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Abstract—This paper studies the multi-robot task assignment
problem in which a fleet of dispersed robots needs to efficiently
transport a set of dynamically appearing packages from
their initial locations to corresponding destinations within
prescribed time-windows. Each robot can carry multiple
packages simultaneously within its capacity. Given a sufficiently
large robot fleet, the objective is to minimize the robots’ total
travel time to transport the packages within their respective
time-window constraints. The problem is shown to be NP-hard,
and we design two group-based distributed auction algorithms
to solve this task assignment problem. Guided by the auction
algorithms, robots first distributively calculate feasible package
groups that they can serve, and then communicate to find an
assignment of package groups. We quantify the potential of the
algorithms with respect to the number of employed robots and
the capacity of the robots by considering the robots’ total travel
time to transport all packages. Simulation results show that the
designed algorithms are competitive compared with an exact
centralized Integer Linear Program representation solved with
the commercial solver Gurobi, and superior to popular greedy
algorithms and a heuristic distributed task allocation method.

Note to Practitioners — This work presents two group-based
distributed auction algorithms for a sufficiently large fleet of
robots to efficiently transport a set of dynamically appearing
dispersed packages from their initial locations to corresponding
destinations within prescribed time-windows. Each robot can
carry multiple packages simultaneously within its capacity, and
the objective is to minimize the robots’ total travel time to
transport all the packages within the prescribed time-windows.
The paper’s practical contributions are threefold: First, the
multi-robot task assignment problem is formulated through a
robot-group assignment strategy, which enables complex logistic
scheduling for tasks grouped according to their distributions
and time-windows. Second, we theoretically show that the multi-
robot task assignment problem is an NP-hard problem, which
implies the necessity for designing approximation task assignment
algorithms. Third, the proposed group-based distributed auction
algorithms are efficient and can be adapted for real scenarios.

Index Terms—Multi-robot, task assignment, time-windows,
NP-hard, distributed auction algorithm.
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I. INTRODUCTION

To enable robots to effectively accomplish various tasks
such as terrain mapping, environmental monitoring, disaster
rescue and logistics scheduling, the multi-robot task assign-
ment problem must be solved [1–4]. For the task assignment of
multi-robot systems, the overall group task generally consists
of a group of subtasks that individual robots can complete
simultaneously [5, 6]. A typical task assignment scenario is to
deploy several robots to visit a set of target locations [7, 8],
which is a variant of the vehicle routing problem (VRP) [9].
For the VRP, a fleet of vehicles with limited capacity needs
to deliver products from one or several depots to a group
of dispersed customers [9]. It has been shown that the VRP
and some multi-robot task assignment problems are NP-hard
[10], requiring extremely long computation time to achieve
the optimal solution with an increasing number of vehicles and
customers. For solving NP-hard problems, heuristic algorithms
are usually designed to achieve a sub-optimal assignment
solution [11]. The VRP with pickup and delivery with time
windows (VRPPDTW) is the extension of the VRP in which
each request, having a specific pickup point and a delivery
location, must be served by a vehicle within an associated
time-window [12–15]. The VRP and VRPPDTW have given
rise to a number of computation methods, including exact
algorithms, such as branch-and-cut algorithms and dynamic
programming approaches [13–15], and heuristic algorithms
[16, 17] where genetic algorithms and simulated annealing
algorithms are popular [12, 18].

This paper studies the task assignment problem for multiple
robots to efficiently transport a set of dispersed packages from
different initial locations to corresponding destinations in a
warehouse within prescribed time-windows. Robots can carry
multiple packages simultaneously not exceeding their maximal
capacity. To transport each package, a robot needs to first
move to the initial location of the package to pick it up,
and then transport it to the associated destination. Given a
sufficiently large robot fleet, the objective is to minimize the
total operation cost for transporting all packages within their
time-windows, which is quantified by the robots’ total travel
time.

The main contributions of this paper are as follows. First,
this paper utilizes a novel robot-group assignment strategy to
formulate the distributed multi-robot task assignment problem
as a two-stage optimization problem, inspired by the central-
ized methods for ridesharing [19]. In the first stage, each robot
individually calculates feasible package groups. Each feasible
package group contains a set of packages that is feasible for
the robot to serve while respecting the corresponding time-
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windows and the robot’s capacity constraint. In the second
stage, an integer programming model is used to formulate an
auction-based distributed assignment of the feasible package
groups to the robots. Second, we theoretically show that
determining whether a feasible solution exists for the resulting
optimization problem is NP-complete, and that if we assume
its existence the associated optimization problem is NP-
hard, which shows the necessity for designing approximation
algorithms to solve the problem. Third, we propose two
group-based distributed auction algorithms, which can achieve
satisfying solutions to the task assignment problem compared
with several baseline methods.

The rest of this paper is organized as follows. Section
II presents the related work on the studied task assignment
problem. In Section III, the formulation of the multi-robot
package delivery task assignment problem is given. Section IV
presents the group-based distributed auction algorithms and the
associated analysis. We show the simulation results in Section
V and conclude the paper in Section VI.

II. RELATED WORK

Task assignment problems for a team of robots to visit a set
of targets, with each target assigned to exactly one robot and
one robot can be assigned to multiple targets, can be solved
by either centralized or distributed algorithms [10].

A. Centralized algorithms

Considering vehicles’ limited loading capacity, a genet-
ic algorithm was designed for task assignment of multiple
unmanned aerial vehicles (UAVs) in [20]. Later on, a Du-
bins car model was integrated with a genetic algorithm in
[21] for multi-UAV target assignment considering the UAVs’
limited turning radius. Centralized algorithms can achieve
near-optimal or optimal assignments; however, in dynamic
environments they require persistently reliable communication
between individual robots and the central server to obtain
global information. The performance of centralized algorithms
can deteriorate as communication gets worse [22]. In [19], a
centralized on-demand ride-sharing algorithm was proposed
to solve the ride-sharing problem, where multiple vehicles
with limited capacity are assigned to pickup and deliver a set
of passengers within a prescribed maximal travel delay. For
a set of dynamically appearing requests, the algorithm first
calculates a group of feasible trips that can be served by each
vehicle, and then optimally solves an integer linear program
to match vehicles to the trips.

