
1

Particle-based Instance-aware Semantic Occupancy
Mapping in Dynamic Environments

Gang Chen∗, Zhaoying Wang†, Wei Dong†, and Javier Alonso-Mora∗

Abstract—Representing the 3D environment with instance-
aware semantic and geometric information is crucial for
interaction-aware robots in dynamic environments. Nevertheless,
creating such a representation poses challenges due to sensor
noise, instance segmentation and tracking errors, and the ob-
jects’ dynamic motion. This paper introduces a novel particle-
based instance-aware semantic occupancy map to tackle these
challenges. Particles with an augmented instance state are used
to estimate the Probability Hypothesis Density (PHD) of the
objects and implicitly model the environment. Utilizing a State-
augmented Sequential Monte Carlo PHD (S2MC-PHD) filter,
these particles are updated to jointly estimate occupancy status,
semantic, and instance IDs, mitigating noise. Additionally, a
memory module is adopted to enhance the map’s responsiveness
to previously observed objects. Experimental results on the
Virtual KITTI 2 dataset demonstrate that the proposed approach
surpasses state-of-the-art methods across multiple metrics under
different noise conditions. Subsequent tests using real-world data
further validate the effectiveness of the proposed approach.

Index Terms—Mapping, Semantic Scene Understanding, Dy-
namic Environment Representation

I. INTRODUCTION

Semantic mapping in unknown and unstructured environ-
ments [1]–[7] aims to represent both geometric and semantic
information of elements utilizing onboard sensor data. With
the emergence of interaction-aware robots, e.g., robots that can
interact with objects or other agents in the environment, it is
essential to segment, track and model the individual instances
with possible dynamic motions. The shape and motion of each
instance should be updated consistently during the interactions
to ensure the safety of the robot.

While instance segmentation [8]–[10] and tracking [11]–
[13] have been thoroughly explored in computer vision, the
field of instance-aware semantic mapping in dynamic environ-
ments is still nascent. This type of mapping poses considerable
challenges: firstly, it demands the ability to manage noise not
only from the sensor data but also from instance segmentation
and tracking; secondly, it requires accounting for the dynamic
motion of the instances, adding another layer of complexity
to the task.

∗The authors are with the Autonomous Multi-Robots Lab, Department of
Cognitive Robotics, School of Mechanical Engineering, Delft University of
Technology, 2628 CD, Delft, Netherlands.

†The authors are with the State Key Laboratory of Mechanical System and
Vibration, School of Mechanical Engineering, Shanghai Jiaotong University,
200240, Shanghai, China.

This work is funded in part by the European Union (ERC, INTERACT,
101041863). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them.

Several methods have been proposed in recent years to
realize instance-aware semantic mapping in static environ-
ments [5]–[7]. However, the representations employed in these
works, such as signed distance field or Gaussian kernels, do
not account for real-time motion of objects in the environ-
ment, causing either missing object or trace noise problems
[14], [15]. Alternatively, the occupancy status of dynamic
environments can be modeled with particles [15]–[17]. While
effective in estimating the occupancy status, these methods do
not incorporate the semantics and instances of the objects.
Moreover, they consider each object to be composed of
points with individual motions, thereby disregarding object-
level motion and causing non-negligible noise in the occluded
areas.

In this work, we build upon the particle map work [15] by
incorporating instance-aware semantic information and jointly
updating the occupancy status, semantic, and instance labels
using particles with an augmented instance state. The proposed
approach involves constructing a world model that represents
different instances as distinct Random Finite Sets (RFSs) of
points. The dynamic motions of each instance are addressed by
sharing the same translation and rotation for the points within
each set. In accordance with the world model, an S2MC-
PHD filter is proposed to use particles to efficiently estimate
the PHD of the RFSs while handling the aforementioned
noise. The PHD works as an implicit representation, which is
further used to estimate the occupancy status and semantic and
instance IDs of each voxel subspace in the map. In addition,
we integrate a memory module into the filter to provide
a conjecture of the occluded portion of a newly observed
object, based on prior observations of objects with the same
semantic label. In the experiments, the proposed method not
only reaches state-of-the-art semantics and instance estimation
performance in dynamic environment mapping but also im-
proves the occupancy estimation performance by leveraging
instance information.

