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Abstract— This paper presents a novel approach to route
heterogeneous fleets for flash delivery operations. Flash deliver-
ies offer to serve customers’ wishes in minutes. We investigate
a scenario that allows to pick up orders at multiple depots
with a heterogeneous vehicle fleet leveraging different modes of
transportation. We propose the Heterogeneous Vehicle Group
Assignment (HVGA) method, which, given a problem state,
identifies potential pick-up locations, calculates potential trips
for all modes of transportation and last chooses from the set of
potential trips. Experiments to analyze the proposed method are
executed using a fleet featuring two modes of transportation,
trucks and drones. We compare to a state-of-the-art method.
Results show that HVGA is able to serve more orders while
requiring less total traveled distance. Further, the effects of the
fleet size and fleet composition between drones and trucks are
examined by simulating three hours of a flash delivery operation
in the city center of Amsterdam.

I. INTRODUCTION

Using heterogeneous fleets for last-mile delivery oper-
ations allows leveraging the strengths of different modes
of transportation. For example, a drone can maneuver in-
dependently of roads and traffic and thus deliver quickly
in hard-to-reach areas and a truck can load many parcels
simultaneously and deliver multiple orders in one neighbor-
hood. In addition, grocery deliveries within minutes have
established themselves within many cities. In the Netherlands
alone, consumers spent around 40 million euros per month
on flash deliveries at the end of 2021, a trend that is
continuously rising [1]. Combining these two aspects poses
a highly relevant and interesting question: How do we route
heterogeneous fleets for on-demand last-mile deliveries?
This paper proposes a novel optimization-based approach to
route heterogeneous fleets for on-demand last-mile deliver-
ies, considering multiple depots and short delivery times. The
proposed method is able to combine many types and forms
of transportation while staying scalable. We specifically
investigate the use case of supporting ground-based vehicles
with drones.
The main virtues are threefold. First, we generalize a well-
known method for ride-sharing, called Vehicle Group As-
signment, to be able to handle heterogeneous fleets, including
various modes of transportation. Second, this work combines
dynamic multi-depot vehicle routing with heterogeneous
fleets. Third, to the best of our knowledge, this work is first in
investigating the use of drones for flash delivery operations.
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II. RELATED WORK

The problem we face can be classified as a dynamic and
heterogeneous vehicle routing problem (pick-up and delivery
problem). Thus it is related to the two broad fields of Dy-
namic Vehicle Routing Problems (DVRP) and Vehicle Rout-
ing Problems with heterogeneous fleets. For an overview of
dynamic routing problems, see [2]–[5], and for an overview
of routing for heterogeneous fleets see [6]. Heterogeneous
routing problems are further divided by the type of vehicles
they are considering and by the way these can interact with
each other. For a more detailed analysis, we exclusively focus
on dynamic problems, as approaches deployed between static
and dynamic vehicle routing problems differ strongly.
Proposed methods to tackle the dynamic vehicle routing
problem with a heterogeneous fleet are mainly based on
heuristics. Large Neighbourhood Search based strategies
were applied by [7] considering a fleet of trucks with dif-
ferent capabilities and by [8] tackling the technician routing
problem (technicians differ in skills and repair parts carried).
[9] used a Tabu Search to improve routes while dynamically
integrating new incoming orders. They consider different
vehicle speeds and capacities. A problem of dynamically
refuelling aeroplanes by trucks with different speeds, capac-
ities and fit to planes was studied by [10] using a genetic ant
colony algorithm.