To reduce computational time, Simonetto et al. [23] lever-
age a one-to-one assignment strategy and an insertion heuris-
tic, which inserts at most one new task/customer into each
vehicle’s current route at one optimization run. It reduces
the ridesharing optimization problem to a linear assignment
problem, and then solves the integer linear programming in
a centralized fashion. It has been shown that the dynamic
ridesharing algorithm in [23] has competing performance com-
pared with the on-demand ride-sharing algorithm in [19]. Sev-
eral multi-robot task assignment problems have been shown to
be NP-hard [10], demanding high computation capacity for the

central server. As a result, centralized methods may not be
scalable with the growing numbers of targets and/or robots,
and are not suitable for environments where a central server
is not available.

B. Distributed algorithms

In parallel, distributed algorithms have been developed
to enable each robot to plan its route [24–26]. In [27], a
heuristic distributed algorithm was proposed. It changes the
assignment of a target based on the cost saved by removing
the target from the ordered robot’s route containing the target,
and the smallest marginal cost for inserting the target into
another ordered robot’s route. Several distributed algorithms
were proposed in [8] to minimize the robots’ total travel
distance until every target location was occupied by one robot
under limited communication and sensing ranges. The routing
of multiple robots to serve spatially distributed requests at
specified time instants was formulated as a pure assignment
problem in [28]. However, the corresponding set of planar
positions that require simultaneous service at each time instant
is assumed to be initially known by every robot. In [29, 30],
the pickup and delivery task assignment for multiple robots
was studied. The objective of [29] is to minimize the average
service time to execute each task, and the objective in [30] is to
minimize the largest execution time of all the tasks. However,
the robots’ capacity to carry packages is one in [29, 30],
which does not make use of robots with a higher capacity. In
contrast, the robots in this paper can carry multiple packages
simultaneously. This complicates the assignment problem due
to a larger solution space resulting from the robots’ higher
capacities.

In recent years, auction-based methods are popular for
solving task assignment problems due to their computational
efficiency [11, 31–33]. For the static task assignment of homo-
geneous robots, the auction-based algorithm proposed in [31]
guarantees that the robots’ total travel time is at most twice of
the optimal assuming the connectivity of the communication
network, i.e., two arbitrary robots can exchange information
with each other through direct or indirect communication.
Under the assumption of connectivity of the communication
network, an auction algorithm, namely the consensus-based
bundle algorithm (CBBA), was designed for multi-agent task
allocation [11]. A robot using CBBA bids for a task based
on the cost incurred by inserting the task into the robot’s
target bundle. However, most of the discussed auction-based
methods iteratively assign a single unassigned target to one
robot until all the targets are assigned. This paper borrows the
centralized vehicle-group assignment algorithmic idea from
[19] to design two auction-based distributed task assignment
algorithms, which iteratively assigns feasible package groups
to the robots.

III. PROBLEM FORMULATION

Consider that multiple dispersed robots need to transport a
group of dynamically appearing packages, located at dispersed
workstations, to their destinations within prescribed time-
windows. Each package has a release time that is the earliest
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time the robots can pick it up, and a latest time to be delivered
to its destination. The release times and the positions of
the newly appearing packages are not initially known. The
information is collected during a fixed time span, after which
new packages, as well as packages that have not been picked
up yet, are assigned to the robots in the team. The new
assignment may modify the schedule for packages already on
the robots, but they remain on the robot that is carrying them.
Robots have the same capacity in terms of the number of
packages that each robot can carry simultaneously. Each robot
moves with a constant unit speed for transporting packages and
stops moving after finishing its tasks.

It is assumed that the number of robots is sufficiently large
to transport all packages within their time-windows such that
a feasible solution exists. The aisles of the warehouse are
spacious compared with the size of the robots, where the
robots have good sensing capabilities to avoid robot-robot or
robot-environment collisions. In this work, we do not consider
the robots’ battery constraint with the assumption that the
robots have a quick battery swapping or an efficient inductive
charging for battery, where each workstation can be equipped
with an inductive charging area and a robot is charged once it
is in this area [34]. The objective is to minimize the robots’
total travel time to transport all the packages within their time-
windows.

A. Formulation as an optimization problem

We use P = {1, · · · , n} to denote the set of indices of n
randomly distributed packages that need to be transported from
their initial locations to corresponding dispersed destinations.
R = {n+1, · · · , n+m} denotes the set of indices of m > 1
robots that are initially located at dispersed depots. We use
ok to represent the origin of robot k ∈ R. Each package
i ∈ P is associated with a given tuple (oi, ri, di, li), where
oi is the origin of i, ri is the release time of i, di is the
destination of i, and li is the latest time to transport i to
di. The tuple information on the newly appearing packages
is collected during each fixed time span. It is assumed that the
robots can carry a maximum of C packages simultaneously.
Let nk(t) be the number of packages carried by robot k ∈ R
at time instant t, and I = {o1, ..., on+m, d1, ..., dn}. We use
variable a(j), initialized as a(j) = 0, to denote the time when
a robot reaches location j ∈ I. For any pair of i, j ∈ I, the
variable t(i, j) is used to denote the shortest time needed for
a robot to travel from i to j. Obviously t(i, i) = 0 for each
i ∈ I. For each package i ∈ P , it is assumed that at least
one robot is viable to transport i to its destination within the
corresponding time-window.

