Reinforcement Learning from Simulation to
Real World Autonomous Driving using
Digital Twin *

Kevin L. Voogd *** Jean Pierre Allamaa*
Javier Alonso-Mora ** Tong Duy Son *

* Siemens Digital Industries Software, 3001 Leuwven, Belgium (e-mail:
{kevin.voogd, jean.pierre.allamaa, son.tong}@siemens.com)
** Faculty of Mechanical, Maritime and Materials Engineering,
Technical University of Delft, 2628 CD Delft, The Netherlands (e-mail:
j.alonsomora@tudelft.nl).

Abstract: Reinforcement learning (RL) is a promising solution for autonomous vehicles to
deal with complex and uncertain traffic environments. The RL training process is however
expensive, unsafe, and time-consuming. Algorithms are often developed first in simulation and
then transferred to the real-world, leading to a common sim2real challenge where performance
decreases when the domain changes. In this paper, we propose a transfer learning process to
minimize the gap by exploiting digital twin technology, relying on a systematic and simultaneous
combination of virtual and real world data coming from vehicle dynamics and traffic scenarios.
The model and testing environment is evolved from model, hardware to vehicle in the loop and
proving ground testing stages, similar to standard development cycle in the automotive industry.
In particular, we also integrate other transfer learning techniques such as domain randomization
and adaptation in each stage. The simulation and real data are gradually incorporated to
accelerate and make the transfer learning process more robust. The proposed RL methodology is
applied to develop a path-following steering controller for an autonomous electric vehicle. After
learning and deploying the real-time RL control policy on the vehicle, we obtained satisfactory
and safe control performance already from the first deployment, demonstrating the advantages
of the proposed digital twin based learning process.

Keywords: Learning and adaptation, autonomous vehicles, Sim2Real, reinforcement learning

1. INTRODUCTION

Research on autonomous vehicles (AVs) has made signifi-
cant progress with recent advances in deep learning (DL),
especially on the vehicle perception stack. While there
have been some encouraging results and demonstrations,
the application of DL on the vehicle planning and control
stacks is still limited. Deep reinforcement learning (DRL)
is an approach to generate control strategies in sequen-
tial processes, and capable of automatically learning and
adapting from data, robustly against different operating
conditions and tasks. This offers a more flexible and higher
performance planning or control solution than traditional
model-based control methods, which rely on a well-defined
mathematical model of the system. Recent DRL break-
through examples include AlphaStar (Arulkumaran et al.,
2019), a model designed to play StarCraft IT and end-to-
end autonomous lane keeping (Kendall et al., 2019).

Despite the progress, further research and testing are cru-
cial to realize the advantages of DRL, to be implementable

* This project was funded from the European Union’s Horizon 2020
research and innovation programme under grant agreements No
956123 (FOCETA) and No 953348 (ELO-X). The work also benefited
from the Flanders Innovation & Entrepreneurship — VLAIO funded
project BECAREFUL.

in real-world within automotive industry standard (You
et al., 2019). The main DRL challenge is a safe and efficient
training process and testing environment: DRL training is
expensive, time-consuming, and involves exploration of un-
safe, risky situations. Training with the physical car is not
legally possible in real traffic and is often limited to closed
tracks. One may first train with collected human driving
data and then transfer the controller to the physical world;
however, the data misses out on critical scenarios that are
needed to robustify the controller. The alternative training
environment is simulation, where virtually generated data
is cheap and fast, already labeled, and includes a large
number of critical scenarios. Still, virtual data lacks true
real-life properties and interactions, leading to a perfor-
mance difference known as the sim2real transfer gap, when
a policy is trained in simulation with a physical world
deployment aim. This gap is caused by the simulation-
optimization-bias where the controller exploits faults in
the simulator and overestimates its performance compared
to the target domain (Muratore et al., 2021). Other causes
are model mismatch, noise, or actuation delays.

In this paper, we propose a DRL training and testing envi-
ronment relying on Digital Twin (DT). DT is a virtual rep-
resentation of a physical product or process, used across its
development cycle to simulate and optimize the system’s

performance and efficiency. In AVs, it comprises virtual
models of vehicle dynamics, traffic scenarios and sensors.
We exploit closed-loop DT which provides bi-directional
connectivity between the physical and the virtual environ-
ment. In particular, the fidelity and complexity of models
and environment are gradually evolved from model-in-the-
loop (MiL) in simulation to hardware-in-the-loop (HiL)
with physical vehicle embedded controller and actuation
components, and vehicle-in-the-loop (ViL) proving ground
testing with a real Siemens SimRod drive-by-wire car.
The process provides a robust, high performance transfer
learning, and is easier for prediction and tuning. Note that
this is also known as V-cycle in industry, being adapted
to DRL development purpose. Finally, we combine with
domain adaptation and domain randomization techniques
to enhance the transfer learning process. The transferred
controller is deployed on the real vehicle successfully with-
out fine-tuning in the target domain as shown in the
abstract video at https://youtu.be/RqIH9maKMxs. The
contributions of this paper are:

e a zero-shot transfer learning approach that combines
the advantages of virtual training with real-world
data. The DRL agent is robust to different paths and
model uncertainties,

e a reduction in the sim2real gap for autonomous driv-
ing applications. The RL agent is trained using a
high-fidelity (HF) vehicle dynamics simulator and
traffic scenario simulator with domain randomization
and adaptation,

e a deployable algorithm on a real-time operating sys-
tem and a validation framework in MiL,, HiL. and Vil
minimizing the overall testing effort and cost.

The paper is organized as follows. Section 2 summarizes
related work on reinforcement learning for path following
and sim2real methods. Section 3 reviews the background
theory of RL, the vehicle model, and the transformations
needed in domain adaptation. The experimental setup
and the implementation details employed in this work are
presented in Section 4.2, Section 5 provides a discussion
on the results and concludes this work.

2. RELATED WORK

DRL and path following in autonomous driving: the first
successful application of DRL in autonomous driving was
achieved by Kendall et al. (2019), learning a control policy
for lane-keeping from monocular images and training only
in the physical world. Recent work by Alomari et al.
(2021) claims to have developed a method that bridges
the Sim2Real gap using a 3D vehicle dynamics simulator
and parameter randomization, but the results are not
validated on a real-time operating system. A similar study
by Maramotti et al. (2022) focuses on a DRL planner using
the single-track kinematic model and an additional neural
network (NN) to simulate the state transition dynamics
of the car. To speed up convergence, they pre-train the
network with imitation learning and randomize the path
and the vehicle’s initial state. Similarly, Jiang et al. (2022)
uses NNs to model the vehicle dynamics and constrains
weights and activation functions of the DRL algorithm,
turning it into a convex optimization problem. However,
the computational time is significant, making it unfeasible
for real-time application.

Sim2Real methods: Domain adaptation (DA) maps fea-
tures from the source domain to the target domain, and
vice versa or both, to a common latent space in an attempt
to train the agent in a domain-independent framework.
DA has been used to transform synthetic images or point
clouds into realistic representations through generative
adversarial networks (Xinlei Pan and Lu, 2017). Other
researchers argue that data representation is the main
source of the transfer gap and propose to transform the
representation to lidar maps (Wang et al., 2019) or bird-
eye views (Ng et al., 2020). Domain randomization (DR) is
a method in which the parameters of the source domain are
randomized so that it contains the target domain in its dis-
tribution. This method is effective when used with domain-
specific knowledge and results in a robust control policy to
model uncertainties as performed in Allamaa et al. (2022)
to automatically tune the controller parameters. Random-
ization techniques have been applied to vehicle dynamics
and physical parameters such as masses, friction, (Peng
et al., 2018), trajectories, or random forces (Pouyanfar
et al., 2019). It has also been performed on sensor data
where DR techniques to alter poses, textures, dimensions,
or colors (Andrychowicz et al., 2020). Lastly, system iden-
tification is used to identify properties of dynamical sys-
tems based on experimental measurements, which are later
used to simulate the process more accurately. In addition,
a Digital Twin is a HF multiphysics model that uses the
available models and sensors to recreate in simulation its
real life counterpart. By combining this model with real-
time data, it is possible to accurately predict the vehicle’s
behavior (Hartmann and Van der Auweraer, 2020).

We propose a transfer learning approach to systematically
combine all three techniques, allowing rapid and safe
prototyping of DRL algorithms in real-world applications.

3. BACKGROUND

This section introduces the theory of RL, the vehicle
kinematic model used in this work and lastly, the error
frame transformation.

3.1 Reinforcement learning

Formally, RL problems are formulated as Markov decision
processes (MDPs). Specifically in autonomous driving, RL
is used to solve the MDP for the optimal driving pol-
icy. At every step, the MDP is composed by the tuple
(S, A, P,R,~), where S and A are the set of states and ac-
tions, respectively. In stochastic processes P(s¢11]s¢t, at) :
S x A — [0,1] is the transition probability function of
entering the state s;;; from state s; by taking the action
at. Moreover, MDPs have the property that the condi-
tional probability of a future state depends only on the
present state. R: S x A xS — R, is the reward function
that maps the state s; in which the action a; is taken and
the resulting state s;y1 into a scalar value . The action
is chosen based on a policy my(als). In DRL, the policy
is approximated with deep NNs with parameters 6. Given
stochastic transition and policy functions, the objective
is to maximize the return R; over the trajectory, i.e. the
expected reward:

J(r) = / P(rlm)Ri = E[R,]. (1)

Fig. 1. Single-track model

The policy that maximizes the objective J(m) is noted as
m*. In addition, there are two other functions: the state-
value V™ (a|s) function, which is the expected return of
following the policy mg(a¢|s¢) from state s. The Q™ (als) is
the action-value function and maps the expected return
of choosing an arbitrary action a in state s and then
effectively follow the policy 7 (:|s). In this paper, we use the
soft-actor critic (SAC) algorithm developed in Haarnoja
et al. (2018), which is based on an actor-critic structure:
the actor selects the action of the agent and the critic eval-
uates the action by approximating the @Q,-function. SAC
includes entropy regularization in its objective function to
encourage exploration, preventing early convergence to lo-
cal minima. Additionally, this algorithm is off-policy mean-
ing that the @Q,-function is learned from actions taken by
a different policy than the current 7(a|s). Proximal Policy
Optimization (PPO) was also tested in this work. However,
it did not yield safe transferable policies, probably due to
rapid convergence to a local minimum, and was therefore
not a good candidate for our application.

3.2 Single-track model

The single-track bicycle model is a kinematic model of a
four-wheeled vehicle (Fig. 1), in which the wheels at each
axle are joined together. This model assumes a no-wheel
slip condition. The length of the wheelbase is denoted
as L, and the distances from the rear and front axle
to the vehicle’s center of gravity (CoG) are L, and Ly,
respectively. The vehicle’s linear and angular velocities
measured in a global reference frame are:

Zem = veos (6 + B)
Yem = vsin (6 +) 2)
0 =v/R,,
where 0 is the heading of the chassis with respect to
the global frame, 8 = arctan ((L,/L)tand) is the body
slip angle. and the CoG’s radius of rotation is R, =

L/(tan é cos B). Inputs to the model are the steering angle
¢ and velocity v, controlling positions Tem, Yem -

Lateral and heading deviation: In this work, we use a
buffer of recorded virtual and real-world trajectories to
represent the centerline of the path to be driven. The
heading and lateral deviations are calculated with respect
to the closest next point in distance in the buffer. In
Figure 2, the black and red vehicles represent the RL agent
and the logged data respectively. The heading error (g4)
is calculated by computing the shortest difference between
angles. The lateral deviation (g4) is calculated as:

Fig. 2. Lateral deviation and yaw error calculation for
the learning agent (gray). The deviation is computed
w.r.t. the closest next observation (red).

do dy 1" = (FH) " [Vas Wys 1], @)
where S and F are the subscripts for the learning agent
and the closest next observation respectively, W is the
global frame, dx is the longitudinal offset, dy = ¢4 is the
lateral deviation, and H is the homogeneous transforma-
tion matrix.

4. DRL TRAINING AND TRANSFER LEARNING

This section starts with a description of the training loop
depicted in Figure 3 followed by a detailed explanation
of the validation workflow. First, different trajectories
are generated both synthetically in simulation (Simcenter
Prescan) and in the physical world, and saved in the buffer.
Training starts with the RL implementations (Raffin et al.,
2021) with simulated data. When the performance stops
improving, real-world trajectories are injected as the first
step in DR to generalize on the true noise level and
dynamic driving style. All collected data are transferred
to a path following formulation, allowing us to set the
observations in the error frame presented in Fig. 2. This
enables a domain and reference invariant path following
task, rendering it adaptable to both real and virtual do-
mains. The episodes start with a random initialization of
the environment and vehicle states, the second component
of DR. The output of the DRL algorithm, the steering
angle control action, is sent to the 15 DoF high fidelity
(HF) vehicle dynamics simulator, the DT of the SimRod
vehicle in Simcenter Amesim. The DT includes a number
of identified parameters that are also randomized, to ac-
count for the sim2real gap. This third level of DR allows for
even more generalization and robustification in the trans-
fer learning approach. The performance during training is
evaluated regularly every 2500 steps in 4 randomly selected
scenarios and random initial conditions. The metric used
to evaluate is the average timestep reward.

Data generation: virtual data is generated in the Sim-
center Prescan, a traffic scenario simulator, at a frequency
of 20 Hz with the same format as the real-world samples
to facilitate the domain transition. The real-world samples
are collected with the physical SimRod car in the company
parking lot seen in Fig. 3, using a high accuracy dGPS.

4.1 Reinforcement learning training setup

State space: The NN inputs are processed sensor read-
ings: the position in a global reference frame and inertial

Real-world logged data

Training loop

'V: #1700,9:880 30 87 905} »
closest nexf]
observation|

Bicycle model

RL Algorithm

&

Tracking error
Motion

A0,
" prediction &f >

database

|1

A

action
Vehicle
states

4—Tnoise

Vir ul data

g RL Agent ﬁ Recorded data

Fig. 3. Training of reinforcement learning policies using first synthetically generated data and a digital twin of the
vehicle until performance settles. Then, real-world logged data is used. The predicted deviation is calculated with
the single-track model. The initial states, the vehicle’s physical parameters, and the control action are randomized.

measurements or virtually generated. These are the longi-
tudinal speed of the vehicle v, the heading error gy, the
lateral deviation €4 and their derivatives. The predicted
lateral deviation is estimated with the single-track model
for the next 10 timesteps, assuming constant speed and
steering. More timesteps lead to a higher prediction in-
accuracy, especially at early stages of training, and fewer
timesteps may be short-sighted, hence the choice of 10
timesteps. In addition, the previous steering rate § and
angle § are inputted. By providing the NN with states in
the error frame, we benefit from the possibility to gener-
alize any reference path with any center of the coordinate
system. This allows training independently of the domain
and task to be performed.

Action space: The action generated by the policy
network is the steering rate § saturated in the range
[-0.18,0.18] rad/s. We opt for a generalized state-
dependent exploration (gSDE), where the noise is depen-
dent on the state of the car for the entire duration of
the episode (Raffin et al., 2022). The steering rate is then
integrated to obtain the steering angle. The longitudinal
acceleration is computed with a PD controller.

Reward function: the reward function depends on the
heading error £¢, the lateral deviation ¢4, and the steering
rate . We propose to simultaneously optimize tracking
and input by multiplying the individual components, and
normalize them between 0 and 1 as:

r(lgj‘”) <1€5d|> (1f|5|).

dmax

Parameter randomization: ~ We randomize the digital
twin physical parameters to robustify against modeling
errors and uncertainties such as changing road conditions,
the number of passengers, or delays. Consequently, we
randomize the mass, the location of the center of gravity,
the length of the wheelbase, the suspension, and the
stiffness of the tire. Values are drawn from a normal
distribution. Every episode includes randomization of the
initial deviation and orientation with respect to the path,
to train the algorithm to overcome such uncertainties.

(4)

4.2 Implementation details and Experiments

The DRL model is trained on a laptop with 64 GB
of RAM, an Intel Xeon W-11855M processor, and an
NVIDIA RTX A4000 laptop graphics card. The model
used for training has 16 inputs, 6 layers, and only one
output, and also has a linear decay on the learning rate.
The preprocessing steps and the NN are C code gener-
ated and deployed to the embedded platform dSPACE
MicroAutobox III, running the real-time controller that
commands the SimRod.

We train four different policies and then evaluate them
in a standard V-cycle procedure satisfying the safety
requirements: Model-in-the-loop (MiL), hardware-in-the-
loop (HiL), and vehicle-in-the-Loop (ViL). The evaluated
policies are SAC-ST-RW, SAC-HF-VD, and SAC-HF-RW,
which abide by the notation: trained only with virtual data
(VD), fine-tuned with real-world data (RW), single-track
model (ST), and high-fidelity model (HF). The SAC-ST-
RW is evaluated with the higher-fidelity model. MiL allows
for safe and extensive verification and validation of the
trained policies against possible edge cases, and actuator
noise levels and provides initial performance metrics. This
step enables a safe and cheaper transition to HiLL and ViL
levels. The learned policies are evaluated in real-world
scenarios and are consistently evaluated at different ini-
tial deviations: {—1.25,—1.0,—0.5,0.0,0.5,1.0, 1.5} meters
but the vehicle’s physical parameters are kept constant to
compare the performance under equal conditions. ViL is
carried out in a closed parking lot in Leuven, Belgium.

5. RESULTS AND DISCUSSION

In this section, we present the results of the training
phase, as well as the evaluation of the MiL and ViL
experiments. Figure 4 shows the average timestep reward
of the SAC-HF-RW model, the best performing policy.
The blue line shows the performance over time using only
virtual data. Then, it is fine tuned with real-world data
(red) as a component of the transfer learning methodology.
There is a large decay (sim2real gap) when the data
type is changed, showing the necessity of introducing
such transfer learning logic, as the pre-trained model

T 08| :
3
8
o 0.6 -
g
:
= 04 —— Virtual data)
&:;50 —— Finetune with RW
R e e

0O 05 1 15 2 25 3 35

Total training timesteps [-].1()5

Fig. 4. Training results for SAC-HF agent: the agent is
first trained with virtual data and the best model is
further fine-tuned with real-world data.

mm SAC-VD mmm SAC-RW = SAC-ST

1.5 — T T T T T T T

Lat. dev. [m]

Scenario

Fig. 5. MiL tracking performance of the DRL policies
evaluated in eight different scenarios.

would have suffered from the sim2real gap. The model
continues to train until settling in terms of performance.
The model with the higher average return is evaluated in
MiL and ViL. We observe a smaller variance during pre-
training because the virtual scenarios are noise-free and
simpler. These paths can be generated in millions and
can speed up the pre-training phase, however, these are
kinematic trajectories, which sometimes are not feasible
for agents to track. Adding the real-world data afterward
introduces dynamically possible curvature changes and
state transitions. The amount of time required to perform
100000 timesteps with the HF model is 11.73 4 0.35 hours.
On the contrary, the kinematic ST only requires 42.47 +
0.13 minutes for the same number of steps.

5.1 Model-in-the-Loop and Hardware-in-the-Loop

The results of the MiLL experiments are shown in Figures 5
and 6. In general, the SAC-ST model performs the best
with an average error of 17.5 cm for all trajectories. The
SAC-HF-RW model error is 26.3 ¢m, and then SAC-HF-
VD with 62.1 cm. Since training scenarios are performed
only in 2D and not in 3D, the HF model adds unnecessary
complexity. In other words, since in MiL the target domain
is still a simulator with predefined parameters, the policy
tends to compromise performance for robustness. This
is also the reason for using DR, as the learning agent

100} E— 1
g :
>~ 80 k \
=
.8 \
S 60| \ |
g
[alf

40 | \ i \ \ N

30 35 40 45

Position X [m]

Fig. 6. MiL evaluations for the SAC-ST-RW agent with
different initial deviations (in asterisk *)

I I I
5 65 : x\/ :
S
g 60 1 === Ref. trajectory
E —— SAC-HF-RW
2 — SAC-HF-VD
~ 551 SAC-ST-RW H
I I | |
40 60 80 100

Position X [m]

Fig. 7. ViL evaluation in the same path for all agents

tends to overtune in simulation, creating an SOB when
transferring to the real-target domain. However, the ST
performs worse than the HF model when dealing with a set
of curves or higher-speed scenarios. The former is related
to the fact that the executed steering angle is subjected
to the assumption of a small steering motion and a large
radius of curvature. We also noticed that using only virtual
data with a HF model (SAC-HF-VD) is not enough for
a performant transfer, hence the benefit of our proposed
transfer learning approach.

5.2 Vehicle-in-the-Loop validation

As the main objective of this work is to transfer the
policy efficiently and in zero-shot between the domains,
we validate it in the actual vehicle. To our surprise, the
SAC-ST-RW decreases its performance considerably when
transferred to the real target. Hence, the benefit of the
safe transfer learning methodology is proven, as the SAC-
ST-RW does not account for a sim2real gap. The results
are shown in Table 1 and Figure 7, pointing out that
the best model is the policy trained with the HF model
with an average deviation of 35 cm for all paths. On the
contrary, the average error for the ST model increases to
49 cm; for SAC-HF-VD, the error is 52.5 cm. We also
compare the transfer gap by computing the ratio between
the performance in ViL. and MiL.. The SAC-ST-RW model
deviates 4.75, 1.55, and 2.81 times more in the paths where
ViL was tested. In contrast, the performance of SAC-HF-
RW is not affected to the same extent by the sim2real gap.
Specifically, we observe the following ratios: 1.60, 1.05,
and 1.50. The HF model increases the tracking accuracy

Table 1. ViL results of the DRL policies tested
in different scenarios

Lateral deviation (% o) [m]

Path 3 Path 6 Path 7 Path 8
SAC-HF-RW 0.59+0.41 0.22+0.19 0.21+0.21 0.39+40.43
SAC-HF-VD 0.504-0.55 0.6240.34 0.4740.40 0.5140.53
SAC-ST-RW 0.5740.33 0.4540.39 0.4540.48 -

on average by 28.6% compared to the single-track model.
Moreover, using real-world data to fine-tune the model
results in 33.3% better transfer. Contrary to what has been
reported by Truong et al. (2022), our results indicate that
a higher-fidelity model is indeed necessary to minimize
the reality gap. There was random locking of the vehicle’s
steering wheel in various trials; nevertheless, the agent was
able to recover from the faulty states in the majority of
cases and follow the path immediately afterward.

6. CONCLUSION

In this work, we develop a transfer learning strategy to
efficiently train a DRL policy in simulation and deploy it
in a real-time vehicle application. We show that standard
approaches of training exclusively with virtual data or low-
fidelity models are not sufficient to robustify the trained
agent, even though they yield better performance in MiL.
We combine state-of-the-art sim2real methods such as DR,
DA, and HF with virtual and real-world data and show
that they are all necessary components for safe transfer.
The HF dynamics simulator allows efficient randomization
of a large variety of parameters and correctly predicts the
behavior of the vehicle under different conditions, robusti-
fying the controller to real-world conditions and allowing
a better zero-shot transfer. This work also focused on a
safe and scalable approach to prototyping and developing
algorithms for autonomous driving applications with phys-
ical testing in automotive industry standards. Finally, we
validate our approach on a real-time path following control
application in MiL, HiL., and Vil development stages.

REFERENCES

Allamaa, J.P., Patrinos, P., Van der Auweraer, H., and
Son, T.D. (2022). Sim2real for autonomous vehicle con-
trol using executable digital twin. IFAC-PapersOnLine,
55(24), 385-391.

Alomari, K., Mendoza, R., Goehring, D., and Rojas,
R. (2021). Path following with deep reinforcement
learning for autonomous cars. In Proceedings of the 2nd
International Conference on Robotics, Computer Vision
and Intelligent Systems - Volume 1: ROBOVIS,, 173—
181. INSTICC, SciTePress.

Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz, R.,
McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin, J.,
Welinder, P., Weng, L., and Zaremba, W. (2020). Learn-
ing dexterous in-hand manipulation. The International
Journal of Robotics Research, 39(1), 3-20.

Arulkumaran, K., Cully, A., and Togelius, J. (2019). Al-
phastar: an evolutionary computation perspective. Pro-
ceedings of the Genetic and Fvolutionary Computation
Conference Companion.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep rein-

forcement learning with a stochastic actor. In Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, 1861-1870. PMLR.

Hartmann, D. and Van der Auweraer, H. (2020). Digital
Twins.

Jiang, K., Hu, C., and Yan, F. (2022). Path-following
control of autonomous ground vehicles based on input
convex neural networks. Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile
Engineering, 236(13), 2806-2816.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D.,
Allen, J.M., Lam, V.D., Bewley, A., and Shah, A.
(2019). Learning to drive in a day. In 2019 IEEE
International Conference on Robotics and Automation
(ICRA), 8248-8254.

Maramotti, P., Capasso, A.P., Bacchiani, G., and Broggi,
A. (2022). Tackling real-world autonomous driving using
deep reinforcement learning. In 2022 IEEE Intelligent
Vehicles Symposium (IV), 1274-1281.

Muratore, F., Gienger, M., and Peters, J. (2021). Assessing
transferability from simulation to reality for reinforce-
ment learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(4), 1172-1183.

Ng, M.H., Radia, K., Chen, J., Wang, D., Gog, I., and Gon-
zalez, J.E. (2020). BEV-Seg: bird’s eye view semantic
segmentation using geometry and semantic point cloud.

Peng, X.B., Andrychowicz, M., Zaremba, W., and Abbeel,
P. (2018). Sim-to-real transfer of robotic control with
dynamics randomization. In 2018 IEEE International
Conference on Robotics and Automation (ICRA).

Pouyanfar, S.; Saleem, M., George, N., and Chen, S.C.
(2019). ROADS: randomization for obstacle avoidance
and driving in simulation. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 1267-1276. IEEE.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. (2021). Stable-baselines3: reliable
reinforcement learning implementations. Journal of
Machine Learning Research, 22(268), 1-8.

Raffin, A., Kober, J., and Stulp, F. (2022). Smooth
exploration for robotic reinforcement learning. In 5th
Conference on Robot Learning (CoRL), volume 164 of
Proceedings of Machine Learning Research, 1634-1644.

Truong, J., Rudolph, M., Yokoyama, N., Chernova, S.,
Batra, D., and Rai, A. (2022). Rethinking Sim2Real:
Lower Fidelity Simulation Leads to Higher Sim2Real
Transfer in Navigation. In Conference on Robot Learn-
ing (CoRL).

Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell,
M., and Weinberger, K.Q. (2019). Pseudo-lidar from
visual depth estimation: bridging the gap in 3D object
detection for autonomous driving. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 8437-8445.

Xinlei Pan, Yurong You, Z.W. and Lu, C. (2017). Virtual
to real reinforcement learning for autonomous driving.
In Proceedings of the British Machine Vision Conference
(BMV(C), 11.1-11.13. BMVA Press.

You, C., Lu, J., Filev, D., and Tsiotras, P. (2019). Ad-
vanced planning for autonomous vehicles using rein-
forcement learning and deep inverse reinforcement learn-
ing. Robotics and Autonomous Systems, 114, 1-18.