More specifically, the problem studied in this paper is
a specific case of a Same-Day Delivery (SDD) problem
[11]–[16]. Works that combine an SDD problem and a
heterogeneous fleet are sparse. We identified three works,
analyzed in the following.
[13] proposes a method routing a heterogeneous fleet of
trucks and drones for a Same-Day Delivery (SDD) operation,
splitting it into two. For each new order, it is decided if it is
served by a drone or a truck or is ignored. Subsequently, each
mode of transportation is routed independently. To determine
if a drone or a truck should be used, they apply policy
function approximation based on geographical districting.
Orders which have a travel time longer than a given threshold
are preferably served by drones. [15] builds upon [13] by
adapting the way orders are assigned to a mode of trans-
portation. They leverage Q-learning to do so and improve
on previous results. Improvements are most substantial for
small fleets but vanish fully if more resources are provided.
[17] investigates a SDD problem, in which drones are used to
resupply trucks, which exclusively deliver to customers. They
examine two approaches for resupplying: first, only empty
trucks can receive a resupply and second, resupplies are



possible anytime. They optimize on finding the best resupply
locations, serving as many orders as possible.
In contrast, this work investigates a specific variation of
SDD, a flash delivery operation featuring multiple depots.
HVGA further differs from the works proposed for heteroge-
neous SDD by not splitting into assigning orders to vehicles
and routing but does so jointly.

The proposed approach in this paper is building on a ride-
sharing method called Vehicle Group Assignment (VGA)
[18], which shows great scalability. A retail context variation
considering multiple depots was investigated by [19]. This
work extends VGA to heterogeneous fleets.

As we test our method considering scenarios in which
drones and trucks are utilized, we want to point interested
readers to an overview on routing problems featuring the
usage of drones (mostly static), see [20].

III. PROBLEM DESCRIPTION

This section presents the problem statement covering the
whole operation and introduces the used notation (Section
III-A). As our problem is dynamic, we model it as a Markov
Decision Process (MDP), explicitly capturing the problem’s
dynamics (Section III-B).

A. Notation and Problem Statement

We consider a heterogeneous fleet of vehicles V
consisting of multiple sub-fleets, each having a different
mean of transport, noted by the subscript m. Each vehicle,
independent of its mode, is denoted by v ∈ V . For the sake
of simplicity, we describe the method assuming a truck
fleet L of H identical trucks and a drone fleet D of G
identical drones. The generalization towards more than two
sub-fleets is straightforward. Vehicles move on a weighted
and directed graph Gm = (N,Am), thereby the arcs and
arcs’ weights are mode-dependent. Apart from the network
they travel on, the fleets differ in their maximum capacity
of each vehicle Cm and their traveling speed sm. A set
of depots De, locations where orders can be picked-up, is
placed within the graph at specific nodes {de1, ..., de|De|}1.
Each customer is defined as an order o. Customers can
request the delivery of goods to a location of their desire.
We denote the goal location by go, which is assumed to be
a node. The time a customer orders is called the request
time to. All orders are summarized within the demand O.
Each order is unique and has a size of one. We additionally
introduce time-dependent demand subsets: First, the set
of loaded orders Oload

t consisting of all orders currently
loaded to a truck or drone. Further, Odeli

t denotes the set of
delivered orders and Oigno

t the set of ignored orders (i.e.,
orders that were not delivered within the given constraints).
Last, the set of known open orders Oopen

t consisting of
all orders currently known and unloaded nor delivered nor
ignored.
The operation starts at t = 0 and ends at t = T , with t
being the current time. During a short time span of duration

1Also shared between trucks and drones.

δT before T no new orders are accepted. Further, δpick and
δdrop are fixed time spans needed to load or to deliver an
order.

General Problem Statement: Consider a heterogeneous
fleet V consisting of two sub-fleets, a truck fleet L of H
identical trucks and a drone fleet D of G identical drones.
Each mode of transportation operates on a weighted and
directed graph Gm = (N,Am). Multiple depots de ∈ De
are placed within the graph. Each truck and drone is in a
known initial state (starting locations and no prior load).
Customers continuously place orders, summarized as the
demand O, where each order is specified by a request time
to ∈ [0, T − δT ] and a goal location go. The operation
starts at t = 0 and ends at t = T . Find a set of routes for
each truck and drone to pick up, thus including the choice
of a depot, and to deliver the orders such that a given cost
function J is minimized subject to a set of given constraints.