Assume that at an arbitrary task assignment time instant,
new packages, as well as packages that have not been picked
up yet construct the package set P ′ ⊆ P . We use π(k,Pk)
to denote the optimal route for robot k to transport all the
packages in set Pk ⊆ P ′ assigned to it with the minimum total
travel time while respecting the robot’s capacity constraint and
the time-window to transport each package in Pk. The optimal
route π(k,Pk) can be achieved by an exhaustive search or
approximated by heuristic methods, which will be discussed

later. The minimum total travel time for robot k to transport
all the packages in Pk is

c(k,Pk) =
|π(k,Pk)|−1∑

i=1

t(πi(k,Pk), πi+1(k,Pk)),

where πi(k,Pk) is the index of the vertex located at the
ith position of π(k,Pk). Then, the objective to minimize the
robots’ total travel time for transporting all the packages within
their time-windows at the task assignment time instant can be
expressed as follows.

Problem 1 Given a set of package transportation requests P ′
and a sufficiently large robot fleet at each task assignment time
instant, find a package set Pk ⊆ P ′ and the associated route
π(k,Pk) for each robot k ∈ R to solve

min
∑
k∈R

c(k,Pk), (1)

subject to

Pk ∩ Pj = ∅,∀k, j ∈ R, j 6= k; (2)
∪k∈RPk = P ′; (3)

nk(t) ≤ C, ∀k ∈ R,∀t ∈ R+; (4)
a(di) ≤ li,∀i ∈ P ′; (5)

a(oi) + max{ri − a(oi), 0} ≤ a(di)− t(oi, di),∀i ∈ P ′.(6)

Constraint (2) requires that each package is transported exactly
by one robot; (3) ensures that all the packages will be
transported; (4) ensures that the robots’ capacity constraint is
always satisfied; (5) ensures that the time for delivering each
package to its destination is no later than the corresponding
latest delivery time; (6) implies the earliest time that a package
can be delivered to its destination.

Problem 1 imposes that all packages are transported within
their specified time-windows, entailing that this formulation
and the subsequent solution methods are intended for scenarios
in which the number of available robots is sufficiently large.
An alternative approach would be to include a rejection penalty
for each package that is not served, which is well suited
for centralized algorithms, and was employed by [19], where
rejections occurred. If not requiring every package to be
served, Problem 1 could be formulated as a submodular one
with matroid constraints1, for which sub-optimality bounds
are known [35]. However, the objective function would be
different as it would include the mentioned rejection penalties.
For the reminder of this paper, we assume that a sufficiently
large robot fleet is available. A relaxation of this assumption,
potentially by reformulating the problem as discussed, is
outside the scope of this paper.

Remark 1. At each task assignment time instant, the studied
multi-robot task assignment problem is in essence the NP-hard
VRPPDTW, which generalizes the vehicle routing problem with
time windows (VRPTW) [36]. Indeed, even finding a feasible

1The main reason precluding our approach to fit into a matroid optimization
scheme is that not assigning any task should be regarded as feasible, which
is not the case when we require that every package is served. For details, see
[35].
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solution to the VRPTW with a fixed fleet size is NP-complete
[37].

IV. AUCTION-BASED DISTRIBUTED ALGORITHMS

As Problem 1 is NP-hard, it is time-consuming to solve
(1) optimally. In this section, we propose two group-based
distributed auction algorithms to solve the package transport
task assignment problem under the assumption of a sufficiently
large robot fleet. The two algorithms consist of two main
procedures: 1) each robot first distributively computes feasible
package groups that it can serve considering the time-windows
to transport the packages and the robot’s capacity constraint;
2) robots decide which robot should win which package group
based on their bids for transporting the packages contained in
each feasible package group.

A. Generating feasible package groups

In this paper, we refer to a set of packages as a group,
and a package group G ⊆ P ′ is feasible for a robot k ∈ R
to serve if the robot can transport all the packages in G
to their corresponding destinations while satisfying the time-
windows to transport the packages and the robot’s capacity
constraint. In Fig. 1 (b), the Robot-group graph (RG-graph)
represents which package groups are feasible for which robots
to serve considering the prescribed time-windows, the robots’
capacities and current positions, which is inspired by the
batch assignment graphs in [19]. In the RG-graph, a package
Pi ∈ P ′ might be directly connected to a robot Rk ∈ R
if robot Rk can transport package Pi to its destination while
satisfying the time-window to transport the package. The edge
is denoted by e(Pi, Rk). Two packages Pi and Pj belong to the
same package group if an empty robot, starting at its origin,
could transport the two packages to their destinations while
satisfying the corresponding time-windows.

For a group G that is feasible for robot k to serve, we
use π(k,G) to denote the optimal route for k to transport
all the packages in G, and c(k,G) is the corresponding total
travel time for k to transporting all the packages in G by
following the route π(k,G). Fk ⊆ S(P ′) is used to contain
all the package groups feasible for robot k to serve, where
S(P ′) is the power set of the package set P ′. To determine
the feasibility of a package group relative to a robot and
the optimal route for the robot to serve a feasible package
group, one needs to solve a VRP with time-windows for a
single robot starting at a given initial position and transporting
each package in the group from the package’s origin to its
destination within the corresponding time-window. We use
function feasible(k,G) to check the feasibility of package
group G relative to robot k, and travel(k,G) to achieve the
optimal route π(k,G) for k to serve a feasible group G. Then,
the minimum total travel time c(k,G) for robot k ∈ R to
transport all the packages in the feasible package group G is

c(k,G) =


|π(k,G)|−1∑

i=1

t(πi(k,G), πi+1(k,G)), if G ⊆ Fk,

∞, otherwise,
(7)

where πi(k,G) is the index of the ith ordered element on
the route π(k,G) and |π(k,G)| is the number of elements
contained in π(k,G). For robots with low capacity and pack-
ages with tight time-windows, feasible(k,G) and travel(k,G)
can be implemented via an exhaustive search. For robots
with higher capacity, efficient heuristic methods such as the
topological sorting based algorithms [38], marginal-cost based
algorithms [39] and genetic algorithms [40] can be used to
achieve near-optimal routes. It should be noticed that several
package groups of varying sizes might contain a particular
package, and a package group might be feasible for more than
one robot to serve.