The contributions of this paper are as follows:
• An instance-aware point-based world model that enables

using the PHD to implicitly represent the occupancy
status as well as the semantic and instance IDs of the
environment.

• An S2MC-PHD filter that uses particles with an aug-
mented instance state to efficiently estimate the PHD
while handling the sensor and instance noise.

• Integrating an online memory module into filter-based
mapping to enhance the map’s responsiveness to previ-
ously observed objects.

• An efficient egocentric instance-aware semantic occu-

2

pancy map that outperforms state-of-the-art maps in terms
of occupancy, semantic, and instance estimation accuracy
in the evaluated environments.

In terms of implementation, we also improved the data
structure for particle-based mapping [15] to increase efficiency.
Our code is available at https://github.com/ tud-amr/semantic
dsp map. Video: https://youtu.be/drSOYzVt2UM.

II. RELATED WORKS

A. Mapping in Dynamic Environments

Occupancy mapping in dynamic environments is a chal-
lenging task. Traditional mapping methods based on Bayesian
updates [18]–[20] and signed distance fields [5], [21] usually
suffer from the missing object or trace noise problem [14],
[15] due to the motions of the dynamic objects. The missing
object problem occurs if a dynamic object is observed but not
represented in the map and is mistakenly considered as free
space. The trace noise problem occurs if a dynamic object has
left an area while the map still considers (part of) the area as
occupied.

To address the problems, some works [22]–[26] detect
dynamic objects and eliminate them from the map. Then the
dynamic objects are separately represented using the raw point
cloud in the current frame, without considering modeling their
motion or multi-view geometric information. To effectively
model the motion and multi-view geometry of both dynamic
and static objects in the map, enhanced representations of
the environment are needed. One popular approach in the
field of computer vision is to use neural radiance fields [27],
[28] or Gaussian splatting [29], [30] with additional time
dimension to model each dynamic object. Although these
methods provide photo-realistic rendering of the environment,
they require images from different views at different time
steps in advance for training and are not suitable for real-time
robotic tasks.

Another approach is to use particles as the representation
[15]–[17], [31]. Compared to regular points in a point cloud,
particles can be assigned a velocity vector and a weight, which
can be used to model the motion and represent the uncertainty
caused by noise. Danescu et al. [16] first introduced the
idea of using particles to model the objects and represent
the occupancy status of the environment. Nuss et al. [17]
improves the particle-based map by introducing RFS and
using the PHD to represent the occupancy status. Further, our
previous work [15] proposed to update the particles in the
continuous space with a dual structure to improve the accuracy
and efficiency of the map. These particle-based methods use
particles with individual velocities to model the surface points
on the objects. Particles representing the points on the same
object can have very different velocities. While in the currently
observed area, the particles with wrong velocities can be
corrected by the measurements, the particles in the occluded
area often cause noise in the map due to the “particle false
update” problem [15]. Compared to our previous work [15],
this paper introduces several key improvements. The most
significant is the new S2MC-PHD filter, which handles not
only position noise but also object segmentation and tracking

noise, whereas the previous filter [15] addressed only position
noise. Another important aspect is that the S2MC-PHD filter
uses object-level transformations to model particle motions
instead of individual particle velocities, solving the “particle
false update” issue identified in [15] and reducing noise in
occluded areas. Additionally, a memory module is introduced
to enhance the map’s responsiveness to previously observed
objects, and the data structure is optimized to handle object-
level information and increase mapping efficiency.

