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Background

ACTIVE

SAF=-UP&

SAFE-UP aims to proactively address the
upcoming safety challenges based on 3 key
pillars: i) future safety-critical scenarios ii)
new safety technologies and iii) novel safety
assessment methodologies.

TUD related subtasks:
Safety-critical scenario identification
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Safety is of pivotal importance for (automated) driving.
Road deaths from WHO
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searving Google's self-driving car in broadside
collision after other car jumps red light
Technology

Tesla says autopilot involved in second
car crash
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o Time based
« Time to Collision (TTC)

| Headway

« Time to Headway -

& &

Gap Vehicle length

o Distance based
« Stopping distance

One-dimensional and deterministic metrics cannot address motion uncertainties.

How to address motion uncertainties?

] How to ensure safety?
TUDelft



How to ensure safety?  How to address uncertainties?

/ /

To develop a two-level reachability-based confidence-aware
collision detection framework

Confidence-
aware

Generate BRS prediction

offline p v <
t=¢to Generate

A stochastic FRS Greater
[ Check cached BRS BRS unsafe online for than RepIanning/AIert]
7y collision hreshold?
t=t+dt | estimation )

BRS: Backword reachable set

FRS: Forward reachable set
Stochastic FRS, where each state has assigned a possibility

Assume ego has a planned trajectory
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Reachability analysis

o Forward Reachable Set (FRS)
(M. Althoff from TU Munich, Germany)
» Consider max acc capacity
« Formal safety verification
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Reachability analysis

o Backward Reachable Set (BRS)
(C. Tomlim from Berkeley, USA)
» Pursuit-evasion game -> Hamilton Jacobi partial differential equation (HJ]

PDE) -> Solve PDE to check if crash occurs
» Offline computation by discretising states: speed, position, and angle
« Online use: a look-up table
« Formal safety verification
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Sliced zero-level BRS subset, within which

the sur vehicle can hit the ego (origin)
BRS is still over conservative due to the worst interaction assumption.
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To develop a two-level reachability-based confidence-aware

collision detection framework

Generate BRS
offline

t=to

[ Check cached BRS BRS unsafe

A

t=t+dt

Yes

Confidence-
aware
prediction

v

Generate
stochastic FRS
online for
collision
estimation

Greater
than
hreshold?

RepIanning/AIert]

BRS: Backword reachable set
FRS: Forward reachable set

Stochastic FRS, where each state has assigned a possibility

Assume ego has a planned trajectory
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To develop a two-level reachability-based confidence-aware
collision detection framework

Confidence-

aware
Generate BRS prediction
offline v
t=ito

Generate

A 4

stochastic FRS

Greater

[ Check cached BRS BRS unsafe online for than RepIanning/AIert]
'y collision hreshold?
estimation

t=t+dt

o Key components for stochastic FRS
 State transition matrix (Base)
» Learning-based multi-modal prediction (Input)
» Confidence-aware concept (Infuse to the input prediction)
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Stochastic FRS

State transition matrix @ Althoff et al. (2010)

o Discretised time and state Pz(k‘)

o Deterministic heuristic rules for discretised
input probability (Markovian)

ueU

o State transition p(k+1) =@ - p(k)
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offline

Real vehicle motions are not Markovian! The real control input not only
depends on current state, but also previous states and sur environment
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Stochastic FRS

Multi-modal prediction to determine input probability for ¢p

o Non-Markovian process, using previous tracks for prediction
« A multi-modal input predictor (variation of previous work, Wang et al., 2022)

o Output probabilistic input distribution at each predicted time step, then do
integrals to calculate avx)

®;;(k) = Z (I);Lz(k)

uel

p(k+1) = ®(k) - p(k)

online

Results largely depend on the prediction accuracy!

1(-‘U Delft Wang, et al. “ Probabilistic Risk Metric for Highway Driving Leveraging Multi-Modal Trajectory Predictions.” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 19399-19412, Oct. 2022 11



Stochastic FRS

Confidence-aware prediction

o A Bayesian belief vector for different
distributions
Single normal distribution

!

Multiple confidence-aware normal distributions

B=11/2,1,2]
b°(8) = [1/3,1/3,1/3]

o To address the predictor performance,
the belief vector is updated with posterior
estimation

]
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3-low
B 5-high

W 3-Bayes

1ft
~0.3m

Confidence-aware Q-value pedestrian prediction
(Fridovich-Keil et al.,2020)
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Results: Stochastic FRS

HSRS: Stochastic FRS via heuristic rules (baseline)
PSRS: Prediction based stochastic FRS

PSRS-38: Prediction based stochastic FRS using 38
B=1[1/2,1,2]

PSRS-5p: Prediction based stochastic FRS using 58
B =[1/3,1/2,1,2,3|

(Predict 5 time steps in 2 seconds)
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Results: Stochastic FRS
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: : : o PSRS-343
- 2]
Simulated risky cut-in events @ 3 6-PSRS-53
V ~ [20, 35] =
33 out of 256 crash cases GE) 257
= ol
1 -5 1 1 1 1 1 1 1 1 1 1

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.15 0.20 0.25
Collision probability threshold

Average performance for 33 crash events with different thresholds.
Timeliness is the time the crash occurs after the collision probability
reaches the threshold.
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Results: Integrated framework

Generate BRS
offline
t=to

.

A

[ Check cached BRS

BRS unsafe

4

t=t+dt

Yes

Confidence-
aware

prediction
\ 2

Generate
stochastic FRS
online for
collision
estimation
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Validate the proposed collision detection framework in both

risky and non-risky events



Results: Integrated framework

Simulated cut-in non-risky event

V_sub = 30 m/s, V_sur = 28 m/s
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1.Developed a two-level reachability-based framework for
collision detection
— Safety can be ensured in non-risky events

2.To improve collision probability estimation, established a
prediction-based confidence-aware stochastic FRS.

-i-‘u D If Wang, et al. “Prediction-Based Reachability Analysis for Collision Risk Assessment on Highways.” IEEE Intelligent
e t Vehicles Symposium (2022).
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1. Implement the proposed safety assessment _ _
approaches for real-world test. Further Thanks for listening!
simplify the computation of stochastic FRS. xw.wanz@tudelft.nl

xinwei.wang@gmul.ac.uk

2. The risk assessment is for posterior analysis.
Further investigate the integration of motion
planning and risk assessment

Khaled Alaa, et al. “Probabilistic Risk Assessment for Chance-Constrained
Collision Avoidance in Uncertain Dynamic Environments.” submitted to /CRA
2023.
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Use risk assessment for safer and more efficient motion planning.

o A scenario-based chance-constrained motion planner (de Groot et al., 2021)
« with a parameter: risk upper bound
 the bound is not tight

Upper Bound Max CP
e = 0.05 0.0094
e =0.1 0.0456
e =0.2 0.0727

A robot shares dynamic environments with 6 pedestrians.
Hybrid € = {0.05,0.1, 0.2} 0.0454 T

1) Plan three trajectories in parallel
2) Do one-shot risk check (Simply integrate prob density func for collision estimation)
3) Pick the least conservative plan as long as its risk below the CP threshold. <0.05

U D Ift Khaled Alaa, et al. “Probabilistic Risk Assessment for Chance-Constrained Collision Avoidance in Uncertain Dynamic
I e _ , .
Environments.” submitted to ICRA 2023. 21
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