The group feasibility has the useful property that all the
subsets/subgroups of a feasible package group are feasible.
In other words, we have G′ ⊆ Fk,∀G′ ⊂ G, if a package
group G satisfies G ⊆ Fk. This property enables us to design
a procedure that iteratively generates the sets F1

k ,F2
k , ...,

containing feasible package groups of size 1, 2, ... for robot k.
For robots with higher capacity and packages with wide time-
windows, we calculate the feasible package groups G ⊆ Fsk
for each robot k with increasing group size s = |G| as below.
First, when the group size s is small, we use exhaustive search
to achieve all the feasible package groups G ⊆ Fsk for each
robot k as well as the associated optimal route π(k,G) for
k to transport all the packages in each G. Then, to check
whether G ∪ {i}, i * G the union of a feasible package
group G and package i is feasible, we try all the potential
positions for inserting i at the optimal route π(k,G). If one
feasible route is found for k to transport all the packages in
G ∪ {i} by using π(k,G), the function feasible(k,G ∪ {i})
returns to 1, and the associated optimal route π(k,G ∪ {i}) is
calculated by comparing the performance of the feasible route
with the feasible route, resulting from the marginal-cost based
algorithm [37], for k to transport all the packages in G ∪ {i}.
The above procedures are repeated to compute other feasible
package groups.

Each robot first uses Algorithm 1 to distributively calculate
feasible package groups incrementally in group size that it
can serve. If exhaustive search is used to compute all feasible
package groups, Algorithm 1 is complete; otherwise it is not.
The second procedure of the group-based distributed auction
algorithms is to solve the following robot-group assignment
optimization problem, which is a mapping of robots to feasible
package groups.

Problem 2 (Robot-Group Assignment) Given a sufficiently
large robot fleet R, a set of feasible package groups Fk,∀k ∈
R, and the minimum total travel time c(k,G) for robot k to
serve each group G ⊆ Fk at each task assignment time instant,
solve

min
∑

k∈R,G⊆Fk

xkG · c(k,G), (8)
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Fig. 1. Schematic overview of the group-based distributed auction algorithms: (a) Illustration of 5 packages (orange box, origin;
blue circle, destination) and 4 robots (orange autonomous ground vehicle, origin); (b) RG-graph consists of all the feasible
package groups that each robot can serve while respecting the prescribed time-windows and robots’ capacities, in which a
robot is connected to a package group if the group is feasible for the robot to serve; (c) The information exchange between
communication-connected robots guided by ADA.

Algorithm 1 Each robot k ∈ R independently calculates the
feasible package groups that it can serve at the task assignment
time instant.
Input: Package set P ′, and (oi, ri, di, li) for each package i ∈ P ′.
Output: The set Fk contains all package groups feasible for k.

1: F1
k ← ∅.

2: for ∀i ∈ P ′ do
3: if feasible(k, {i}) then
4: F1

k ← F1
k ∪ {i}.

5: end if
6: end for
7: s← 2.
8: while Fs−1

k 6= ∅ do
9: Fs

k ← ∅.
10: for ∀G ⊆ Fs−1

k do
11: for ∀i ∈ F1

k do
12: if feasible(k,G ∪ {i}) and i * G then
13: Fs

k ← Fs
k ∪ {G ∪ {i}}.

14: end if
15: end for
16: end for
17: s← s+ 1.
18: end while
19: Fk ← F1

k ∪ F2
k ∪ · · · ∪ Fs

k .

subject to ∑
G⊆Fk

xkG ≤ 1, ∀k ∈ R; (9)∑
k∈R,G⊆Fk

xkG · 1G(i) = 1, ∀i ∈ P ′; (10)

xkG ∈ {0, 1}, ∀k ∈ R,∀G ⊆ Fk, (11)

where the operator 1G(i) = 1 if i ∈ G, and otherwise 1G(i) =
0. Constraint (9) ensures that at most one package group is
assigned to each robot; (10) enforces that every package is
assigned to exactly one robot; (11) implies that xkG = 1 if
package group G is assigned to robot k, and otherwise xkG =

0. Later on, we will show that an optimal solution of Problem
2 is optimal for Problem 1.

B. Assigning feasible package groups

Having reformulated the task assignment problem, we now
construct two group-based distributed auction algorithms to
solve Problem 2.

1) Auction-based distributed algorithm: After computing
the set of feasible package groups that each robot can serve,
robots, guided by the first auction-based distributed algorithm
(ADA), will iteratively bid on feasible package groups to
optimize Problem 2. As each robot might be able to serve mul-
tiple package groups, it is both challenging and important to
design a proper bidding mechanism to assign package groups
to robots to optimize (8). The package set Pu, initialized as
P ′, contains packages currently unassigned, and the robot set
Ru, initialized as R, contains all robots currently without
any assignments. According to (7) and (8), minimizing the
robots’ total travel time to transport all packages is equivalent
to minimizing the robots’ average travel time to transport each
package. As a result, the bid for robot k ∈ R on package group
G ⊆ Pu can be set to

b(k,G) =
{
c(k,G)/|G|, if G ⊆ Fk and G 6= ∅,
∞, otherwise, (12)

where |G| is the number of packages contained in G.
Then, each robot k ∈ Ru computes the package group G?k ⊆
Fk with the lowest average cost for k to serve, where

G?k = argmin
G⊆Pu, G⊆Fk

b(k,G). (13)

Afterwards, each robot k ∈ Ru simultaneously relays
the information tuple {k, b(k,G?k),G?k} ⊆ Rn+2 to its
communication-connected neighbours, where n binary digits
can be used to identify and store a group (subset) of the
n packages in set G?k . It uses a matrix Xk ∈ Rm∗(n+2)



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, MAY 2022 6

with its wth row {w, b(w,G?w),G?w} to store the information
tuple relayed from neighbour robot w ∈ R \ {k}. It is
straightforward to check that after at most d ≤ m rounds
of simultaneous communication, with d the diameter of the
communication network, each robot k has updated all the
information in Xk. At this time, each robot guided by ADA
will determine and agree that the unassigned robot k? ∈ Ru
wins the corresponding package group G?k? ⊆ Fk? , where

k? = argmin
k∈Ru

b(k,G?k). (14)

Meanwhile, Pu and Ru are updated to

Pu = Pu \ G?k? , Ru = Ru \ {k?}. (15)

The target assignment procedure from (13) to (15) continues
until Pu is empty.

