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Improving Pedestrian Prediction Models with
Self-Supervised Continual Learning

Luzia Knoedler∗, Chadi Salmi∗, Hai Zhu, Bruno Brito and Javier Alonso-Mora

Abstract—Autonomous mobile robots require accurate human
motion predictions to safely and efficiently navigate among pedes-
trians, whose behavior may adapt to environmental changes. This
paper introduces a self-supervised continual learning framework
to improve data-driven pedestrian prediction models online
across various scenarios continuously. In particular, we exploit
online streams of pedestrian data, commonly available from the
robot’s detection and tracking pipeline, to refine the prediction
model and its performance in unseen scenarios. To avoid the
forgetting of previously learned concepts, a problem known as
catastrophic forgetting, our framework includes a regularization
loss to penalize changes of model parameters that are important
for previous scenarios and retrains on a set of previous examples
to retain past knowledge. Experimental results on real and
simulation data show that our approach can improve prediction
performance in unseen scenarios while retaining knowledge from
seen scenarios when compared to naively training the prediction
model online.

Index Terms—Continual Learning, Service Robotics, Trajec-
tory Prediction, Human-Aware Motion Planning

I. INTRODUCTION

AUTONOMOUS mobile robots increasingly populate hu-
man environments, such as hospitals, airports and restau-

rants, to perform transportation, assistance and surveillance
tasks [1]. In these continuously changing environments robots
have to navigate in close proximity with pedestrians. To
efficiently and safely navigate around them, robots must be
able to reason about human behavior [2]. Predicting pedestrian
trajectories is challenging, especially in crowded spaces where
humans closely interact with their neighbors. This is the case,
since the occurring interactions are complex, often subtle,
and follow social conventions [3]. Furthermore, humans are
influenced by the robot’s presence [4], features of the static
environment, such as its geometry or obstacle affordance, and
various internal stimuli, such as urgency, which are difficult
to measure [5], [6].

A large amount of research has been done on pedestrian
prediction models [5]. Recently, the focus has mainly been
on data-driven models which do not rely on hand-crafted
functions and thus allow to capture more complex features and
leverage large amounts of data. They address various aspects
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Fig. 1: Self-supervised Continual Learning (SCL) framework
used to continuously improve data-driven pedestrian prediction
models online across various scenarios.

of pedestrian behaviour such as stochasticity [7] and multi-
modality [8], [9]. Moreover, they consider the influence of
static obstacles [2], interactions among pedestrians [3] and
the robot’s presence [10]. However, these models are trained
offline using supervised learning and thus do not adapt to
unseen behaviors or environments and may fail if the testing
data distribution differs from the training data distribution.

These limitations can be overcome by continuously training
pedestrian prediction models on new streams of data. Hurdles
in applying supervised continuous learning to existing predic-
tion models are the slow and expensive creation of labeled
data sets or the lack of supervision [11]. Robots operating
in the same environment as pedestrians can autonomously
collect training examples based on the robot’s never-ending
stream of observations. If a robot can efficiently and au-
tonomously collect examples, its internal prediction models
can be updated on the fly and the robot can effectively
adapt its behavior. However, neural networks are prone to
forget previously learned concepts while sequentially learn-
ing new concepts [11]. This phenomenon is referred to as
catastrophic forgetting. To overcome catastrophic forgetting,
we use a regularization strategy, namely elastic weight con-
solidation (EWC) [12], to selectively slow down learning for
important model parameters, in combination with rehearsing
a small set of examples from previous tasks.

The main contribution of this work is therefore the in-
troduction of a self-supervised continual learning framework
that uses online streams of data of pedestrian trajectories to
continuously refine data-driven pedestrian prediction models,
see Fig. 1. Our approach overcomes catastrophic forgetting by

https://github.com/tud-amr/scl
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combining a regularization loss and a data rehearsal strategy.
We evaluate the proposed method in simulation, showing

that our framework can improve prediction performance over
baseline methods and avoid catastrophic forgetting, and in
experiments with a mobile robot, showing that our framework
can continuously improve a prediction model without the need
for external supervision.

II. RELATED WORK

In this section, we describe relevant approaches for pedes-
trian motion prediction and continual learning.