B. Semantic Mapping

Semantic mapping represents the environment with both
geometric and semantic information to realize better scene
understanding and safer navigation. A number of works have
studied semantic mapping in static environments [1]–[5], [7],
[32]–[37]. The representations used in these works include
explicit representations, such as point cloud [3], [32], voxel
[1], [2], [33], mesh [4], etc. and implicit representations, such
as signed distance field [5], [37] and Gaussian kernels [7],
[36]. To support the ability of planning interactions, several
works [5]–[7], [37] added instance-aware information to the
map as an additional layer. However, the motions of the
instances are not considered and thus the maps are not suitable
for dynamic environments. Recently, ConvBKI [38], [39]
combines the advantages of classical probabilistic algorithms
and neural networks to build a semantic voxel map that can be
used in dynamic environments, but the instance information is
not considered. Realizing instance-aware semantic mapping in
dynamic environments is still an open problem.

Occupancy networks [40]–[44] are related to the task of
semantic mapping in dynamic environments but focus on
predicting both the visible and occluded areas in the current
frame. They currently lack the ability to retain memory
of previously seen areas [45] and are not instance-aware.
Additionally, they face challenges in generalizing to new
environments that differ from their training data. In contrast,
our approach belongs to the realm of classical mapping,
where both visible areas from the current frame and memory
of previously observed areas are considered. Particles are
used to facilitate efficient instance-aware semantic mapping
in dynamic environments, making it independent of specific
scenes and capable of maintaining memory of previously
observed areas.

III. PRELIMINARY

Our map is built based on two concepts, RFS and SMC-
PHD filter. This section briefly introduces these concepts as
background knowledge. Details can be found in [17], [46],
[47].

A. Random Finite Set

An RFS is a finite set-valued random variable [17]. The
number and the states of the elements within an RFS are
random but finite. Let X represent an RFS, and x(i) denote
the state vector of an element in X. Then X is expressed as:

X =
{
x(1),x(2), ...,x(N)

}
(1)

3

where N ∈ N is a random variable that represents the number
of elements in X and is referred to as the cardinality of X.
Specifically, when N = 0, X is represented as the empty set,
denoted by ∅. A typical application of RFS is in the field of
multi-object tracking, where x(i) typically represents the state
of an object, and X is a set composed of the states of all
tracked objects. The value of N varies as objects appear and
disappear within the tracking range.

The first moment of an RFS is the PHD, which is used to
describe the multi-object density. The PHD of X at a state x
is defined as follows:

DX(x) = E

 ∑
x(i)∈X

δd(x− x(i))

 (2)

where δd(·) is the Dirac delta function1 and E[·] denotes
the expectation. The integral of the PHD corresponds to the
expected cardinality of X, which can be expressed as:∫

DX(x)dx = E[|X|] (3)

where |X| is the cardinality of X. Thus, higher PHD integral∫
DX(x)dx suggests there are more elements in the RFS. If

the x is constrained in a certain space in the map, it suggests
that the space is more likely to be occupied by objects.
Based on this property, the PHD can be used to estimate the
occupancy status of the environment [15], [17].

B. SMC-PHD Filter

The PHD filter [46] was introduced to predict and update
the PHD of an RFS, and was originally designed for multi-
object tracking. By updating the PHD rather than tracking
and updating the state of each object, the PHD filter is
more computationally efficient than Bayesian filters when the
number of objects is large. The SMC-PHD filter is a PHD
filter that utilizes the sequential Monte Carlo (SMC) method.
Specifically, particles are used to represent the PHD. Each
particle is usually characterized by a state vector that is
composed of position and velocity, as well as an associated
weight. Let Xk−1 represent the RFS at time k−1, x̃(i)

k−1 denote
the state vector of the i-th particle, and w

(i)
k−1 denote the weight

of the particle. Then the PHD of Xk−1 at state xk−1 can be
approximated as:

DXk−1
(xk−1) ≈

Lk−1∑
i=1

w
(i)
k−1δd(xk−1 − x̃

(i)
k−1) (4)

where Lk−1 is the number of particles at k − 1. The approx-
imation is utilized due to the statistical nature of the Monte
Carlo method. Since achieving a good approximation requires
a large number of particles, computational efficiency becomes
essential for this filter.