If not all of the packages in Pu are assigned when the
robot set Ru is empty, ADA fails to find a feasible solution
of Problem 2. ADA will, however, return a solution where a
large number of packages are assigned and can be transported.
This is further discussed in Section IV-C.

2) Marginal-cost based auction algorithm: Inspired by the
strategy of using regret for not making an assignment [41], we
propose the marginal-cost based auction algorithm (MAA),
which iteratively assigns feasible package groups to robots
based on each robot’s current best feasible package group and
the second best feasible package group. In the same way as
ADA, each robot k ∈ Ru guided by MAA first calculates the
best package group G1?k ⊆ Fk that satisfies

G1
?

k = argmin
G1
k⊆Fk

b(k,G1k). (16)

Then, if Fk \G1
?

k 6= ∅, each robot k ∈ R calculates the second
best feasible package group G2?k that satisfies

G2
?

k = argmin
G2
k⊆Fk\G1?

k

b(k,G2k), (17)

and otherwise let b(k,G2?k ) = 0.
Afterwards, each robot k simultaneously relays the in-

formation tuple {k, b(k,G1?k ), b(k,G2?k ),G1?k } ∈ Rn+3 to its
communication-connected neighbours, and uses a matrix Xk ∈
Rm∗(n+3) with its wth row {w, b(w,G1?w ), b(w,G2?w ),G1?w } to
store the information tuple relayed from robot w ∈ R \ {k}.
After at most d rounds of simultaneous communication, each
robot k has updated all the information in Xk. At this time,
each robot guided by MAA determines that k? ∈ Ru wins the
corresponding package group G1?k? ⊆ Fk? , where

k? = argmax
k∈Ru

|b(k,G1
?

k )− b(k,G2
?

k )|. (18)

Then, Pu and Ru are updated to

Pu = Pu \ G1
?

k? , Ru = Ru \ {k?}. (19)

The target assignment procedure from (16) and (19) continues
until Pu is empty. If not all packages in Pu are assigned
when the robot set Ru is empty, MAA fails to find a feasible
solution of Problem 2. MAA will, however, return a solution
where a large number of packages are assigned and can be
transported. This is further discussed in Section IV-C.

Remark 2. When the warehouse is cluttered with shelves
and other obstacles, the designed algorithms ADA and MAA
can also be applied to compute an assignment of packages
to robots by calculating the shortest feasible time and the
associated path for a robot to travel between any two locations
in the warehouse using Dijkstra’s algorithm [26].

C. Theoretical analysis

We first show the motivation for optimizing Problem 2 by
investigating its relationship with Problem 1.

Lemma 1. Assume that, for each robot k and each group
G, the optimal travel cost c(k,G) is known. Then, an optimal
solution of Problem 2 is also optimal for Problem 1.

We omit the proof for Lemma 1 since it is straightforward
based on (1), (7), and (8).

A feasible solution to Problem 2 requires that all packages
are served, which might be impossible to do depending on
the available number of robots and the rigid time-windows as
shown by [37]. We now show that the feasibility of Problem 2
is a complex issue. To do so, we first introduce the well-known
Boolean satisfiability problem abbreviated as SAT.

Definition 1. (SAT [42]) Given a set of m boolean logical
variables U = {u1, u2, . . . , um} where corresponding to each
variable uj are a true literal uj and a false literal ¬uj , and a set
of n′ clauses {C1, C2, . . . , Cn′} where each clause consists of
a set of boolean variables linked by logical OR operator such
as C1 = u1∨¬u2∨um, SAT is to determine whether a solution
exists for the formula C1 ∧C2 ∧ · · · ∧Cn′ = 1 by setting the
boolean variables, where ∧ is the logical operator AND.

SAT is an NP-complete problem [42]. We now analyze the
computational complexity to determine whether Problem 2 has
a feasible solution.

Theorem 1. Determining whether Problem 2 has a feasible
solution is NP-complete.

Proof. To prove the theorem, it suffices to show that deter-
mining whether Problem 2 under a particular instance has a
feasible solution is NP-complete. We prove it by reducing SAT
to the particular instance of Problem 2 in which each robot has
at most 2 maximal feasible package groups to choose to serve
and relaxing (10) as

∑
k∈R,G⊆Fk

xkG · 1G(i) ≥ 1, ∀i ∈ P ′.
A feasible package group G is called maximal for a robot, if
no package group G′ with G ⊂ G′ is feasible for the robot to
serve.

We construct the particular instance of Problem 2 where the
number of packages in P ′ to be assigned is n′ and each robot
has at most two maximal feasible package groups to choose
to serve. Each package i ∈ P ′ is associated with a clause
Ci, and each robot j is associated with a logical variable
uj . For each robot j associated with the variable uj , the
clauses corresponding to the packages in one of j’s maximal
package groups contain uj , and the clauses corresponding to
the packages in the other maximal group contain ¬uj . Then,
each clause Ci in SAT can be represented as which robots can
be used to serve each package, such as C1 = u1 ∨ ¬u2 ∨ um
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implying that package 1 can be served by robots 1, 2 and m.
The reduction from SAT to the particular instance of Problem 2
is in polynomial time.