A. Pedestrian Motion Prediction

There has been a vast amount of work devoted to pedestrian
trajectory prediction [5]. Early works are mainly model-based,
such as the well-known social force model (SFM) which
uses attracting and repulsive potentials to model the social
behaviours of pedestrians [13], and the velocity-based models
which compute collision-free velocities for trajectory predic-
tion [14], [15]. A limitation of these model-based approaches
is that they only utilize handcrafted features, thus not being
able to capture complex interactions in crowded scenarios. To
overcome the limitation, recurrent neural networks (RNNs)
have been used for human trajectory prediction, which allows
to represent complex features and leverage large amounts of
data [16]. Building on RNNs, [3] utilized LSTM networks
to model time dependencies and employed a pooling layer
to model interactions. [10] proposed a network model that is
aware of the environment constraints. In addition, other net-
work models have been developed to predict pedestrian trajec-
tories, including Generative Adversarial Networks (GANs) [8],
[17] and Conditional Variational Autoencoders (CVAEs) [18],
[19]. Albeit being efficient, these models are usually trained
and evaluated using (offline) bench-marking datasets [20],
[21], [22], [23], which limits their online adaption to unseen
scenarios. In this paper, we propose an approach to improve
these models online by introducing a self-supervised continual
learning framework.

B. Continual Learning

Continual learning (CL) addresses the training of a model
from a continuous stream of data containing changing input
domains or multiple tasks [24]. The goal of CL is to adapt
the model continually over time while preventing new data
from overwriting previously learned knowledge. Existing CL
approaches that mitigate catastrophic forgetting for neural
network-based models can be divided into three categories:
architecture-, memory- and regularization-based [11], [25].

Architecture-based approaches change the architecture of
the neural network by introducing new neurons or layers [26],
[27], [28]. Intuitively, these approaches prevent forgetting
by populating new untouched weights instead of overwriting
existing ones. However, the model complexity grows with the
number of tasks.

Memory-based approaches save samples of past tasks to
rehearse previous concepts periodically [11]. There are two

types of memory-based methods that differ in the way they
memorize past experiences: rehearsal methods explicitly sav-
ing examples [29] and pseudo-rehearsal methods saving a
generative model from which samples can be drawn [30].
The data stored in the memory of rehearsal methods can
be randomly chosen or carefully selected [29], [31]. Some
methods require task boundaries [29] while other methods
can be applied to the task free setting [31]. Since memory-
based approaches require a separate memory, they can become
unsustainable with an increasing number of tasks.

Regularization-based approaches add a regularization term
to the loss to prevent modification of model parameters. This
can be done using basic regularization techniques, such as
weight sparsification, early stopping, and dropout, or with
more complex methods which selectively prevent changes in
parameters that are important to previous tasks [11]. [12] intro-
duced Elastic Weight Consolidation (EWC), a regularization
approach limiting the plasticity of specific neurons based on
their importance determined from the diagonal of the Fisher
Information Matrix (FIM). To compute the FIM, clear task
boundaries are required. Other regularization approaches focus
on relaxing this assumption by automatically inferring task-
boundaries [32], or by calculating the importance in an online
fashion over the entire learning trajectory [33]. In contrast
to other categories of approaches, these regularization-based
methods do not require much computational and memory
resources. However, one downside of regularization-based
approaches is that an additional loss term is added, which
can lead to a trade-off between knowledge consolidation and
performance on novel tasks.

Most of the time, combining different continual learning
strategies results in better performance [11]. Hence, in this
paper, we employ the EWC regularization technique combined
with a data rehearsal strategy to achieve continual learning to
improve pedestrian prediction models.

III. PROBLEM FORMULATION

Throughout this paper, we denote vectors, x, in bold low-
ercase letters, matrices, M , in uppercase letters, and sets, X ,
in calligraphic uppercase letters.

We address the problem of continuously improving a trajec-
tory prediction model online using streams of pedestrian data.
This data includes the position and velocity of all n tracked
pedestrians over time, and an occupancy map of the static
environment S. The position, velocity, and the surrounding
static environment of the i-th pedestrian at time t are denoted
by pit = [pix,t, p

i
y,t], vit = [vix,t, v

i
y,t], and Oenv,i

t ⊂ S,
respectively. The sub-scripts x and y indicate the x and y
direction in the world frame. The super-script i denotes the
query-agent, i.e., the pedestrian whose trajectory we want to
predict.

