the run analyzed in detail in the previous section
with two similar scenarios. First, we claim that the use of
multiple depots is beneficial, so we compare to a single
depot scenario. The location of the depot was chosen as the
center of the graph. The center of the graph minimizes the
total sum of the distances to all other nodes of the graph.
Worse results in all performance measure were obtained, as
shown in Figure 5 (yellow). The service rate drops from
99.02% to 66.08%. All time KPIs nearly double in time, for
example, the overall delivery time increases from 10 min 21 s
to 19 min 03 s. Even having fewer parcels delivered overall
the total driven distances increases compared with the base
scenario. Those improvements prove the value of using
multiple depots, as assumed a priori, and puts numbers onto
their effects. To operate depots is costly, thus posing the

question ”How many depots should be used?”.
Second, we explicitly allow for pre-empty depot returns
arguing to improve obtained results, thus we prohibit those
depot returns, meaning only empty robots can load new
orders. Results are also depicted in Figure 5 in green. Results
show the worth of allowing for pre-empty depot returns
as all performance measures stay similar or are slightly
worse compared with allowing pre-empty depot returns.
For example, delivering fewer parcels overall more total
driven distance was required. Further experiments show that
allowing pre-empty depot returns has larger effects in their
absolute magnitude the fewer depots are present. Note that
these improvements are fully achieved by modifying the
routes without the need of additional infrastructure.

C. Sensitivity Analysis

1) Number of considered depots per order, x: In Section
IV-B we introduced a heuristic that only the x closest depots
to an order’s destination are considered as potential pick-up
locations. The more depots are considered the higher the
number of candidates will be, yet, the higher the computa-
tional burden.
Table I lists results if one, three, five or seven depots per
order are considered. For five and seven considered depots
the available computational time was increased to avoid a
bottleneck at this point and allow for a fair comparison. The
service rate increases from one to five depots and drops for
seven. Despite that more parcels have been delivered the total
driven distance decreases for more considered depots, again
excluding the seven depot case. Time KPIs show a similar
behavior. The number of mean loaded parcels increases the
more depots are considered.
On one hand, we see that considering multiple depots is
beneficial, shown in the improvements compared with con-
sidering the closest depot only. On the other hand, too many
depots can be considered, leading to worse obtained results.
This can be explained by the myopic nature of our approach,
which can lead the system into unfavorable states to serve
future demand. For a single state using more depots is better,
but due to chaining multiple states dynamically with each
other, the overall problem’s solution can worsen. Chaining
better solutions for a dynamic problem is not necessarily
better in the end. Thus, those results confirm the benefits of
introducing a heuristic. We conclude:
• Considering only one depot as [18] and [19], which in

this paper would be the closest one, can be inferior to
considering multiple ones.

• To consider as many depots as possible can be ineffi-
cient for dynamic problems having imperfect anticipa-
tion.

2) Total number of depots H: We varied the number of
placed depots within the service area H. We simulated sce-
narios featuring 1, 10, and 30 depots. Service rate improves
at decreasing rates the more depots are available. Time
KPIs also improve with the number of available depots. The
number of mean loaded parcels (except for a single depot)
and total driven distance both decrease the more depots are



Fig. 5: Service rate, time KPIs, mean loaded parcels and total driven distance of the base scenario (purple), the same scenario
with prohibit pre-empty depot returns (green) and a case using a single depot and our method (yellow) are illustrated.

Service
rate [%]

Delay
[min:s]

Delivery
time
[min:s]

Time on
robot
[min:s]

Time to
Pick-up
[min:s]

Mean
loaded
parcels

Total
distance
[km]

Base scenario 99.0 08:14 10:21 03:45 05:51 1.78 8930.9
Single depot 66.1 14:56 19:03 06:07 12:09 1.84 9377.3
No pre-empty 98.9 08:15 10:22 03:41 05:56 1.76 8986.3
Considered depots per order

1 de. per order 98.3 07:58 10:04 03:23 05:56 1.62 9036.6
3 de. per order 99.0 07:58 10:05 03:41 05:39 1.76 8951.8
5 de. per order 99.1 07:52 09:59 03:44 05:29 1.78 8946.7
7 de. per order 99.0 08:07 10:14 03:48 05:41 1.80 8955.1
Total depots

10 total depots 93.4 11:30 14:16 04:44 08:47 2.07 9300.2
30 total depots 99.6 06:48 08:41 03:15 04:41 1.58 8799.1
Demand patterns

9,500 orders 99.9 06:58 09:06 03:34 04:47 1.63 9114.9
10,500 orders 98.6 08:39 10:46 03:52 06:10 1.91 8943.0

TABLE I: Precise results of all performance indices of all
executed runs are listed. In the first column results of the base
scenario are shown (Section V-A). In the second and third
column the results corresponding to the comparison section
are presented (Section V-B). The reminder of the table lists
the different runs corresponding to the different parameters
of the sensitivity study (Section V-C).

available. The magnitude of changes in performance varies
while the number of depots is increased linearly in steps of
10. Table I lists the corresponding results.

3) Number of orders N : We created two alternative
demand scenarios, featuring different numbers of customer
orders N (9,500 and 10,500) over the course of the full
day. Both scenarios resemble the distribution of the 10,000
order case in time and space. Table I lists the corresponding
results. The more orders are placed the lower the service rate,
because available resources were kept constant. Nevertheless,
the absolute number of delivered parcels increases (9,487,
9,902 and 10,351). Despite that more parcels have been
delivered this is not shown in the total driven distance. Com-
pared with the 9,500 order case, driven distance decreases
for both 10,000 orders and 10,500 orders. In general, if there
are more orders to serve, it will be easier to find customer
destinations close to each other, so the average distance
between them decreases. However, those improvements do
not hold for the time KPIs as all of them worsen with
more placed and served orders. The number of mean loaded
parcels increases in the same manner.

VI. CONCLUSION

In this paper, we looked at a fleet of autonomous grocery
delivery robots operating a SDD operation featuring the
opportunity to pick up goods at multiple depots and allowing
robots to perform pre-empty depot returns, if beneficial. This
allows for a reduced average distance to customers’ homes
and more agile planning. We propose an iteratively working
method, meaning one state of the problem is solved before
time propagates and the next state to solve is reached. To
solve one given state, orders are assigned to potential pick-up
locations, followed by checking how they could be combined
into trips. For each robot, as many trips as possible are
generated, bounded by predefined constraints. Robots are
assigned to the generated trips via solving an integer-linear
program.
The proposed method is able to handle large problem sizes.
Extensive computational experiments simulating one day of
service have been carried out. Looking at one scenario in
detail, in which 10,000 orders are placed and 30 robots
are available to serve those, a service rate of 99.0% was
achieved. The average delay accounts for 8 min 14 s and
8,930.9 km needed to be driven. Further, simulations showed
the value of using multiple depots, exemplary, the service
rate dropped about 33%, if only one depot was used, and
the value of performing pre-empty depot returns, shown
in a decrease in total driven distance. A sensitivity study
showed the varying influence of individual parameters on
the obtained solution.
Future research could extend the proposed method to look
ahead, such that the risk that the system gets into unfavorable
states is reduced. Further, the possibility to plan for hetero-
geneous fleets of robots could be added. Currently, the time
to pick an order is constant and rather short. Additionally,
we assume that all products are always available. To relax
these assumptions, namely to consider variable picking times
of orders and to include product availability in depots, are
further research questions.
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