After reducing SAT to the particular instance of Problem 2,
it is straightforward to see that determining whether all the
packages can be assigned in the particular instance of Prob-
lem 2 is equivalent to determining whether a solution exists
for the formula of SAT. As SAT is NP-complete, determining
whether the particular instance of Problem 2 has a feasible
solution is NP-complete. Thus, the proof is complete.

Theorem 1 states that not only Problem 2 might be unfea-
sible, but also that determining whether that is the case might
not be doable in practice.

Remark 3. Theorem 1 affects both of our algorithms ADA and
MAA, as they both run in polynomial time with respect to the
number of feasible package groups in Problem 2 and therefore
it is impossible that they guarantee finding a feasible solution
when there is one (unless P = NP ). ADA and MAA might
fail to find a feasible solution to Problem 2 even if a feasible
solution exists. As a result, it is necessary to check whether the
package set Pu, containing all currently-unassigned packages,
is empty when the robot set Ru is empty.

Thus, the proposed auction-based algorithms are primarily
designed for scenarios where feasibility is not expected to be
an issue, namely when the number of robots is large enough.
This is formalized in Assumption 1 below, which we hold for
the rest of the paper (including all of our numerical simulations
in Section V).
Assumption 1: The robot number is large enough so that both
algorithms ADA and MAA are able to find a feasible solution.

Without Assumption 1, the main problem could be to max-
imize the number of transported packages as [43]. Adapting
our framework for this problem is beyond the scope of this
paper, but is a promising direction for future research.

When multiple feasible assignment solutions exist in the
presence of Assumption 1, achieving the optimal solution to
Problem 2 might be still non-trivial. To analyze it rigorously,
we first introduce the weighted set-partitioning problem.

Definition 2. (Weighted set-partitioning problem [44]) Given a
collection of sets S = {S1, S2, . . . , Sl} where each set Si has a
nonnegative weight wi and let F = ∪li=1Si, the weighted set-
partitioning problem is to find a subset of the family specified
by I ⊆ {1, 2, . . . , l} such that F = ∪i∈ISi for which the total
weight

∑
i∈I wi is minimized while any two different i, j ∈ I

satisfy Si ∩ Sj = ∅.

The weighted set-partitioning problem has been shown to be
NP-hard [45]. We now analyze the computational complexity
to optimize Problem 2.

Remark 4. Optimally solving Problem 2 is NP-hard.

We show the NP-hardness of Problem 2 under a particular
instance in which all the robots have the same feasible package
groups as well as the same optimal cost to transport all
the packages in each feasible package group. In Problem 2,
each package group G, feasible for a robot k to serve while

satisfying the corresponding time-windows, can be treated as
a set in the weighted set-partitioning problem [44], and the
corresponding total travel time c(k,G) for robot k to serve all
the packages in G is the associated weight for the set. The
goal of Problem 2 is to choose a set of such un-overlapping
feasible package groups that each package group is specified
for one certain robot (each specified robot is assigned exactly
with one feasible package group), and the union of the chosen
package groups contains all the packages to be delivered while
minimizing the total cost for the robots to serve the feasible
package groups. Then, it is straightforward that the NP-hard
weighted set-partitioning problem can be reduced to Problem
2 under the particular instance within polynomial computation
time based on Definition 2, where an optimal solution to
the latter leads to an optimal solution to the weighted set-
partitioning problem. Then, optimally solving Problem 2 is
NP-hard.

Remark 5. Both of our algorithms can also be used when
a feasible solution is not obtained. In such scenarios, they
lead to an assignment in which some of the packages will be
delivered (although not necessarily the maximum number).

V. SIMULATIONS

We test the performance of the proposed algorithms by
solving the package delivery task assignment problem under
various instances in comparison with a popular Greedy algo-
rithm (GA), the heuristic distributed task allocation (HDTA)
method for multi-vehicle multi-task problems in [27], and a
centralized exact cutting-edge algorithm, which is executed
through the commercial Integer Linear Program solver Gurobi
named as Gurobi in the following. Gurobi is able to achieve
the optimal assignment solution for Problem 2 if all the
packages are released initially. In other words, Gurobi can
get the optimal assignment at each task assignment instant,
which can be used as a benchmark to test the performance
of the designed algorithms. For the GA, each robot always
first moves to the initial location of a package that can be
transported to its destination by the robot with the shortest
travel time compared with the other robots, and then moves
to the initial location of the next best unassigned package. All
experiments are performed on an Intel Xeon W-2123 CPU
3.60 GHz with 16 GB RAM, and the algorithms are compiled
by Matlab under Windows 10 Enterprise.

A. The algorithms’ performance for solving problems with
small sizes

Monte Carlo simulations are first carried out to test the
performance of the algorithms for guiding a fleet of robots
to transport a group of n = 100 packages to their prescribed
destinations within time-windows. The 100 packages are dy-
namically released with the frequency of one new package
appearing every 5 seconds. To reduce the impact of the
randomness, 10 instances of the initial locations of 20 robots
and the 100 packages, and the packages’ destinations are
randomly generated in a square warehouse with edge length
100m. The tuple information on the newly appearing packages
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TABLE I. The robots’ average total travel time (s) under 10
instances for m robots guided by different task assignment al-
gorithms to transport n = 100 dynamically released packages.

m
Capacity

C
Robots’ total travel time (s)

GA HDTA ADA MAA Gurobi

10
3 3469 2572 1837 1961 1725
4 3469 2532 1710 1904 1610
5 3469 2471 1700 1774 1582

12
3 3539 2622 1794 1970 1744
4 3539 2548 1753 1908 1612
5 3539 2507 1691 1750 1542

14
3 3573 2625 1794 1975 1730
4 3573 2596 1756 1907 1599
5 3573 2580 1693 1786 1549

16
3 3628 2684 1794 1973 1694
4 3628 2621 1732 1915 1564
5 3628 2628 1676 1761 1505

18
3 3651 2671 1730 1973 1689
4 3651 2656 1717 1889 1544
5 3651 2667 1750 1760 1495

20
3 3684 2691 1769 1983 1634
4 3684 2672 1687 1892 1533
5 3684 2675 1663 1775 1475

Ratio to Gurobi 2.249 1.635 1.081 1.175 1.000

is collected for each 15 seconds in our experiments, after
which the new packages, as well as packages that have been
picked up, are assigned to the robots by a task assignment.
For each instance, we investigate the algorithms’ performance
when different numbers of the 20 robots with different capac-
ities are employed, where m ∈ {10, 12, 14, 16, 18, 20} and
C ∈ {3, 4, 5}. The time-window is set as (li − ri) = 8
minutes empirically for transporting each package i ∈ P ,
which enables an arbitrary available robot to transport each
package from its initial location to its destination within the
time-window wherever the robot is in the square operation
environment. The robots’ average total travel time resulting
from the four algorithms is shown in Table I, where the
smallest travel time under each scenario is marked in bold.
The corresponding average computation time at each task
assignment time instant is listed in Table II. For the centralized
GA and CO, the average computation time is the algorithms’
average computation time at each task assignment time instant.
For the distributed HDTA, ADA and MAA, the average com-
putation time is the average computation time of individual
robots at each task assignment time instant.

First, for each m ∈ {10, 12, 14, 16, 18, 20} robots, Table I
shows that a higher capacity C in general decreases the
robots’ total travel time for HDTA, ADA, MAA and Gurobi.
This might be caused by the fact that the robots with a higher
capacity C can carry more packages at one time. However,
Table II shows that increasing C generally leads to a larger
computation time for HDTA, ADA, MAA and Gurobi. This is
because more feasible routes/package groups exist when the
robots have a higher C, which leads to a larger computation
time. For GA, its performance is independent of the robots’
capacities for each m ∈ {10, 12, 14, 16, 18, 20}. It might be
due to the mechanism of GA under which each robot starts
moving to the initial location of the next package only after
transporting the currently carried package to its destination,
which does not have a good use of the robots’ capacity.

TABLE II. The average computation time (s) at each task
assignment time under 10 instances for m robots guided by the
task assignment algorithms to transport n = 100 dynamically
released packages.

m
Capacity

C
Average computation time (s)

GA HDTA ADA MAA Gurobi

10
3 0.0066 0.5828 0.0618 0.0865 0.0879
4 0.0059 0.6185 0.2230 0.5396 0.5411
5 0.0063 0.5612 0.8524 2.1624 3.1988

12
3 0.0070 0.4857 0.0508 0.0893 0.0885
4 0.0068 0.5337 0.2516 0.5393 0.4817
5 0.0066 0.5728 0.6149 2.1715 2.3748

14
3 0.0076 0.4552 0.0484 0.0848 0.0819
4 0.0078 0.5131 0.2239 0.5223 0.4244
5 0.0078 0.4764 0.5837 2.4652 2.3097

16
3 0.0102 0.4517 0.0433 0.0819 0.0744
4 0.0093 0.5075 0.1743 0.5051 0.3694
5 0.0091 0.4843 0.6151 2.1052 1.9407

18
3 0.0103 0.4272 0.0372 0.0804 0.0677
4 0.0100 0.4725 0.1513 0.5059 0.3702
5 0.0098 0.4672 0.4566 2.0931 1.6409

20
3 0.0113 0.4114 0.0372 0.0803 0.0643
4 0.0105 0.4425 0.1204 0.5413 0.3220
5 0.0106 0.4601 0.3010 2.1472 1.3783

Second, for each C ∈ {3, 4, 5}, a bigger m generally has
a larger positive influence on optimizing Problem 2 for ADA,
MAA and Gurobi as shown in Table I. The reason is that more
efficient routes can be chosen to transport each package if
more robots are initially dispersed in the warehouse. However,
the contrary happens with HDTA. This might be because
HDTA initially assigns each robot with all the packages that
the robot can serve.

Third, Table I shows that ADA and MAA have a better
performance compared with the GA and HDTA, where ADA
has the best performance while GA has the worst performance
relative to the baseline assignment results of Gurobi. The
reason lies partly in the fact that the GA assigns each robot
maximally one package at each optimization run. However,
Table II shows that ADA, MAA and Gurobi in general have a
larger computation time compared with the GA and HDTA
when the robots have capacity C = 5. This is because a
higher capacity leads to more feasible solutions, and achieving
a better assignment solution to the NP-hard problem requires
a longer computational time.

Finally, for the robots with a fixed capacity guided by HDTA,
ADA and Gurobi, their average computation time decreases
when increasing the robots’ number m. The reason might
be that a large number of robots leads to a small number
of packages to be assigned at each optimization run as more
packages are already transported by the robots. This results in
less computation time for each robot to calculate its feasible
package groups.

The box plots of the robots’ total travel times resulting from
the algorithms under different scenarios are shown in Fig. 2.
First, the box plots of GA and HDTA are comparatively higher
than those of ADA, MAA and Gurobi with ADA generally
having the lowest box plots among the compared heuristic
algorithms. This shows the better performance of ADA and
MAA as illustrated by Table I. Second, for a given number
of robots with a larger C, the box plots of HDTA, ADA, MAA
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Fig. 2. Box plots of the robots’ total travel times (s) under 10 instances to transport 100 dynamically released packages with
different numbers of robots and different capacities, where the maximum time-delay for transporting each package is 8 minutes.