Denote by X it the observations acquired within a past time
horizon tobs for predicting pedestrian i’s future trajectory,
which typically includes its own states, the states of the other
pedestrians and environment information. Further denote by
Ŷit the predicted trajectory of pedestrian i over the future
prediction horizon tpred.
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We seek a data-driven prediction model Ŷit = fθ(X it ), with
parameters θ, that best approximates the true trajectory Yit
across the entire previous stream of states for every tracked
pedestrian i ∈ {1, . . . , n}. The true trajectory Yit will only
become available in hindsight after observing the trajectory
taken by pedestrian i during tpred. Thus, we formulate the
problem of continually learning a data-driven prediction model
from past observations at time t as a regret minimization
problem:

min
θ

n∑
i=1

t∑
τ=t−this

Lpred(Ŷiτ ,Yiτ ), (1)

where this is the entire elapsed time until t and Lpred(Ŷiτ ,Yiτ )
is the regret at one past time step τ for pedestrian i, which
will be described in later sections.

IV. METHOD

In this section, we introduce the Self-supervised Continual
Learning (SCL) framework, an online learning framework
to continually improve pedestrian prediction models. Sec-
tion IV-A presents the overall structure of SCL, Section IV-B
the prediction network architecture, Section IV-C the data
aggregation and Section IV-D the model adaption.

A. Self-supervised Continual Learning

The SCL architecture consisting of two phases: a task
aggregation and a model adaptation phase is presented in
Fig. 2. Firstly, we use a prediction model which was pre-
trained on publicly available datasets [20], [21] and aggregate
new training examples using the surrounding pedestrians as
experts (task aggregation) for a period of time T . Then, we
update the prediction model using the aggregated data of
the current task and a small constant sized coreset, which
contains examples from previous tasks (model adaptation).
During the model adaption phase, we apply a EWC loss to
preserve the prediction performance on previous tasks. The
two phases run alternately over time to create a continuous
learning autonomous robot. During the task aggregation phase,
we associate a new task to a new environment on which the
model was previously not trained on. To distinguish between
tasks, we will refer to the currently considered task as taskk.
The previous tasks are referred to as task0:k−1 where the
subscript 0 refers to the initial task.

B. Prediction Network Architecture

To evaluate our online learning framework we use a data-
driven pedestrian prediction model building on [2]. Please note
that our approach does not depend on which network model we
use. However, the memory requirements scale linearly with the
number of tasks and model parameters. Figure 3 shows the net-
work model which uses three streams of information. The first
input is the query-agent’s velocity over an observation time
window tobs, vit−tobs:t

, which enables the model to capture
the pedestrian’s dynamics. The second input is the occupancy
grid information Oenv,i

t−tobs:t
that contains information about the

static obstacles centered on the query-agent. In contrast to

[2], the third input is a vector containing information about
the relative position and velocity of surrounding pedestrians
Osocial,i
t−tobs:t. This adaption was done because the model using an

angular pedestrian grid, presented in [2], has shown difficulties
learning social interactions [19]. For one neighbor pedestrian
j the vector including the relative measurements to the query-
agent i at time t is

ei,jt = [pjt − pit,v
j
t − vit].

Thus, the information vector at time t is defined as

Osocial,i
t = [ei,1t , . . . , ei,i−1

t , ei,i+1
t , . . . , ei,nt ].

Hence, the information used for trajectory prediction
of pedestrian i is X it = (vit−tobs:t, O

env,i
t−tobs:t, O

social,i
t−tobs:t),

and the prediction model is given by v̂it+1:t+tpred
=

fθ(v
i
t−tobs:t, O

env,i
t−tobs:t, O

social,i
t−tobs:t), where the trajectory predic-

tions are represented by a sequence of velocities, i.e. Ŷit =
v̂it+1:t+tpred

. We use the permutation invariant sort function
as an attention mechanism by sorting the relative vectors of
surrounding agents by euclidean distance [34]. To handle a
variable number of pedestrians, only the closest n pedestrians
are considered. For situations with fewer than n surrounding
pedestrians, the relative vector of the closest pedestrian is
repeated.

C. Task Aggregation

For each task k, SCL saves the inputs of the prediction
model, X it = (vit−tobs:t, O

env,i
t−tobs:t, O

social,i
t−tobs:t), in a buffer for

each time step t = {−tbuff , . . . , 0} (see Fig. 2). Then, for each
time step t, the ground truth velocity sequence vit+1:t+tpred

is
extracted in hindsight from the buffer and the corresponding
input to the prediction model X it (red arrows in Fig. 2).
We aggregate the velocity vectors (Target) together with the
corresponding model inputs (Input) and store them in the
aggregated task dataset Dk as an example. The examples are
aggregated as a sequence. As we use a recurrent prediction
model and train the model with truncated back-propagation
through time ttbptt, we only aggregate sequences of examples
with a length of tbuff = tpred + ttbptt. We collect training
examples for T seconds.

D. Model Adaption

We present the overall SCL procedure in Algorithm 1. For
each task, we aggregate a dataset Dk over T seconds. Then,
the model is adapted using Dk and a set containing examples
of previous tasks referred to as coreset Dcoreset. The Coreset
Rehearsal strategy is applied to mitigate forgetting. Thus, the
training dataset is defined as follows:

D̂ = Dk
⋃
Dcoreset.

In the model adaptation phase, SCL uses the training dataset D̂
to train the network for Q epochs. The training loss is
composed by a prediction loss and a regularization loss to
avoid catastrophic forgetting: Ltrain = Lpred + Lreg. We



4

TaskCoreset with Examples
from task0:k-1

Prediction Model

ADE

Optimizer

EWC
Loss

Aggregated Dataset

for taskk


task0:k-1
{F0:k-1, θ0:k-1}


occupancy
grid

query-
agent

other
agents

Target

θ

Loss

Detection &
Tracking &
Localization

Sensor Streams

Target:  Input: 

add examples

Aggregate

Adapt

Prediction

Input

Fig. 2: Schematics of the SCL framework. The aggregation dataset is collected by extracting examples from the stream of
tracked surrounding pedestrians (task aggregation). The prediction model is trained using the aggregated dataset and a separately
saved coreset applying a EWC regularization to prevent catastrophic forgetting (model adaption).
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define the prediction loss as the average norm between the
predicted velocity sequence and the ground truth:

Lpred(Ŷit ,Yit) =
1

tpred

t+tpred∑
τ=t+1

|v̂iτ − viτ |2. (2)

We employ EWC [12] as regularization loss method to pre-
serve prediction performance on the previous tasks (task0:k−1)
and overcome catastrophic forgetting. EWC penalizes the dis-
tance between the new model parameters, θ, and the previous
task parameters, θ0:k−1, depending on their importance to keep
the knowledge of previous tasks. After learning each task,
EWC computes the corresponding importance parameter by
using the diagonal elements of the FIM F , which are defined
as:

Fk,jj =
1

|Dk|
∑
X∈Dk

(
δ log fθ(X )

δθj

∣∣∣∣
θ=θ∗k

)2

, (3)

where k represents the task number, Dk is the training data
containing trajectories from task k, fθ(X ) is the predicted
output of the network with parameters θ given data X ∈ Dk.
The importance measure Fk is saved together with the net-

work weights θk. Based on F0:k−1 and θ0:k−1 the following
regularization term is added to the loss function:

Lreg(θ) =

k−1∑
l=0

λ

2
Fl(θ − θl)2, (4)

where θ is the current set of weights for the current task k
and λ is the hyperparameter that dictates how important not
forgetting the old task is compared to learning the new one.
After the model adaptation phase is completed, we update the
coreset with M examples of the latest task (taskk). Importantly
the new examples replace existing ones to ensure the coreset
remains of constant length N . We randomly select which
examples to drop to update the coreset. After training the
datasets Dk and D̂ are cleared.

V. RESULTS

In this section, we present quantitative and qualitative results
in both simulation and real-world experiments.

A. Experimental Setup

The prediction model parameters are displayed in Fig. 3.
We pre-train the prediction model on the ETH and UCY
pedestrian datasets [20], [21] for 60 epochs. Our online
learning framework will improve this pre-trained model based
on the behavior of surrounding pedestrians. The applied hy-
perparameters are summarized in Table I. Note that although
tobs = 0, the past states are implicitly taken into account
through the internal memory of the LSTMs. First, we evaluate
our framework in simulation assuming full knowledge of the
map and current states of all pedestrians. The pedestrian
behaviour is simulated using the SFM [13] and Reciprocal
Velocity Obstacle model (RVO) [35]. We train the prediction
model incrementally on arbitrary orders of these environments.
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Algorithm 1: The Self-supervised Continual Learning
(SCL) framework

1 Load pretrained model: fθ
2 Load map: S
3 Initialize coreset: Dcoreset ← ∅
4 for k = 0 to ∞ do
5 Initialize the empty task dataset: Dk ← ∅
6 Aggregate examples for T seconds as follows:
7 for t = 0 to T do
8 Process pedestrian positions pit, velocities vit, and

the occupancy grid Oenv,i
t to model inputs X it and

save them to a buffer for i ∈ {1, . . . , n}
9 Get examples from buffer:

Et = {(X 1
t ,Y1

t ), . . . , (Xnt ,Ynt )}
10 Update task dataset: Dk ← Dk

⋃
Et

11 end
12 Combine coreset and task: D̂ ← Dk

⋃
Dcoreset

13 Train prediction model fθ on D̂ using EWC
14 Save EWC importances Fk and the updated parameters

θk of taskk
15 Update coreset Dcoreset with M random examples from

Dk
16 Clear Dk, D̂ from memory
17 end

To evaluate how well our framework scales to complex sce-
narios with more pedestrians we rerun the above experiments
in simulation with an increased number of pedestrians.
Then, we apply SCL in real-world experiments. Here, the true
pedestrian behavior differs from the models assumed during
simulation. To eliminate the perception-related errors as much
as possible, we first test our framework with an optical track-
ing system (Optitrack) that provides pose information of all
tracked pedestrians. We set up three scenarios to replicate the
simulation environments. Finally, we evaluate our framework
in an uncontrolled hall using only the on-board sensing and,
a detection and tracking pipeline.

B. Baseline Methods

We evaluate our method against three baseline approaches
in both simulation and real-world experiments:

1) Offline: The prediction model is trained offline on all
tasks. This baseline represents a performance upper-
bound assuming that all data is available.

2) Vanilla: The prediction model is trained using only the
aggregated data and standard gradient descent without
any regularization loss.

3) EWC: The prediction model is trained using only the
aggregated data with EWC regularization, but without
coreset rehearsal.

In simulation, we additionally consider the following base-
lines:
• Coreset: The prediction model is trained using the ag-

gregated data and coreset data.
• CV: The human behaviour is predicted using the constant

velocity model, no learning is applied.
The CV model was added since it was shown to outper-

form state-of-the-art data-based prediction models [36] and to

TABLE I: Hyperparameters.

time-step 0.2 s # training epochs Q 250
task length T 200 s learning rate 2× 10−3

buffer size tbuff 6 s L2 regularization 5× 10−4

predict. time tpred 3 s EWC parameter λ 1× 106

tbptt time ttbptt 3 s coreset size N /update size M 100/ 20
observ. time tobs 0 s validation set size Lv 100

enable robust navigation around humans [37]. A limitation of
the CV model is that it does not consider obstacles.

Since our focus is on applying continual learning strategies
to improve pedestrian prediction models on the fly with-
out forgetting, we only change the learning strategy across
baselines and keep the prediction network architecture fixed.
Similar to other works on pedestrian prediction models, we
use the average displacement (ADE) and final displacement
error (FDE) as performance metrics [19], [34].

C. Tasks

Fig. 4: The considered simulation environments consist of (A)
Square, (B) Obstacle, and (C) Hall environments.

We consider three distinct environments, i.e., tasks, dis-
played in Fig. 4:

1) Square: An infinite corridor setting with three pedestri-
ans walking clockwise and three anticlockwise.

2) Obstacles: Pedestrians walking towards each other in
an obstacle filled space.

3) Hall: Pedestrians walking towards each other in a hall
while behaving cooperatively.

The scenarios were selected since they include encounters
typically experienced in everyday situations. The specific envi-
ronments were chosen to investigate social interactions (Hall),
obstacle interactions (Obstacle) and semantic knowledge of
the map (Square). To additionally evaluate our framework
in scenarios with more interacting agents we consider the
above environments with 10 and 20 pedestrians. For the
obstacle-free environments, we use the open-source pedsim
simulation framework1 employing the SFM [13] to simulate
the pedestrian behavior. For environments with static obstacles,
we employ the RVO method [35]2 as pedestrians following the
SFM may still collide with obstacles.

D. Simulation Results

We evaluate the prediction performance of the network
model trained with our method (SCL) versus the baselines on

1https://github.com/srl-freiburg/pedsim ros
2https://github.com/sybrenstuvel/Python-RVO2

https://github.com/srl-freiburg/pedsim_ros
https://github.com/sybrenstuvel/Python-RVO2
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Square Obstacle Hall

Fig. 5: Prediction performance of models trained on square
→ obstacle → hall sequence evaluated on only the square
scenario. Shows ADE (top) and FDE (bottom) of all training
methods on the validation set of the square task, while learning
new tasks. Note that the offline model is added for comparison
purposes only.

different sequences of environments (square, obstacle, hall)
starting from a pre-trained model. Each environment is ob-
served for T seconds to create the aggregated dataset on which
the model is trained. Thus, each environment corresponds to
a new task. To compute the ADE/FDE performance metrics,
we collect a validation set for each environment including Lv
examples not used during training.

Table II reports the mean and standard deviation (std)
of ADE/FDE evaluated at the end of the sequence on all
three environments, under the columns denoted by seq. end.
The columns denoted by forgotten report the mean and std
of ADE/FDE increase of the prediction model on previous
environments after training on new environments. It can be
seen that SCL outperforms Vanilla. The significant increase
in mean forgotten ADE/FDE for Vanilla indicates that naive
online training over changing environments using standard
gradient descent results in catastrophic forgetting. Our method
is independent of sequence order, arriving at within ±0.02 of
the same mean ADE/FDE for all orders.

To gain insight into where catastrophic forgetting occurs,
we save the models trained for the sequence (square �
obstacle � hall) after each training step and apply them to the
validation set of the square scenario only. Figure 5 compares
the performance of the different training methods on the square
scenario validation set at each training step. By evaluating a
single environment over time, we can clearly visualize when
and how much the models degraded in prediction performance
in the respective environment. For ease of comparison, the
offline trained model is also plotted as a constant line. In the
first section, all models are trained on the aggregated dataset
of the square scenario and, as expected, the error measures
decrease for all online learning methods reaching better perfor-

mance than offline trained prediction model due to overfitting.
However, when changing from the square environment to the
obstacle environment, the ADE/FDE performance quickly and
drastically degrades for the Vanilla baseline (red arrow). It can
be seen that using EWC to selectively slow down learning
on important parameters helps to significantly mitigate the
magnitude of the loss in ADE/FDE. Nevertheless, after two
subsequent tasks, the EWC baseline performed ∼ 30% worse
on FDE and ∼ 20% worse on ADE. Rehearsing a set of
past examples enables to retain more knowledge after two
subsequent tasks than applying EWC. Combining EWC and
the coreset rehearsal as done in SCL helps to further mitigate
forgetting. SCL was able to train in two subsequent scenarios
while retaining knowledge of the initially experienced sce-
nario.
We have performed pair-wise Mann-Whitney U tests between
our proposed method and each baseline to evaluate the sta-
tistical significance of the presented results. Table III shows
the p-values comparing the performance results (i.e., ADE
and FDE) on each scenario for the obstacle � hall � square
sequence. SCL significantly outperforms CV on all environ-
ments, the Vanilla baseline on all past environments, and EWC
on one environment. Rehearsing alone achieves marginally
worse results than SCL. Please note that the presented results
consider a limited set of environments with limited complexity.
We expect that as the number of scenarios and complexity
increases, differences in performance between the baselines
become significant.

E. Dense Scenarios

To evaluate how well our framework scales to complex
scenarios with more pedestrians we employ the above sim-
ulation environments with increased numbers of pedestrians
(n = {10, 20}). The results are presented in Table II. It can be
seen that SCL scales well to dense scenarios with more agents
achieving similar performance for 10 and 20 pedestrians.
The forgotten ADE/FDE even decreases for some sequences,
indicating that observing more pedestrians can improve the
preservation of past experiences.

F. Real-world Results

We first evaluate our method in real-world experiments
assuming perfect perception capabilities by using an external
high-precision Optitrack tracking system. Secondly, we use
the robot’s on-board sensing capabilities combined with a
detection and tracking pipeline.

1) Perfect Perception: To evaluate our framework using the
Optitrack system, we set up three environments to replicate the
ones considered in simulation (i.e., square, obstacle, coopera-
tive). Each environment is observed for T seconds. Table IV
reports quantitative results on two different sequence orders
similar to Table II. Our framework significantly outperformed
the Vanilla baseline on both metrics indicating that we can
not only learn a prediction model from real human motion
but also that we need to consolidate the learned knowledge.
SCL was able to improve prediction performance and learn
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TABLE II: Quantitative results of the CV prediction and Vanilla, EWC, Coreset and SCL training approaches for four
environment sequences. The results for the dense scenarios are included as SCL-10 and SCL-20. The table lists the
mean±standard deviation (std) of ADE / FDE for all environments at the sequence end under seq. end and the mean±std of
the forgotten ADE / FDE, which refers to the average increase in ADE / FDE on previous environments across the learning
sequence. All error measures are presented in meters.

square � obstacle � hall obstacle � square � hall hall � obstacle � square obstacle � hall � square

Method
forgotten

(mean±std)
seq. end

(mean±std)
forgotten

(mean±std)
seq. end

(mean±std)
forgotten

(mean±std)
seq. end

(mean±std)
forgotten

(mean±std)
seq. end

(mean±std)

CV +0.00±0.00/ 1.12±1.18/ +0.00±0.00/ 1.25±1.29/ +0.00±0.00/ 1.12±1.17/ +0.00±0.00/ 1.26±1.31/
+0.00±0.00 1.09±1.69 +0.00±0.00 1.10±1.65 +0.00±0.00 1.16±1.91 +0.00±0.00 1.24±1.92

Vanilla +0.12±0.29/ 0.21±0.31/ +0.10±0.23/ 0.21±0.27/ +0.20±0.27/ 0.27±0.26/ +0.18±0.20/ 0.26±0.21/
+0.31±0.74 0.49±0.79 +0.27±0.62 0.47±0.63 +0.51±0.62 0.62 ±0.58 +0.52±0.51 0.63±0.51

EWC +0.10±0.25/ 0.19±0.25/ +0.05±0.13/ 0.17±0.13/ +0.12±0.17/ 0.22±0.16/ +0.10±0.18/ 0.21±0.19/
+0.28±0.67 0.46±0.66 +0.12±0.37 0.37±0.35 +0.33±0.44 0.51±0.41 +0.27±0.47 0.48±0.45

Coreset +0.03±0.09/ 0.16±0.12/ +0.05±0.11/ 0.17±0.14/ +0.03±0.10/ 0.17±0.13/ +0.04±0.09/ 0.19±0.15/
+0.09±0.27 0.36±0.34 +0.12±0.29 0.38±0.34 +0.08±0.25 0.36±0.28 +0.12±0.24 0.40±0.31

SCL +0.02±0.10/ 0.16±0.14/ +0.01±0.08/ 0.15±0.12/ +0.03±0.08/ 0.17±0.12/ +0.04±0.09/ 0.17±0.13/
+0.07±0.29 0.36±0.40 +0.04±0.20 0.34±0.27 +0.07±0.20 0.37±0.30 +0.08±0.21 0.36±0.28

SCL-10 +0.00±0.10/ 0.20±0.17/ +0.01±0.12/ 0.20±0.16/ +0.00±0.08/ 0.20±0.15/ +0.01±0.10/ 0.20±0.14/
+0.00±0.23 0.45±0.40 +0.03±0.25 0.44±0.37 +0.01±0.19 0.45±0.33 +0.01±0.26 0.44±0.33

SCL-20 +0.04±0.12/ 0.22±0.19/ +0.02±0.10/ 0.20±0.16/ +0.04±0.11/ 0.21±0.18/ +0.03±0.12/ 0.22±0.18/
+0.10±0.31 0.49±0.42 +0.05±0.25 0.46±0.37 +0.08±0.26 0.47±0.40 +0.06±0.28 0.50±0.41

TABLE III: Statistical Significance Analysis using the Mann-
Whitney U test. Comparison of SCL’s performance (i.e., ADE
and FDE) against all baselines on each environment for the
obstacle � hall � square sequence. Significant results are
displayed in bold considering a 5% confidence-level.

obstacle hall square
Method ADE FDE ADE FDE ADE FDE
CV p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.00
Vanilla p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.97 p = 0.53
EWC p = 0.06 p = 0.02 p = 0.04 p = 0.01 p = 0.65 p = 0.71
Coreset p = 0.29 p = 0.09 p = 0.63 p = 0.68 p = 0.22 p = 0.33

certain concepts, such as avoiding crashing into walls, pil-
lars, or fences. Figure 6 shows a qualitative example of the
experiment, where our framework learns to avoid both static
obstacles and pedestrians.

2) On-board Perception: We now evaluate our framework
in an uncontrolled hall environment using the robot’s detection
and tracking pipeline (i.e., LiDAR and cameras). In Fig. 7
we show qualitative results of the experiments with a moving
robot. The fact that the robot is constantly moving reduced the
average collected trajectory length of the interacting pedestri-
ans making the prediction problem harder. Thus, employing
SCL in more dense environments is expected to further im-
prove the resulting prediction performance. Nevertheless, the
prediction model learned online when pedestrians are likely
to take corners, by observing how real pedestrians walk in the
environment. Note that the ETH and UCY datasets, on which
our model was pre-trained, contain almost no interactions
with static obstacles, yet our framework autonomously learns
obstacle interactions. Furthermore, the occupancy map shown
in Fig. 7 is generated by the robot itself using the depth
information from its LiDAR. Thus, our framework can contin-
uously learn in new and unseen environments autonomously.

Fig. 6: Real-world validation using an Optitrack system that
streams the pedestrian states. The predicted pedestrian trajec-
tories are depicted as green and blue disks.

Fig. 7: Map view of the real-world application of SCL on
moving robot using on-board perception. The green and blue
disks depict the predicted trajectories employing the pre-
trained model and the SCL-trained model, respectively. The
red dotted lines depict the pedestrians’ past trajectories. The
pedestrians’ and robot’s future trajectories are shown as solid
red lines.

VI. CONCLUSIONS & FUTURE WORK

This paper introduces a Self-supervised Continual Learning
framework (SCL) to improve pedestrian prediction models
using online streams of data. We combined Elastic Weight
Consolidation (EWC) and the rehearsal of a small constant
sized set of examples to overcome catastrophic forgetting.
We showed through experiments that SCL significantly out-
performs vanilla gradient descent and performs similarly to
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TABLE IV: Quantitative results of Vanilla, EWC and SCL on
real-world data collected using an optical tracking system. The
table lists the mean±standard deviation (std) of ADE / FDE
on all environments at the sequence end under seq. end and
the mean±std of the forgotten ADE / FDE, which refers to
the average increase in ADE / FDE on previous environments
across the learning sequence. All error measures are presented
in meters.

square � obstacle � coop. obstacle � square � coop.

Method
forgotten

(mean±std)
seq. end

(mean±std)
forgotten

(mean±std)
seq. end

(mean±std)

Vanilla +0.24±0.28/ 0.46±0.29/ +0.21±0.26/ 0.45±0.29/
+0.58±0.67 0.97±0.66 +0.50±0.64 0.94±0.63

EWC +0.19±0.29/ 0.43±0.27/ +0.12±0.23/ 0.41±0.25/
+0.42±0.67 0.86±0.61 +0.31±0.58 0.87±0.56

SCL +0.04±0.21/ 0.36±0.23/ +0.05±0.22/ 0.40±0.28/
+0.13±0.50 0.73±0.56 +0.11±0.50 0.80±0.60

offline trained models with full access to pedestrian data in
all considered environments. Additionally, we showed in real-
world experiments that our pedestrian prediction model can
learn to generalize to new and unseen environments over time.
Future work can investigate different methods to determine
when the model should be updated, how different pedestrian
behaviour types could be integrated into our framework and
the integration of our approach with a motion planner to
improve the interaction-awareness between pedestrians and the
robot.
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