1Dirac delta function: δd(x) = 0, if x ̸= 0;
∫
δd(x)dx = 1.

The SMC-PHD filter estimates the PHD through prediction
and updating of particles. The prediction step predicts the
states changing from k − 1 to k and is described as:

DXk|k−1
(xk) =

Lk−1∑
i=1

Psw
(i)
k−1πk|k−1(xk|x̃(i)

k−1) + γk|k−1(xk)

(5)
where Ps is the survival probability indicating the probability
that an object persists from k − 1 to k, and πk|k−1(xk|x̃(i)

k−1)
is the state transition density of the i-th particle. γk|k−1(xk)
is the intensity of the birth RFS. The birth RFS models the
newly appeared objects in the tracking range at each time step,
and its intensity controls the expected number of new objects.

The update step updates the weight of each particle with
measurements zk ∈ Zk and consequently updates the PHD
with the following equations:

w
(i)
k =

[
1− Pd +

∑
zk∈Zk

Pdgk(zk|x̃(i)
k)

κk(zk) + Ck(zk)

]
w

(i)
k|k−1 (6)

Ck(zk) =

Lk∑
j=1

Pdw
(j)
k|k−1gk(zk|x̃

(j)
k) (7)

DXk
(xk) ≈

Lk∑
i=1

w
(i)
k δ(xk − x̃

(i)
k) (8)

where Pd is the detection probability that models the proba-
bility of an object being detected by the sensor, Zk is the set
of measurements at time k, gk(zk|x̃(i)

k) is the likelihood and
κk(zk) is the clutter intensity, which represents the density
of false measurements in the observation. Eq. (6) and Eq. (7)
express the weight update of the particles. Eq. (8) describes the
PHD of Xk after the update step. The approximation is used
for the same reason as in Eq. (4). The number of particles
Lk usually differs from Lk−1 due to the birth and death of
particles.

IV. WORLD MODEL AND SYSTEM STRUCTURE

A. World Model

We assume the map space contains only rigid objects, which
may be moving. Each object has an instance ID and has a
random but finite number of points representing its shape.
These points are on the surface of the object and are usually
observed as point cloud. Fig. 1 (a) illustrates a scene with
objects and points on each object. By assuming the rigidity,
all the points of an object share the same motion between two
time steps. We do not specifically model non-rigid objects,
such as pedestrians, but treat them as rigid objects with a
simplified motion model.

To associate each point with its corresponding object and
estimate the semantics and instances, we use a state vector
composed of the 3D position and an augmented instance ID
dimension for each point. The state vector is expressed as:

x = [x, y, z, id]
T (9)

where id ∈ N+ is the instance ID, and x, y, z ∈ R are the 3D
position coordinates of the point in the map space, which is

4

Particles

(b) Particles and Voxel Subspaces(a) Scene View with Point Objects

Mailbox

Tree

Camera

(c) Pinhole Model and Pyramid Subspaces

Fig. 1. World model illustration. (a) shows an example scenario with both objects of interests and background objects. The wall and ground belong to the
background object with ID 1. The tree belongs to the background object with ID 2. The car and the two robots belong to the objects of interest with ID 3,
4 and 6 respectively, and are dynamic objects. The mailbox with ID 5 is an example static object of interests. Each object is assumed to be composed of a
set of points on its surface. The set of the I-th object is marked as XI and the points within the set share the same color. (b) shows the particles (hollow
points) that are used to model the PHD of the points. Particles with different IDs are shown in different colors. Particles with the same ID share the same
motion. The particles are stored in voxel subspaces [15], which are also used for resampling and occupancy estimation. (c) shows the camera Pinhole model
used in this work to formulate the pyramid subspaces [15], which are used to distinguish the observed area and occluded area in the continuous space and
to accelerate the update process. The green point is a measurement point in a pyramid subspace. The gray area behind the measurement point is occluded.
Only a part of the points in X1 in (a), voxel subspaces in (b), and pyramid subspaces in (c) are shown for clear illustration.

a cubic space centered at the location of the robot. While id
is a discrete state variable, it can be regarded as a narrowed
continuous state variable, and the Dirac delta function δd(·) to
calculate the PHD can still be used. Each instance is assigned
with a semantic label when the instance is created.