and Gurobi are generally lower in comparison with the GA,
suggesting that HDTA, ADA, MAA and Gurobi have a good
use of the robots’ capacity. Third, with the increasing robots’
number m with each capacity, the box plots of ADA and
MAA are generally lower and closer to Gurobi compared with
the GA and HDTA, indicating that ADA and MAA are more
scalable than GA and HDTA. For further comparison, we also
carried out the two-tail Wilcoxon signed-rank test with the
5% significance level for each pair of the algorithms to guide
different numbers of robots to transport the 100 packages. It

is clear that the robots’ total travel times of the 18 scenarios
differ significantly between the algorithms (the total travel
time from small to large corresponds to Gurobi → ADA →
MAA → HDTA → GA). This implies the algorithms have
an increasingly better performance as GA − HDTA − MAA
− ADA − Gurobi, which is consistent with those shown in
Table I.
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TABLE III. The robots’ average total travel time (s) under 10
instances for m robots guided by each algorithm to transport
n = 200 dynamically released packages.

m
Capacity

C
Robots’ total travel time (s)

GA HDTA ADA MAA Gurobi
40 3 7466 4981 3234 3594 3074
50 3 7635 5158 3241 3621 3049
60 3 7781 5103 3238 3614 2995
70 3 7889 5164 3100 3592 3002
80 3 7970 5167 3257 3586 2929
Ratio to Gurobi 2.576 1.700 1.068 1.197 1.000

TABLE IV. The average computation time (s) at each task as-
signment time under 10 instances for m robots guided by each
algorithm to transport 200 dynamically released packages.

m
Capacity

C
Average computation time (s)

GA HDTA ADA MAA Gurobi
40 3 0.0532 2.7004 0.3571 0.6620 0.4980
50 3 0.0658 2.4470 0.3014 0.6547 0.4270
60 3 0.0767 2.1068 0.2584 0.6437 0.3873
70 3 0.0884 2.1287 0.2173 0.6247 0.3475
80 3 0.1003 1.9898 0.1889 0.6342 0.3080

B. The algorithms’ performance for solving problems with
relatively large sizes

To test the scalability of the proposed algorithms, we
increase the number of dynamically released packages to
n = 200, and increase the frequency of dynamically released
packages to two newly appearing packages every 5 seconds.
To reduce the impact of the randomness, 10 instances of
the initial locations of 80 robots and 200 packages, and the
packages’ destinations are randomly generated in a square
warehouse with edge length 100m. The tuple information on
the newly appearing packages to be transported is collected
for each 15 seconds, after which the new packages, as well as
packages that have been picked up, are assigned to the robots
by a task assignment. For each instance, the influence of the
number of the 80 robots that can be used in the assignment
is investigated, where m ∈ {40, 50, 60, 70, 80}. At this point,
the robots’ capacity is 3 and the time-window for transporting
each package is set as 8 minutes.

The robots’ average total travel time resulting from the al-
gorithms is shown in Table III, and the corresponding average
computation time of each task assignment time instant is listed
in Table IV. First, Table III shows that the robots’ total travel
time resulting from ADA, MAA and Gurobi generally decreases
when increasing the robots’ number m while it is not the case
for the GA and HDTA. This is consistent with those shown in
Table I. For GA, the reason might be that each robot guided by
the algorithm always first serves the package with the smallest
travel time, which does not make good use of the robots’
capacity. For HDTA, it might be because the algorithm initially
assigns each robot with all the packages that the robot can
serve. Second, Table IV shows that the average computation
times resulting from HDTA, ADA, MAA and Gurobi in general
decrease when increasing m while those resulting from GA
increase, which shows the scalability of HDTA, ADA, MAA
and Gurobi. The reasons maybe that a larger number of robots
not only leads to less iterations for assigning the packages at
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Fig. 3. Box plots of the robots’ total travel times (s) under 10
instances to transport 200 dynamically released packages with
different numbers of robots, where the maximum time-delay
for transporting each package is 8 minutes and C = 3.

individual task assignment time instants, but also leads to a
small number of un-served packages to be assigned at each
task assignment time instant as more packages are already
transported by the robots.

The box plots of the robots’ total travel time for transporting
the 200 dynamically released packages under different sce-
narios are shown in Fig. 3. First, the box plots of GA and
HDTA shown in Fig. 3 are comparatively higher than those
of ADA, MAA and Gurobi with ADA generally having the
lowest box plots among the compared heuristic algorithms.
This shows the better performance of ADA and MAA as
illustrated in Table III and Fig. 2. Second, with the increasing
robots’ number m, the box plots of HDTA, ADA and MAA
are generally lower compared with GA, indicating that HDTA,
ADA and MAA are more scalable than GA. To further evaluate
the algorithms’ performance for guiding different numbers of
robots to transport the 200 packages, the Wilcoxon signed-rank
test is carried out in a two-tail test with the 5% significance
level for each pair of the algorithms. The test clearly shows
that the algorithms have an increasingly better performance
as GA − HDTA − MAA − ADA − Gurobi, which is consistent
with those shown in Table III. As a conclusion, ADA and MAA
are competitive compared with the standard solver Gurobi,
and perform better than GA and HDTA at the cost of a
relatively larger computation time, where ADA has the better
performance compared with MAA considering both the robots’
total travel time and average computation time.
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VI. CONCLUSION

In this paper, we have studied the multi-robot task as-
signment problem in which multiple dispersed robots need
to efficiently transport a set of packages to their destinations
within time-windows. The robot-group assignment strategy is
first used to formulate the multi-robot task assignment problem
as an optimization problem, which is shown to be an NP-hard
problem. Two group-based distributed auction algorithms are
designed which enable the robots to distributively calculate
feasible package groups that they can serve, and then assign
package groups to robots. The proposed task assignment
algorithms are shown to outperform the greedy algorithm and
the heuristic distributed task allocation method in simulation
with a sufficiently large robot fleet. Future work may concern
a multi-objective task assignment problem such as transporting
the maximum number packages while minimizing the robots’
total travel cost when some of the packages cannot be trans-
ported in time. Additional research directions are to consider
the case where robots exchange packages already picked up,
and the adaption of our formulation to utilize the techniques
for submodular problems with matroid constraints.
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