We consider two constraints: First, each vehicle’s maxi-
mum capacity Cm may not be exceeded. Second, each order
has a maximum delivery time to,max,m. We calculate the
maximum delivery time as the sum of the request time to, the
optimal delivery time to,opt,m and a fixed time interval, called
maximum delay θmax, i.e., to,max,m = to+ to,opt,m+θmax.
Thereby, the optimal delivery time to,opt,m is calculated as
the time a vehicle needs to travel form the closest depot to
the goal location of the order plus the time to pick-up δpick
and to deliver δdrop the order. Note that the optimal delivery
time is dependent on the used mode of transportation. An
order might not be delivered within the given constraints
and is thus considered ignored.

B. Markov Decision Process

An MDP captures the dynamics of a problem by modelling
subsequent states St connected by a decision taken and a
transition between them.

Decision Points: Decisions are taken at specific points
in time, summarized in the set2 ψ. Individual decisions and
according states are enumerated by k. We make decisions in
fixed time steps of ∆t, i.e., tk+1 = tk +∆t.

Problem State: The problem state Sk at time tk is fully
characterized by the time itself tk, the state of both sub-fleets
and the set of open orders Oopen

t . To describe the fleet’s
states each individual vehicle v is described by its location
lv,t, its set of loaded orders Oload

v,t and the plan it follows
currently πv,t. For example, the truck fleet’s state is described
as Lt = ((ll,t,Oload

l,t , πl,t)∀l ∈ L). This results in the overall
state definition as

St = (t,Lt,Dt,Oopen
t ).

Note that a plan πv,t consists of an ordered sequence of
actions (pick-up and drop-off of orders or rebalancing) with
associated locations. Between locations, the vehicle follows
the shortest path. As soon as an action is executed, it is

2ψ can be determined during operation or beforehand.



removed from the plan. Further, a plan can be updated at a
later point in time.

Decision: The decision at decision point k is to update
the plan πv,t of each vehicle v, which it will follow until
the next decision point tk+1. Note that a vehicle’s plan can
change if a subsequent decision updates it, including newly
obtained information.

Transition: The transition can be split into a deterministic
part and an unknown part. In the deterministic part, we
update the truck and drone fleet’s status. Each vehicle follows
its plan πv,t determined within the taken decision. Doing
so, a vehicle’s location and its loaded orders change (orders
can get delivered and new orders can be loaded). As time
propagates, between subsequent states, customers may place
new orders (which is the unknown aspect). As a result, new
orders are added to the set of open orders Oopen

k+1 . If an
order can not be delivered within its constraints anymore,
we consider it ignored. The order is removed from the set
of open orders3 Oopen

k+1 .
Objective: The goal of the posed problem is to minimize

a combination of costs, considering the total driven distance,
service quality measured as the delay θ, and a penalty term
α for orders that are not delivered (Equation 1).

JT =

(1− β) ·
∑

o∈Odeli
T

θo + β ·
∑
v∈V

ηv,T +
∑

o∈Oigno
T

α


(1)

Thereby, the delay θo is defined per order as the difference
between the actual delivery time and the optimal delivery
time. The total driven distance of a vehicle v ∈ V at time
t is denoted by ηv,t. α is a constant predefined penalty for
ignoring an order. Note that if α is set to a large constant, the
objective function puts the highest priority onto serving as
many orders as possible. This penalty can been interpreted as
the cost to hire a third party to deliver the respective order,
such that no customer is neglected. β is a tuneable weighting
parameter between operator cost and service quality. Note
that we can not directly map a decision taken at a specific
state St to Equation 1. Each vehicle will follow its plan πv,t
until the next decision state, then each plan may be altered
due to new information. Thus, a current plan can not be
directly evaluated by Equation 1.

IV. METHOD

In this section, we describe the proposed method, called
Heterogeneous Vehicle Group Assignment (HVGA). Follow-
ing the MDP (Section III-B), each time a decision point is
hit, a decision given the current state Sk, determining a set
of routes πv,t for every vehicle v ∈ V , needs to be taken.
To do so, we follow a sequence of steps explained in the
following. First, we determine multiple potential pick-up
locations for each order (Section IV-A). Second, we calculate
sets of potential trips each truck and drone could take
(Section IV-B). Last, we pick from those sets of potential

3Note that when vehicles load orders following their plan, they also get
removed from the set of open orders.

Fig. 1: Given a problem state, a decision is taken on how to
update the plans of all trucks and drones. Heterogeneous
Vehicle Group Assignment (HVGA) creates plans for all
vehicles by first identifying potential pick-up locations for
each order. Subsequently, a large set of potential trips is
calculated for each vehicle. Which of these trips are exe-
cuted is determined in the last step called trip assignment.
During a transition phase, all trucks and drones follow their
determined plan and new orders are received until a new
decision state is meet.

trips, which each vehicle should carry out by solving an
Integer Linear Problem (ILP) (Section IV-C).4 An illustrative
overview is depicted in Figure 1. The proposed method
builds on top of previous work for flash deliveries for
homogeneous fleets, introduced in [19].5

A. Selecting Potential Pick-up Locations

As orders only specify their delivery location go, the
decision of where to pick up the corresponding goods is
raised. To acknowledge this, we introduce a concept called
candidate. A candidate combines an order with a potential
pick-up location. We define it as follows: A candidate c
is a tuple containing an order oc ∈ O and an associated
pick-up location pc ∈ De. Thus a candidate is described
as c = (oc, pc). Each order can have multiple candidates
associated with it. Further, we introduce a heuristic that
reduces the number of candidates by only considering a
subset of depots. We consider the x depots closest in delivery
time by truck to the orders goal location. x is a predetermined
tuneable parameter.

B. Finding Potential Trips

A trip, denoted as Γ, is defined as a set of candidates
{c1, ..., cj}, a vehicle and a plan, that serves all candidates

4Note that the proposed method does not take any future information into
account and thus operates myopic. Doing so could improve obtained results
[21], [22], but is regarded as future work.

5 [19] also provides a more detailed analysis of their proposed method.
Interested readers are referred to their work for further details.



of the trip, Γ = ({c1, ..., cj}, v, πv,t). The goal of the trip
generation step is to find all potential trips for each truck
and drone, summarized as the set Zall. This set is formed by
combining the sets of all potential trips Zv for each vehicle,
i.e. Zall =

⋃
v∈V Zv . We calculate the sets Zv separately for

each truck and drone and thus also separately for each mode
of transportation. Each trip is further tagged with the cost to
execute it.
The general workflow for a truck and drone are identical
but differ in the used network Gm, speed sm and vehicle’s
capacity Cm. If a trip Γ is feasible for a specific vehicle
v, a plan πv,t can be found, picking up and delivering all
candidates of this trip without violating any constraint. This
includes orders that are already on board of the considered
vehicle. To generate the complete set of all feasible trips
Zv , the method builds onto the idea that a trip can only
be feasible if all its sub-trips are feasible as well. As a
result, we start searching for trips of size one. Subsequently,
we combine obtained trips to form larger trips, successively
increasing in size. The cost of a trip Γ is given by γΓ and
is derived from Equation 1:

γΓ = (1− β) ·
∑
o∈Γ

θo(Γ) + β · travel(Γ) · sm (2)

travel(Γ) determines the required distance traveled to serve
the according trip Γ. Note that the delay θo of an order, as
well as the time needed to complete a trip, depends on the
trip and the used mode of transportation. The way to navigate
between different trip stops is determined by the used graph
Gm, and the time needed to traverse a given arc is shaped
by the speed of the vehicle sm. To determine the cost and
plan πv,t of a trip Γ, we perform an exhaustive search on
all possible sequences and continue solely with the cheapest
option.

C. Assigning Trips

Given the set Zall of all potential trips each truck and
drone can take, this step decides which of them are executed.
Thereby we want to coordinate the individual decisions to
maximize performance and minimize cost. This problem is
formalized and solved as an Integer Linear Problem (ILP),
see Equations 3-6.

argminχ
∑

Γ∈Zall

(γΓ − γloaded,v)ϵΓ +
∑

o∈Oopen
t

αχo (3)

∑
Γ∈Zv

ϵΓ ≤ 1 ∀v ∈ V (4)

∑
Γ∈Zall|oc∈Γ

ϵΓ + χo = 1 ∀o ∈ O (5)

ϵΓ ∈ {0, 1} and χo ∈ {0, 1} (6)

Equation 3 presents the cost function. Note it differs
slightly from Equation 2 as we only account for changes
in vehicles plans by subtracting the costs needed to serve
the already loaded orders of the according vehicle γloaded,v.

We introduce the constraints that each truck and drone is
maximally used once (Equation 4). Also, each order is
maximally served once or ignored for now (Equation 5).
Equation 6 introduces the binary variable ϵΓ, which takes the
value of one if a trip Γ is executed; and the binary variable
χo taking the value one if an order o is not served by the
chosen trips.6

As a result, each truck and drone are either assigned a new
trip, which they execute until the next decision is taken, or
they follow their plan as previously determined. If a vehicle
becomes idle (i.e., it has no orders to serve after the trips
have been assigned), we assign it a special plan, we call
rebalancing. The vehicle is routed to its closest depot, such
that is in a promising position for future decisions.

Remark: Note that HVGA has a large potential to unify
different types of vehicles and modes of transportation due
to assigning a cost to each trip and using it to make
decisions. Trips and their associated costs can thereby be
calculated using entirely different approaches. If approaches
are similar, this ensures more straightforward comparability.
For example, one can only adapt the graph vehicles operate
on, from a road network to a water canal system or the speed
can be adjusted to the capabilities of an individual vehicle.

V. RESULTS

First, we compare HVGA to a state-of-the-art method
to evaluate its performance in Section V-A. Section V-B
investigates the effect of the size and composition of a
heterogeneous fleet of trucks and drones.
All experiments presented in this section use a time window
of 3 hours and 10 minutes, whereby no new orders are placed
within the last 10 minutes. During this time, 1828 orders are
placed randomly within the operation area.7 As an operation
area, we simulate the city centre of Amsterdam, with trucks
driving along the street network with a speed of 10 meters
per second, and assuming that drones can fly directly to their
goal location with a speed of 15 meters per second. Trucks
can load up to six orders simultaneously, whereas drones
have a maximum capacity of one. Each order is allowed a
maximum delay of 8 minutes. To load an order 15 seconds are
needed and 30 seconds to deliver it. HVGA was performed
every 100 seconds, i.e., ∆t = 100. The penalty for ignoring
an order was chosen as a high constant α = 10000 [sec] and
the cost weighting parameter as β = 0.3333.
As a first impression, a snapshot of an area of a particular
state is depicted in Figure 2. The plan for one truck and one
drone are highlighted.

A. Comparison to Other Approaches

Next to HVGA, we implemented a second approach
resembling the work by Ulmer et. al. [13]. This method
first decides which mode of transportation is going to be
used for which order, followed by a separate routing step. To

6To solve this problem, standard software, like Mosek or Gurobi, can be
used. We used Mosek [23].

7We keep the used demand distribution and number constant to allow for
better comparison between all analyzed scenarios.



Fig. 2: A cutout of one particular state of the simulation is
illustrated. The road network graph, on which trucks move
is shown in grey. The plan of one drone and one truck are
highlighted in purple and green. Goal locations of known
and non-delivered orders are shown in yellow.

assign the mode of transportation, they use a policy function
approximation based on geographical districting, preferably
serving orders with long travel times by drones. To allow for
a fair comparison, we adapted the approach [13] to use the
routing method as introduced in this paper. Details on this
adapted approach can be found in the Appendix (Section
VII). In the following, we call this approach Split&Route.
Here we investigate a scenario in which a single depot
placed in the centre of the graph is used, as Split&Route
is not specifically designed to work with multiple depots.
Obtained results are depicted in Figure 3. HVGA improves
on Split&Route by increasing the service rate by about
17 %. Despite serving more orders, the total driven distance
reduces by 108 km. On the other hand, the average delay
increases by 24 seconds. Figure 4 illustrates the difference in

Fig. 3: Comparison of HVGA and Split&Route

the orders that get served in regard to their distance between
the depot and drop-off location, based on the street network.
A histogram of orders against travel distance is shown, where
orders served by trucks are shown purple and orders served
by drones in yellow (HVGA: Figure 4a, Split&Route: Figure
4b). HVGA primarily utilizes drone to serve short-distance
orders, standing in direct contrast to Split&Route. This
results in a greater amount of orders being served by drones
(HVGA: 341, Split&Route: 138). The results suggest that the
assumption to serve long-distance orders using drones does

not hold for flash delivery operations. Not doing so allows
drones to serve a larger share of the requests.

(a) HVGA (b) Split&Route

Fig. 4: Illustration highlighting the difference in served
orders regarding their distance between depot and drop-off
location between HVGA, left, and Split&Route, right.

B. Fleet Composition

As this work is the first (to the best of our knowledge)
in investigating the effect of deploying drones within a flash
delivery operation, we analyzed the fleet composition in more
detail. We increase the number of pick-up locations in the
service area to 20, to leverage that our method can handle
multiple depots; three are considered per order (x = 3).
Figure 5 shows the change in service rate, delay and total
travelled distance for three fleets of total size 15, 20 and 25
and their composition in various ratios of trucks to drones.
Independent of the total fleet size, we see an increase in
service rate the more drones are used. This comes with an
increase in total travelled distance. We see one exception
for a fleet size of 25, when the service rate comes close to
100%. Then resources become available, which the approach
can use to stronger optimize on traveled distance and delay.
Generally, delay decreases the higher the percentage of
drones used.
For flash delivery operations drones hold great potential.
Short times between ordering and delivery and short dis-
tances between drop-off and pick-up location (strengthened
by considering multiple depots) fit well with drones’ benefits.
High capacities are less important if comparing flash deliv-
eries to traditional next-day operations, where times between
leaving and returning to a depot can cover many hours.

VI. CONCLUSIONS

This paper presented an optimization-based approach to
route a heterogeneous fleet of vehicles for an on-demand last-
mile delivery operation. Orders are served within minutes
after ordering, posing a special variant of a Same-Day
Delivery problem. To analyze the results, a fleet of trucks
and drones was studied and compared to a method inspired
by [13]. HVGA was able to serve more orders while driving
fewer kilometres in total. Further, the size and composition of
various fleets have been studied. A larger amount of drones
increases obtained service rates at the cost of increased
travelled distance.
Future work involves a more detailed representation of used
vehicle types, enabling a more accurate study about their
use for flash deliveries. Further, the scope of experimental



Fig. 5: Service rate, delay and total travelled distance are depicted for various compositions of the total fleet. Further the
effect of the total fleet size is investigated by setting it to 15, 20 and 25.

analysis can be broadened such that the most critical drivers
for flash delivery operations can be identified and studied.

VII. APPENDIX: DETAILS ON SPLIT&ROUTE

Split&Route selects a set of orders to be potentially served
by drones and routes the drones exclusively for this set of
orders. We attempt to serve as many orders as possible
by drones. To do so, we take an iterative approach. The
individual steps are outlined in the following.
1. We select y orders to be potentially served by drones,
further called the drone order set. The y longest orders, based
on their traveling distance on the road network, are selected.
Note that y can be larger than the number of drones, as it is
possible to assign multiple orders to one drone and deliver
them subsequently, even though the maximum capacity is set
to one. y is a predefined tuneable parameter.
2. We calculate a solution using HVGA (potential pick-up
locations, trip generation and trip assignment) for all drones
and the drone order set exclusively.
3. We check if all orders of the drone order set are assigned
to a drone’s plan and none is ignored. If yes, we update the
drone plans πv,t and route all trucks using HVGA for the set
of remaining open orders. If not, we reduce the drone order
set by excluding the order with the shortest optimal travel
distance and repeat starting from step 2.
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