All the points in the map form an RFS, which can be
represented as:

X ={x(1),x(2), · · · ,x(n1)︸ ︷︷ ︸
X1

,x(n1+1), · · · ,x(n1+n2)︸ ︷︷ ︸
X2

, · · · ,

x(n1+n2+··· ,nN−1+1), · · · ,x(n1+n2+··· ,nN)︸ ︷︷ ︸
XN

}

(10)
where XI , I ∈ {1, 2, · · · , N} under each brace is a sub-RFS
composed of the points belonging to instance I . nI represents
the number of points in XI , and N denotes the total number of
instances present in the map. The value of nI changes at each
time step, reflecting the observation of new part of the I-th
instance or the removal of part of the instance from the map.
Similarly, the value of N changes as objects enter or exit the
map’s boundaries. For the points within XI , their associated
id is always I .

The instances can be categorized into two groups: instances
of interest and background instances. Instances of interest
may exhibit either static or dynamic behavior at one moment.
Each instance of interest has a distinct ID and is segmented
and tracked. The background instances, encompassing both
unlabeled objects and labeled objects that are not of interest,
are static. In the context of a navigation task, background
instances may refer to features like the ground, walls, trees,
etc. We assume the same kind of background objects have the
same instance ID and belong to one sub-RFS. For example,
we can presume that all walls in the map belong to X1, and
all trees in the map belong to X2.

The measurements of X consist of point clouds accompa-
nied by their respective instance IDs. These points are typically
acquired from a stereo/RGB-D camera or Lidar. The instance
IDs are derived from instance segmentation and tracking. The
measurements have the similar form as X:

Z ={z(1), z(2), · · · , z(m1)︸ ︷︷ ︸
Z1

, z(m1+1), · · · , z(m1+m2)︸ ︷︷ ︸
Z2

, · · · ,

z(m1+m2+··· ,mM−1+1), · · · , z(m1+m2+··· ,mM)︸ ︷︷ ︸
ZM

}

(11)
where ZJ , J ∈ {1, 2, · · · ,M} under each brace is a sub-RFS
composed of the measurement points belonging to object J ,
mJ is the number of points in ZJ , and M is the number of
objects observed in the measurements of this time step. Each
point in the measurement is also composed of a 3D position
and an instance ID:

z = [x, y, z, id]
T (12)

Note that due to the sensor’s limited field of view (FOV)
and inevitable occlusions between objects. Only a portion of
objects and points in X has observations in Z. Furthermore,
the measurements contain noise in both position and instance
ID. The noise in position comes from the sensor measurement
noise. The noise in instance ID arises from missing instances,
merging instances, misclassification, etc., in instance segmen-
tation, and incorrect data association in tracking, and manifests
as the incorrect instance IDs. When updating the map, noise
in position and instance should both be addressed.

Our map employs particles with IDs to approximate the
Probability Hypothesis Density (PHD) of X, and Z is utilized
to update the particles. Compared to using particles to track
and update the state of each point individually, modeling the
PHD is more computationally efficient and can better handle

5

occlusions. We illustrate the particles in Fig. 1 (b) and (c) with
hollow points. Following our previous work [15], we store
the particles in voxel subspaces and use pyramid subspaces
to differentiate between the currently observed and occluded
areas in the continuous space. To realize efficient pyramid
subspace division when the robot is moving, this paper adopts
the Pinhole model for pyramid subspace division, as illustrated
in Fig. 1 (c). Details about the subspace divisions can be found
in Section VI-A. The following presents the system structure
and the filter used to update the PHD in the observed area of
each time step.

B. System Structure
The system structure is shown in Fig. 2. The modules on

the left detail the input and preprocessing requirements. The
inputs are RGB-D image pairs from stereo / RGB-D cameras2

and the corresponding poses of the camera. The preprocess-
ing modules encompass panoptic segmentation, multi-object
tracking and transformation estimation. At each time step, the
panoptic segmentation module [8]–[10] segments the instances
in the image, and the multi-object tracking module [48], [49]
tracks the instances of interest in the image sequence. Recent
advancements in 4D panoptic segmentation have proposed
an alternative solution for obtaining both segmentation and
tracking results using a single network [50]. The transfor-
mation estimation module estimates the motion of instances
in tracking between two frames and can be realized by joint
localization and object motion estimation [51]–[53] or pose
tracking methods [11]–[13]. We consider these preprocessing
modules off-the-shelf and do not delve into them in this
paper. However, these modules inevitably introduce noise to
the measurements, which should be considered when updating
the map. In Section VI, we present a practical implementation
solution for the modules. The output of the preprocessing
modules encompasses the measurement point RFS Z, and
the estimated transformation matrices of objects of interest
between two consecutive frames.

An S2MC-PHD filter, detailed in the next section, is pro-
posed to update the PHD of X at the sub-instance level, and
estimate the occupancy status of the map. This filter mainly
consists of particle prediction, update and birth and resampling
modules. The prediction module adopts the transformation
matrices of the objects of interest to predict the new positions
of the points. The update module uses the measurements Z
to update the PHD represented by particles. With the updated
PHD, the occupancy status and instance labels of the map
can be estimated. The birth and resampling module generates
new particles and prevents degeneracy. The memory module is
introduced to enhance the map’s responsiveness to previously
observed objects and to provide a conjecture of the occupancy
status in the occluded portion of an object.

V. S2MC-PHD FILTER

The S2MC-PHD Filter is built upon the world model
described in Section IV-A and uses particles to approximate

2Using Lidar point cloud can also acquire the input required in our world
model. As panoptic segmentation and tracking are more accessible with RGB
images, we take RGB-D images as input in this paper.

RGB-D Images

Panoptic
Segmentation

Multi-object
tracking

Mapping

Prediction

Update Birth &
Resampling

S2MC-PHD filter

Instance-Aware Semantic Occupancy Estimation

Instance-
aware

particles

Input & Preprocess

Instance
point cloud Z

Transformation
Estimation

Camera Poses
Transformation

Matrices
Object

template

Memory
library

Fig. 2. System structure. The left side shows the input and preprocessing
modules, which generate data composed of two parts: transformation matrices
and instance point cloud. The generated data, which contains noise, is used
in the mapping on the right side. The core of the mapping part is the S2MC-
PHD filter.

the PHD of X. In addition to the position state and weight,
we augment the state vector of a particle in the SMC-PHD
filter with an instance ID. Each particle can be regarded as a
hypothesis of the point in the world model. A particle with
index i at time step k is represented by:

P
(i)
k =

{
x̃
(i)
k , w

(i)
k

}
=

{[
x
(i)
k , y

(i)
k , z

(i)
k , id(i)

]T
, w

(i)
k

}
(13)

In Fig. 1 (b) and (c), the particles are shown with hollow
points. Different colors indicate different instance IDs.

A. Prediction

The prediction step predicts the PHD distribution of X based
on the estimated instances’ transformation matrices given
by the preprocessing module. By using the transformation
matrices, the 6D motion of the instance between two time
steps can be tackled. Let TJ,k denote the transformation
matrix estimated for the J-th observed instance at time k.
The transformation matrix contains the rotation matrix and
translation vector and is a 4×4 matrix. Let f(TJ,k,x) denote
the function that uses TJ,k to transform a point x that belongs
to object J from time k − 1 to k. Then the predicted prior
state of this point is:

xk|k−1 = f(TJ,k,xk−1) + [ξ, 0]T

= TJ,k

[
xk−1(1 : 3)

1

]
+

[
03×1

xk−1(4)

]
+

[
ξ
−1

]
(14)

where ξ represents the position noise caused by the inaccuracy
in the transformation matrix estimation. We assume the noise
follows a Gaussian distribution with a zero mean and a
covariance matrix Q3×3, denoted as ξ ∼ N (0,Q).

Then, the state transition function from a particle at time
k − 1 to a prior point state at time k can be formulated as a
Gaussian probability density function:

πk|k−1(xk|x̃(i)
k−1) = N

(
xk; f(TJ,k, x̃

(i)
k−1),Q

)
(15)

By substituting the state transition function into Eq. (5), the
predicted PHD of X can be obtained.

Due to the limited FOV of the sensor and inevitable occlu-
sion between objects, some objects cannot be observed, and
their transformation matrices are not available. In this case, we

6

employ a constant velocity model to predict the transformation
matrix. The ego motion of the sensor is handled with the data
structure described in Section VI-A.

B. Update
The update procedure updates the PHD distribution of Xk

by calculating the particle weights using the latest measure-
ments Zk at time k. The update is performed only for the
particles in the visible space. In this subsection, our primary
focus is on updating the particle weight utilizing measurements
Zk while mitigating the effects of noise discussed in Section
IV-A.

The miss-detection and clutter noise in raw sensor measure-
ments has been taken into account by the detection probability
Pd and the clutter intensity κk(zk) in the original SMC-PHD
filter introduced in Section III-B. If the panoptic segmentation
and tracking are very reliable, and consequently, there is no
instance noise, the weight of the particle with the augmented
state vector can be updated using a straightforward method,
i.e., Individual Filtering (IF) method: updating the particles
exclusively with measurements sharing the same instance ID.
In other words, particles with id(i) = J are updated only with
the measurements in ZJ . Essentially, the filter comprises mul-
tiple independent SMC-PHD filters, where each filter works
for an RFS of a specific instance in Eq. (10).

However, if there is instance noise, the IF method suffers
from a missing object problem. For example, when some
measurement points ZJ of instance J are mislabeled with
another existing or new instance ID J ′ due to the misclas-
sification, inaccurate segmentation or wrong data association,
the weights of the particles whose id(i) = J will be decreased.
Simultaneously, the particles whose id(i) = J ′ will be created
in the particle birth step (Section V-C) but will only have a
low weight. Consequently, there is a sudden drop in the PHD
at the positions of these points. The region is susceptible to
being inaccurately classified as free space, posing a high risk
of collision for the robot. We illustrate this issue in Row (a)
of Fig. 3 with a single measurement point and single particle
situation. At k − 2, the measurement point on an instance is
mislabeled, and the estimated occupancy result at this step
is wrong because both particles have very low weights. The
occupancy status of the space where the point is located will
be falsely estimated as free space.

To address the instance noise, we further propose Collective
Filtering (CF) method: updating the particles collectively with
all the measurements Zk by using a specialized likelihood
function. The likelihood function is formulated as:

gk(zk|x̃(i)
k) = Fgt(x̃

(i)
k) ·Tr(zk, x̃

(i)
k) ·N

(
zk; x̃

(i)
k ,Σ

)
(16)

where Tr(·) represents an instance ID transition function and
Fgt(·) is a forgetting function. N (·) is the Gaussian probability
density for position transition, used to model the position
noise, whose covariance matrix is assumed to be Σ.

Tr(zk, x̃
(i)
k) is defined as:

Tr(zk, x̃
(i)
k) =

{
1, if x̃(i)

k (4) = zk(4)

Ptr

(
zk(4), x̃

(i)
k (4)

)
, Otherwise

(17)

Measurement point

(a) IF Method

(b) CF No Fgt.

(c) CF Method

Time step Ptc.
Ptc.

Result
ID

/
new ptc.

new ptc.

new ptc.

Correct Occ. Wrong Occ.Correct Ptc./Obs./ / Noise Ptc./Obs.
* Bigger particle size indicates higher particle weight.

Fig. 3. Illustration of the updated particles of filters (a) to (c) when a noise
observation with a wrong ID is given. With Method IF, the particles’ weights
at k − 2 are too small, and the occupancy status of the space is thus falsely
treated as free. With Method CF No Forgetting function, the instance ID after
k − 1 is ambiguous.

where Ptr

(
zk(4), x̃

(i)
k (4)

)
∈ [0, 1) characterizes the likeli-

hood of an instance being identified as or associated with
another instance. This parameter can be determined as a
function of instance labels and positions if the performance of
instance segmentation and tracking is known. For generality
and computational simplicity, we treat it as a constant in the
experiments.

The forgetting function Fgt(x̃
(i)
k) is elaborated as a trun-

cated Ebbinghaus Curve of Forgetting [54]:

Fgt(x̃
(i)
k) =

{
e−

∆k(i)

S , if ∆k(i) ≤ ∆k̄

0, if ∆k(i) > ∆k̄
(18)

where e represents the Euler’s number. ∆k(i) ∈ N denotes the
time interval between the current time step k and the last time
step when the i-th particle was updated with a measurement
sharing the same ID. ∆k̄ is a threshold that controls the
maximum time interval that the particle can be updated with
the measurement that has a different ID. The constant S > 0
governs the forgetting speed, with a smaller S resulting in a
faster rate of forgetting.

The ID transition function allows particles with a different
ID from the measurement to still be updated if the measure-
ment’s position is close. Then, the aforementioned missing
object problem can be avoided. However, if an object with ID
J is persistently labeled with ID J ′ afterward in the tracker or
if it is relabeled as J after mislabeled as J ′, both particles
with ID J and J ′ will have large weights, which causes
confusion in labeling the space occupied by the object. We
illustrate the situation where the object is mislabeled with
ID J ′ and then relabeled as J in Row (b) of Fig. 3. The
result contains ambiguous ID choices. Therefore, the forgetting
function becomes crucial. This function reduces the weight
of particles not updated with measurements sharing the same
ID. When ∆k(i) > ∆k̄, the particle’s weight experiences a
rapid and substantial decrease, finally being removed in the
resampling step. As a result, the map turns to trust more
on consistent measurements. If J is permanently mislabeled
as J ′, the particles with ID J will be removed after a few
observations, and the space taken by the object will only be
labeled with J ′. If Ptr is set to be zero and the forgetting

7

function is not used, the CF method will be equivalent to the
IF method.

Updating each particle with each measurement is com-
putationally expensive, as discussed in [15]. To accelerate
the update process while considering the occluded space, we
incorporate the Pinhole model-based pyramid subspaces and
activation bounding boxes to confine the particles that should
be updated with each measurement point. The details can be
found in Section VI and the Appendix.

C. Particle Birth, Resampling and Occupancy Estimation

Particles are typically born from the measurements Zk.
For each measurement point zk ∈ Zk, we generate Lb

newborn particles. The state of each newborn particle Pb,k =
{x̃b,k, wb,k}, where the subscript b suggests “born”, is given
by the following equations:

x̃b,k(1 : 3) = zk(1 : 3) + σ,σ ∈ N (0,Σ) (19)

x̃b,k(4) = zk(4), wb,k =
vb,k|k−1

MkLb
(20)

where vb,k|k−1 =
∫
γk|k−1(xk)dxk is a parameter that con-

trols the expected number of newborn points from k− 1 to k.
The instance ID of a newborn particle is the same as the mea-
surement point. Suppose the measurement point of an object
is labeled differently at a new time, in which case instance
noise occurs, the instance ID of the newborn particle will
also change, and new instance hypotheses will be generated.
These hypotheses are updated with the measurements in the
subsequent time steps to filter out the incorrect ones with the
ID transition function and the forgetting function. With the
newborn particles, