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Abstract. Many problems in robotics seek to simultaneously optimize
several competing objectives under constraints. A conventional approach
to solving such multi-objective optimization problems is to create a single
cost function comprised of the weighted sum of the individual objectives.
Solutions to this scalarized optimization problem are Pareto optimal so-
lutions to the original multi-objective problem. However, finding an ac-
curate representation of a Pareto front remains an important challenge.
Using uniformly spaced weight vectors is often inefficient and does not
provide error bounds. Thus, we address the problem of computing a finite
set of weight vectors such that for any other weight vector, there exists
an element in the set whose error compared to optimal is minimized.
To this end, we prove fundamental properties of the optimal cost as a
function of the weight vector, including its continuity and concavity. Us-
ing these, we propose an algorithm that greedily adds the weight vector
least-represented by the current set, and provide bounds on the error. Fi-
nally, we illustrate that the proposed approach significantly outperforms
uniformly distributed weights for different robot planning problems with
varying numbers of objective functions.

Keywords: Multi-objective optimization, Planning, Human-robot in-
teraction

1 Introduction

Robot planning problems often face the challenge of simultaneously optimizing
multiple objectives. Finding the appropriate trade-off between objectives remains
a major challenge when deploying intelligent autonomous systems. For instance,
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(a) Uniform sampling. (b) Proposed min-regret sampling.

Fig. 1: Top: Different optimal trade-offs between trajectory length and discomfort,

sampled uniformly and by the proposed method. Bottom: Approximated Pareto front

(blue) and ground truth Pareto front (red).

autonomous cars optimize trajectories for passenger comfort and efficiency [1,2],
manipulators working in cooperative tasks consider human ergonomics as well as
risk of collision or other damage in handover tasks [3], mobile robots performing
transportation in industrial settings trade-off task efficiency and compliance with
user specific norms [4], and autonomous mobility-on-demand systems seek to
maximize service quality while minimizing operation cost [5].

A common technique in multi-objective optimization is to create a single
cost function defined by the weighted sum of the individual objectives [6]. This
approach, called linear scalarization, leads to solutions that are Pareto optimal
for the multi-objective problem [7]. That is, the solution to the scalarized single-
objective problem cannot be changed to improve the value of one of its objectives
without degrading the value of another. This work is motivated by two classes of
problems in robotics: 1) obtaining near optimal solutions to a linearly scalarized
multi-objective optimization problem (LSMOP) for any given weight vectors,
and 2) learning the preferred solution behavior of a human user. Applications
of the first class include [5] in which an adjustable trade-off between the service
quality and operating costs for autonomous mobility-on-demand systems are
optimized. Conversely, the second class of problems seeks to compute a weight
vector representing the relative importance of each objective to a user given
some knowledge of that users’ preferred solutions [4, 8–12].

In either class, it is often beneficial to pre-compute solutions to the LSMOP
for a set of weight vectors. If the LSMOP is computationally intensive to solve,
requiring online solutions may be impractical. This motivates the problem of
finding a set of weights and their corresponding optimal solutions such that for
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any possible weight vector, there exists an element of the set whose solution is
close to optimal. A naive approach would involve densely sampling the set of all
possible weight vectors. However, the sensitivity of some objectives to changes
in solution may result in a skewed sampling of Pareto optimal solutions. This is
illustrated in Figure 1 where we seek to compute a Dubins trajectory between
fixed start and goal configurations that minimizes a trade-off between trajectory
length and discomfort (measured as the integral of the squared jerk over the
trajectory [13]). In the left images, a set of weights vectors is selected uniformly
and the resulting solution trajectories (top) and Pareto front (bottom) is shown.
We observe that uniformly sampling over the set of possible weights generate
a set of similar trajectories. In this paper, we propose a technique to construct
a set of weight vectors such that their corresponding optimal solutions provide
homogeneous coverage of the Pareto front (see Figure 1b).

Contributions: The contributions of this work are fourfold: First, we propose
an algorithm for homogeneous sampling of the Pareto front. Second, we prove
fundamental properties of the optimal cost for any weight such as concavity
and continuity. Third, we show that using the best available solution from the
computed set to approximate the optimal solution to LSMOP for any arbitrary
weight has has a bounded error. Finally, we showcase the advantages of our
sampling algorithm in different robotics applications, namely trajectory planning
and reward learning.

1.1 Related Work

Linear Scalarization in Robotics: The simplicity of linear scalarization has made
it one of the most widely used tools in robotic multi-objective optimization [14].
Though the technique is not able to capture all Pareto-optimal solutions for non-
convex fronts, it does guarantee that all LSMOP solutions are Pareto-optimal. In
[15], a trajectory smoothing algorithm is proposed based on the weighted sum of
the competing objectives: trajectory length, smoothness, and obstacle distances.
The authors of [16] minimize the weighted trade-off between mission completion
time and communication outage duration in the navigation of cellular-connected
UAVs, while in [17], linear scalarization is used to optimize robotic limitations
and observation rewards for use in autonomous human activity tracking.

In human-robot interation (HRI), weight vectors are used to represent the
relative importance of objectives – often referred to as features – to a user
[8, 11, 12, 18]. In reward learning it is the objective to learn a user’s weight
vector using interactions such as demonstrations, corrections, or choice feed-
back. In order to expedite the learning process, feasible solutions for the multi-
objective optimization problem are often pre-computed and shown to the user
who then provides feedback. In [8, 12, 19], each pre-computed solution is gen-
erated with random action sequences. Thus, the solutions used in the learning
process are usually not optimal for any weight. In [11, 20], the authors pre-
compute Pareto-optimal solutions enabling an active learning method based on
regret leading to significant improvement over randomly generated solutions.
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However, the work in [11,20] rely on uniformly sampled weight vectors. Though
this approach asymptotically covers the set of all LSMOP-optimal solutions, it
can be inefficient as different weight vectors can have very similar, or even iden-
tical solutions. The authors of [21] observed that the presence of similar solution
strongly influences the Boltzmann decision model which is commonly used in
HRI. They propose a decision model where a similarity metric corrects the bias
induced by a high number of similar trajectories. Similarly, in our work we are
interested in finding solutions with dissimilar features. While [21] handles the
over-representation of similar solutions in the ground set with their proposed de-
cision model, we instead address the problem at an earlier stage: our algorithm
can be used to generate a ground set where similarities are minimized.

Uniform Sampling of Pareto-Optimal Solutions: Uniform sampling of a Pareto
front is a persistent problem in multi-objective optimization. Similar to our work,
the authors of [22] offer a technique of Pareto-uniform sampling based on equis-
pacing constraints. However, this work only considers the case of two competing
objectives. Further, they accomplish their goal by solving a significantly harder
problem than the original LSMOP. Also similar, the work in [23] proposes a set
of weight vectors that approximately uniformly cover a Pareto front specifically
for use in the design of robots. The authors design the set that minimizes the
total squared error between the value of the objectives in the set and heuristic
objectives. It therefore relies on the approximate optimality of these objectives.
The work in [24] proposes a method to cover the set of Pareto-optimal solutions
specifically for use in reinforcement learning applications. There, the authors
seek to compute policies that maximize expected returns by computing, storing,
and updating a set of samples. In [14] the authors provide a means of explor-
ing a (possibly non-convex) Pareto front in order to obtain a solution that is
near-optimal for a user. That work starts with an initial guess solution and
then moves in a direction according to the preferences of a user. While the con-
vexity of the Pareto front (a requirement for linear scalarization to obtain all
Pareto-optimal solutions) is not assumed, their technique does require solving
the LSMOP online as the Pareto front is explored. Moreover, the requirement
of a user-preferred direction is not assumed in our work. In [25] a Pareto front
approximation is proposed using Markov chain random walks. Their goal is to
uniformly place samples on the Pareto front, while our goal is to minimize error
in the space of Pareto-optimal costs.

2 Problem Statement

For n ∈ N, a general multi-objective optimization problem (MOP) is of the form

min
s∈S

(
f1(s), f2(s), . . . , fn(s)

)
.

Here, the set of feasible solutions given constraints is denoted S, and it is desired
to simultaneously minimize n objectives fi(s), i = 1, . . . , n. The linear scalariza-
tion of the MOP above would involve the creation of a single cost function by
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introducing a vector of weights w = [w1, w2, . . . , wn] ∈ Rn
≥0. Let c(s,w) denote

the cost of the solution s evaluated by the weights w, i.e.,

c(s,w) =

n∑
i=1

wi · fi(s) = w · f(s),

where f(s) = [f1(s), . . . , fn(s)], ∀s ∈ S. The resulting linearly scalarized multi-
objective optimization problem (LSMOP) is to solve

u(w) = min
s∈S

c(s,w). (1)

For any weight w ∈ Rn
≥0, solution s ∈ S, and λ ∈ R>0, it holds that c(s, λw) =

λc(s,w) implying that a minimizer of c(s,w) also minimizes c(s, λw). Further,
if w = [0, 0, . . . , 0], then u(w) is trivially 0. Thus, given w = [w1, . . . , wn] where

not all elements are identically 0, and letting λ = (
∑n

i=1 wi)
−1

, we can obtain all
non-trivial optimal solutions u(w) for all w ∈ Rn

≥0 using weights w ∈ W where

W =
{
w ∈ Rn

≥0,

n∑
i=1

wi = 1
}
. (2)

We refer to the set W as the weight space, and we use the notation

s∗(w) = argmin
s∈S

w · f(s), ∀w ∈ W,

implying that u(w) = c(s∗(w),w) by (1). We make the following assumptions:

Assumption 1 (Exact Solution). An exact solver exists for the optimization
problem (1).

Assumption 2 (Bounded Objectives). For any weight w ∈ Rn
≥0, and any solu-

tion s∗(w), the objectives f(s∗(w)) are bounded.

In this work, we propose a method to compute a finite set of weights Ω ⊂ W
that will, for any w∗ ∈ W, allow us to approximate u(w∗) with u(w′) for an
appropriately chosen w′ ∈ Ω. To evaluate the quality of a candidate set Ω, we
use the notion of regret from [11,26], defined formally here:

Definition 1 (Regret). Given two weights w′,w∗ ∈ W, the regret of w′ under
w∗ is defined as

r(w′|w∗) = w∗ · f (s∗(w′))− u(w∗). (3)

Intuitively, r(w′|w∗) represents the error in cost incurred by using an optimal
solution given weight w′ (given by s∗(w′)) to approximate a solution given
weight w∗. We now formally state the main problem addressed in this work.

Problem 1 (Min-Max Regret Sampling). For the LSMOP (1) and some integer
K > 0, find a set of sampled weights Ω that solves

min
Ω

max
w∗∈W

min
w′∈Ω

r(w′|w∗)

s.t. |Ω|≤ K.
(4)
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Given a weight w∗ ∈ W and a set Ω ⊂ W, the first minimization in (4),
minw′∈Ω r(w′|w∗) represents the sub-optimality of approximating a solution
s∗(w∗) with a solution s∗(w′) where w′ is the weight in Ω that minimizes this
sub-optimality – i.e., w′ is a best representative of w∗ in Ω. The maximiza-
tion maxw∗∈W minw′∈Ω r(w′|w∗), represents the regret of the worst represented
weight w∗ ∈ W by elements in Ω. We refer to the solution of this maximization
as the maximum regret given Ω. In total, (4) seeks a set Ω such that the regret
of the worst represented element in W is minimized.

In this paper, we offer an approximate solution to the optimization in (4)
by way of an algorithm that computes a feasible solution Ω such that the maxi-
mum regret given Ω is bounded. In the next section, we provide the theoretical
groundwork that makes this solution possible.

3 Problem Analysis

We begin with a structural analysis of the cost function u(w) to derive an efficient
algorithm for solving Problem 1. First, we make two critical observations.

Observation 1. Given any two weights w∗,w′ ∈ W, we have

u(w∗) ≤ w∗ · f(s∗(w′)), (5)

That is an optimal solution given weights w∗ will incur no higher cost than
a solution that is optimal for some different weight vector w′. Here, s∗(w′) is
optimal given weights w′ but not necessarily optimal given weights w∗. By (3),
the inequality in (5) implies that r(w′|w∗) ≥ 0.

Observation 2 (Optimal Cost Concavity). The optimal cost function u(w) is
a concave function of w. Indeed, for each s ∈ S, the cost c(s,w) = w ·f(s) is an
affine function ofw (and is therefore concave). Therefore, u(w) = mins∈S c(s,w)
is concave [27][Section 3.2.3].

Observation 2 motivates the following Corollary:

Corollary 1 (Optimal Cost Continuity). Under Assumptions 1, 2, the func-
tion u(w) is continuous on the interior of W. Further, u(w) is continuous on
the boundary of W in the direction of its interior.

Proof. By Observation 2, u(w) is concave inW. Noting in addition thatW ⊂ Rn

is convex, it must hold that u(w) is continuous on the interior of W. This is
because concave functions are continuous on the interior of convex sets. Next,
consider two weightsw′,w′′ ∈ W one of which lies on the boundary ofW and one
in the interior ofW. Suppose that ||w′−w′′||≤ δ for some δ > 0 arbitrarily small,
and – without loss of generality – that u(w′) > u(w′′). Because it is assumed that
u(w) is bounded on W, if it experiences a discontinuity on the line connecting
w′,w′′, it must hold that u(w) experiences a jump betweenw′,w′′. That is, there
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must exist a M ∈ R>0 independent of δ such that u(w′′) + M ≤ u(w′). Since
||w′′ −w′||≤ δ, and f(s∗(w′′)) is bounded by Assumption 2, there must exist a
value of δ sufficiently small so as to guarantee that (w′−w′′) ·f(s∗(w′′)) < M/2.
Therefore, by construction,

w′ · f(s∗(w′′)) <
M

2
+w′′ · f(s∗(w′′)) =

M

2
+ u(w′′)

≤ M

2
+ u(w′)−M = u(w′)− M

2
< u(w′).

Therefore, r(w′′|w′) = w′ · f(s(w′′)) − u(w′) < 0 which is a contradiction by
Observation 1.

Critically, the previous results do not require unique solutions s∗(w) or con-
tinuous objectives f(s∗(w)). Extending these results:

Theorem 1 (Convexity of Regret). For a fixed weight w′ ∈ W, the regret
r(w′|w) is a convex function of w.

Proof. By the definition of regret in (3), r(w′|w) = w ·f(s∗(w′))−u(w). where
w ·f(s∗(w′)) is linear in w and u(w) is concave by Observation 2. Thus, r(w′|w)
is the difference of a linear and concave function of w which is convex.

Because u(w) is continuous and concave, it must hold that the function lies
below any sub-gradient. This motivates the following Corollary which follows
directly from the definition of u(w) and the concavity of c(s,w) for each fixed
s ∈ S [27][Section 6.5.5].

Corollary 2 (Sub-gradient Optimal Cost). For any w ∈ W, the sub-gradients
of u(w) are given by

∂u(w) = f(s∗(w)),

for any minimizing solution s∗(w) ∈ S.
Observe that sub-gradients are defined even for non-differentiable continuous

functions. Further, The results above imply that given two weights w′,w∗ ∈ W,
the regret r(w′|w∗) — which coincides with the error incurred by approximating
a solution s∗(w∗) with the solution s∗(w′) — is exactly the error of approximat-
ing a concave function via linear interpolation. Indeed, the first order approxi-
mation of u(w∗) given u(w′) is given by u(w∗) ≈ u(w′) +∇u(w′) · (w∗ −w′)
assuming u is differentiable at w′. However, by Corollary 2, ∇u(w) = ∂u(w) =
f(s∗(w)). This together with the definition u(w′) = f(s∗(w′)) ·w′ allows us to
conclude that u(w∗) ≈ u(w′)+f(s∗(w′)) ·w∗−f(s∗(w′)) ·w′ = f(s∗(w′)) ·w∗.
The error of this first order approximation is therefore f(s∗(w′)) ·w∗ − u(w∗)
which is exactly the regret r(w′|w∗).

This is illustrated in Figure 2 (a). Further, given any two weightsw′,w′′ ∈ W,
the maximum regret on the line segment L between w′,w′′ given Ω = {w′,w′′}
occurs at the weight on L coinciding with the intersection of the tangent lines to
u(w) at w′ and w′′ along L (Figure 2 (b)). In light of this analysis, the objective
in (4) is solved by a set Ω that provides the best linear interpolation of the
concave function u(w). These insights are leveraged in the following section.



8 A. Botros, A. Sadeghi, N. Wilde, J. Alonso-Mora and S. L. Smith

(a) (b)

Fig. 2: (a) Regret as the error of a first order approximation. (b) Maximum regret

given a set Ω = {w′,w′′} at the intersection of their tangent lines.

(a) P (w), C(N) for N = {w1,w2,w3} (b) Regret r, and regret bound R

Fig. 3: Illustrative example of a neighborhood and its properties.

4 Algorithm

In this section, we present our solution to Problem 1. The algorithm we propose
works by recursively adding weights to a solution set Ω. A strong candidate
weight to add is one that is least represented by the current iteration of Ω. The
basic framework for such an approach could be described recursively:

Ωk+1 = Ωk ∪ {argmax
w∗∈W

min
w′∈Ωk

r(w′|w∗)}, (6)

where Ωk is the solution after k iterations from an initial set. Here, (6) recursively
adds the weight with the maximum regret given Ωk. Obtaining the maximizer
w∗ is non-trivial due to its nested structure. Instead, our approach replaces
r(w′|w∗) in (6) with an upper bound R(w′|w∗) whose maximizer w∗ is obtained
from a linear program (LP). Given a set of weights Ω ⊆ W, we define N as a
set of n (recall that n is the number of objectives) linearly independent weights
w1, . . . ,wn ∈ Ω, and we let C(N) ⊂ Rn denote the convex hull of N . We will
loosely refer to N as a neighborhood. We define a linear lower bound of the
objective value u(w) from (1) inside a neighbourhood N . Let P : W → R≥0 be
the linear function taking values P (wi) = u(wi) for all wi ∈ N (Figure 3 (a)).
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We denote the difference between the tangent plane at w′ and the P evaluated
at w∗ with R(w′|w∗) = f(s∗(w′))w∗ − P (w∗), ∀w′ ∈ N,w∗ ∈ C(N). Further,
let

R̄(N) = max
w∗∈C(N)

min
w′∈N

R(w′|w∗), w̄(N) = argmax
w∗∈C(N)

min
w′∈N

R(w′|w∗). (7)

Finally, we let F(N) represent the set of feature vectors of the neighborhood:

F(N) = {f(s∗(wi)),wi ∈ N}. (8)

Thus, R(w′|w∗) is similar to r(w′|w∗) from (3), but with u(w∗) replaced
with P (w∗). These definitions, illustrated in Figure 3, motivate the Theorem:

Theorem 2 (Upper Bound of Maximum Regret in a Neighborhood).
Given a neighborhood N of weights, it holds that

max
w∗∈C(N)

min
w′∈N

r(w′|w∗) ≤ R̄(N).

Proof. For any fixed w∗ ∈ C(N), let w′
1 = argminw′∈N r(w′|w∗) and let w′

2 =
argminw′∈N R(w′|w∗). Note that w′

1 = w′
2. Indeed, we have R(w′

2|w∗) ≤
R(ŵ|w∗) for all ŵ ∈ N if and only if w∗ · f(s∗(w′

2)) ≤ w∗ · f(s∗(ŵ)) which is
equivalent to r(w′

2|w∗) ≤ r(ŵ|w∗).
By Observation 2, u(w) is concave on C(N) implying that for any w ∈ C(N),

u(w) ≥ P (w) (see Figure 3). Thus, by (3), r(w′|w∗) ≤ R(w′|w∗) for any w∗ ∈
C(N). The result follows.

The value of R̄(N) with corresponding weight w̄(N) from (7) can be obtained
by solving the following LP:

max
x∈R,w∈Rn

x− P (w)

s.t.

f1(s
∗(w1)) . . . fn(s

∗(w1)) −1
...

. . .
...

...
f1(s

∗(wn)) . . . fn(s
∗(wn)) −1

[
w
x

]
≥

0...
0

 ,

w ∈ C(N).

(9)

If (x∗,w∗) solves (9), the optimal cost is given by x∗−P (w∗) = R̄(N), and w∗ =
w̄(N). Indeed, for any feasible x,w, it holds that x ≤ minwi∈N f(s(wi)) · w.
Since x is maximized, this will hold with equality for x∗,w∗. Therefore, the cost
of (9) is equivalent to maxw∈C(N) minwi∈N R(wi|w) = R̄(N). A detailed expla-
nation of the implementation for Equation (9) is provided in the supplementary
materials.

In (9), if P (w) is replaced with u(w), then the resulting problem is solved
by x∗,w∗ if and only if w∗ maximizes the regret in C(N) given the neighbor-
hood N . This problem is not linear and would require solving the LSMOP in (1)
potentially many times. Using the LP in (9) our method is summarized in Al-
gorithm 1 described in the next section. We iteratively partition W into smaller
neighborhoods, adding weights that result in the largest upper bound of regret.
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Algorithm 1: Min-Regret Pareto Sampling (MRPS)

Input: An exact solver to find s∗(w),f(s∗(w)); a budget K
Output: Sampled weights Ω and maximum regret

1 Ω← {ei, i = 1, . . . , n} // where ei is the ith row of the n× n identity matrix

2 Obtain s∗(ei),f(s∗(ei)), i = 1, . . . , n from exact solver
3 N ← {Ω}
4 for k = n to K do
5 N = neighborhood in N with maximum R̄(N)
6 if R̄(N) = 0 then
7 break // Terminate if maximum upper regret bound is 0

8 Ω← Ω ∪ {w̄(N)}
9 Obtain s∗(w̄(N)),f(s∗(w̄(N))) from exact solver

10 N = N \N // Remove max-regret neighborhood

11 for wi in N do
12 N i ← N \ {wi} ∪ {w̄(N)} // Replace wi with weight of the maximum

regret bound
13 if N i is a neighborhood, i.e., its weights are lin. independent then
14 N = N ∪N i

15 F(N i)← F(N) \ {f(s∗(wi))} ∪ {f(s∗(w̄(N)))}

16 return Ω and the maximum value of R̄(N) over all N ∈ N

4.1 Algorithm Description

Algorithm 1 creates and maintains a set N of neighborhoods N ⊂ W. Each
N ∈ N is a set of weights N = {w1, . . . ,wn} where wi ∈ Ω, i = 1, . . . , n. We
compute R̄(N) and w̄(N) with the LP in (9) for N using the set of objective
vectors F(N). The algorithm begins with a single neighborhood whose weights
are the n canonical basis elements of Rn (Line 1). The algorithm then iteratively
selects the neighborhood N in N with the largest upper bound of regret (Line
5), and adds its regret weight w̄(N) to Ω (Line 8). It then splits and replaces
N with at most n smaller neighborhoods (Lines 11-15) formed by iteratively
replacing elements in N with w̄(N) (Line 12). Finally, the algorithm returns the
set Ω as well as an upper bound on the regret given Ω (Line 16). Two steps of
the algorithm are illustrated in Figure 4, starting with a single neighborhood
N1 in (a) which is then split around w3 = w̄(N1) into two new neighborhoods
N = {N2, N3} in (b). Since R̄(N3) > R̄(N2), N3 is split around w5 = w̄(N3) in
(c). Finally, in (d), the red area shows the regret given Ω.

Observe that Algorithm 1 may be modified to compute a set Ω given a desired
maximum regret rmax > 0. This could be accomplished by replacing the input
K with rmax, and the stopping criteria in Line 4 with a while loop that runs
until R̄ ≤ rmax. Here, R̄ represents the maximum regret over all neighborhoods
R̄ = maxN∈N R̄(N) and can be maintained in the body of the loop. Since N
forms a partition of W, we are guaranteed that the regret of any weight given
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(a) (b)

(c) (d)

Fig. 4: Illustration of the first two iterations of Algorithm 1.

Ω is no more than R̄ by Theorem 2. Therefore, if Algorithm 1 terminates when
R̄ ≤ rmax, the desired maximum regret is achieved.

4.2 Algorithm Properties

We observe several beneficial properties to the approach outlined above. First,
for a budget of K, Algorithm 1 will require that the LSMOP in (1) be solved
at most K times, once per element of Ω. Second, the value of R̄(N) returned
by the algorithm is an upper-bound on the value of regret in the original prob-
lem (4). Indeed, initially N = {Ω} and C(Ω) = W. At every iteration, a neigh-
borhood N ∈ N is split into at most n sub-neighborhoods such whose convex
hulls are disjoint and collectively form C(N). Then, by Theorem 2, it holds that
maxw∗∈W minw′∈Ω r(w′|w∗) ≤ maxN∈N R̄(N).

Further, the set Ω(K) returned by Algorithm 1 on input K asymptotically
and monotonically approaches a set with zero regret as K → ∞. The proof of
this is omitted for brevity, but holds because otherwise a neighborhood N ∈ N
would fail to decrease in size when split (Lines 11-15). This in turns requires
that there is a wi ∈ N such that ||w̄(N) − wi||2 decreases to 0. Since w̄(N)
is chosen to maximize R̄(N), this can only occur if R̄(N) is unbounded at wi

implying that the objectives are unbounded at wi in violation of Assumption 2.
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(a) Approximation using Uniform. (b) Approximation using MRPS.

Fig. 5: Approximation of u(w) and resulting regret with Uniform (a) and MRPS (b).

5 Simulation Results

We demonstrate our algorithm in simulations for two different domains: Tra-
jectory planning and learning human preferences. We compare our proposed
algorithm to uniform sampling in the weight space [11, 28, 29]. This baseline is
denoted by Uniform, while the proposed approach from Algorithm 1 is MRPS.

5.1 Experiment 1: Dubins Trajectories

In the first experiment, we approximate the Pareto front for a LSMOP motion
planning problem for a Dubins vehicle, as shown in the example from Figure 1.
The objectives in the problem are trajectory length and integral of the squared
(IS) jerk. To find solutions s∗(w), the motion planner can compute different
Dubins trajectories using different turn radia and pick the optimum among these.

Illustrative Example First, we present more insight into the example in Figure
1 with K = 7 samples. We notice that MRPS produces a larger variety of sample
trajectories, especially those with shorter length. This is also visualized in the
approximations of the Pareto front: Uniform exhibits a large gap, while the pro-
posed method places samples more homogeneously. In Figure 5 we show the op-
timal cost u(w) (ground truth computed with 10,000 uniform weights), together
with the tangent planes of the approximating samples of both approaches. Here,
MRPS places more samples at the right end where u(w) changes more rapidly.
Thus, the gap between the best approximating weight and the cost, i.e., the
regret, is substantially smaller than Uniform.

Quantitative Analysis We repeat the above Dubins planning experiment, but
with randomized goal locations and various sampling budgets K. We evaluate al-
gorithm performance on three measures: the regret as defined in (3), the relative
regret where the difference in (3) is replaced with a ratio, and the hypervolume
of the estimated Pareto front, similar to [23, 24], using an exact integration for
2 features, and a Monte Carlo approximation as in [24] for higher dimensions.



Error-Bounded Approximation of Pareto Fronts in Robot Planning Problems 13

Fig. 6: Numerical Results for the Dubins experiment with 3 objectives.

Moreover, we consider cases with varying numbers of objectives. Figure 6
shows the result for a three objective system consisting of trajectory length,
IS jerk and maximum jerk. When K = 0 both approaches only use the basis
solutions e1, . . . , en, i.e., only the single objective solutions are available. For
both, absolute and relative regret, we observe that MRPS achieves substantially
smaller values for all k > 0. With just 3 samples, MRPS achieves a median regret
of .17, corresponding to a median of 1.08 in relative regret, i.e., percent error.
In contrast Uniform only achieves a medians of .23 and 1.16 with 10 samples
for regret and relative regret, respectively. The smaller estimated hypervolume
also suggests that the MRPS-samples lead to a tighter linear approximation of the
Pareto front. In summary, the samples found by MRPS for small K have smaller
regret and hypervolume than samples found by Uniform with K = 10. Thus,
our proposed method uses samples much more efficiently.

Varying number of objectives We also considered problem variances with 2 or 4
objectives. As expected, with two objectives (length and IS jerk) both approaches
achieve a smaller regret with fewer samples. Nonetheless, the MRPS samples for
K = 3 are superior to the Uniform samples for K = 10, and the regret of MRPS
actually converges to 0 for K = 10. We also tested the algorithm with four
features, where the fourth objective is to avoid part of the environment. While
the regret is larger for both approaches, we still observe the same trend that
MRPS with 3 samples is on-par with Uniform using 10 samples.

5.2 Experiment 2: Reward Learning

As a second example, we show how using the proposed sample method when
learning user preferences, i.e., learning a user specific, but hidden weight vector
w∗. As mode of user interaction, we consider learning from choice [4,8,11,12,29]
where the user is iteratively queried with two potential robot trajectories and
indicates the preferred one. Repeating this over multiple iterations allows the
robot infer about the user weights w∗. Most algorithms for this problem require
a set of presampled trajectories from which the best query is selected using some
heuristic [8, 11, 12, 29]. These presamples are either random trajectories [8, 12],
or optimal solutions for uniformly random weights for the LSMOP [11,20,29].

Our proposed algorithm MRPS can be used to generate presamples for these
learning problems. Thus, we compare the learning progress over 10 iterations
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Fig. 7: Learning from choice with presampled sets of different size K. Blue shows learn-

ing progress when using uniformly randomly sampled trajectories for active learning

with either random or regret queries. Orange shows learning progress for the same

query methods, but trajectories are sampled with our proposed algorithm.

when either using Uniform or MRPS samples. For a clear comparison, we use
a simple, deterministic user model: presented with trajectories A and B, they
choose A if and only if f(A)w∗ ≤ f(B)w∗. Similar to [4, 26] the trajectory pre-
ferred in the previous iteration constitutes one of the two trajectories presented
in the next. The robot employs active learning: it can choose the second trajec-
tory to be presented in the next iteration. We employ a random selection from
the presampled set (Random), or the minmax regret approach from [11] (Regret).
Finally, generating random user weights w∗ is not trivial: When w∗ is drawn
uniformly random, the sample set Uniform comes from the same distribution,
biasing the experiment. Thus, we randomly select users from the union of two
sample sets Ω(Uniform) and Ω(MRPS) each of size K = 20. We evaluate learning
performance using relative regret.

We test this learning framework using the four feature Dubins planning prob-
lem from earlier, with one fixed goal location. Figure 7 shows the result for
learning with presampled sets of various sizes K. We compare four different ap-
proaches: Uniform presamples combined with Random or Regret active learning,
and MRPS presamples with Random or Regret active learning. Overall we observe
that the MRPS samples lead to a smaller learning error than Uniform samples,
regardless of the query method (Random or Regret). Indeed, the Uniform sets
do not always include a close-to-optimal sample such that the learning is even-
tually unable to make progress. That is the case when w∗ was drawn from the
MRPS samples. However, the opposite effect is negligible: Learning with the MRPS
samples finds close-to-optimal solutions, implying that the error is very small
even when w∗ comes from Uniform.

When comparing different sizes K of the sample sets, we observe that all
approaches learn slightly slower for larger K - the increased number of available
trajectories seems to rather distract the learning algorithm than offering more
informative queries. More surprisingly, when using Uniform samples, the learning
still stops making progress. This indicates that the larger set still does not contain
close-to-optimal solutions. This further supports our earlier findings that while
MRPS only needs small K to find a close-to-optimal sample for any w∗, while
Uniform is unable to achieve the same even for large K.
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In summary, the experiment shows that using MRPS to generate pre-sampled
solutions in reward learning allows for learning close-to-optimal solutions with
significantly fewer samples than when relying on randomly generated pre-samples.

6 Discussion and Future Work

In this work, we present a method by which a set of weights can be computed
that bounds the maximum regret for any weight in the weight space. However,
we only presented results for the case when an exact solver of the underlying
LSMOP is available. In future, we will extend our work to the case when an
approximation algorithm is used. Further, we constrained our analysis to linear
scalarization. If the Pareto front of the underlying MOP is non-convex, linear
scalarization fails to capture all Pareto-optimal solutions. However, many of the
theoretical results presented here may be extended to Chebyshev scalarization
which is known to be Pareto-complete.
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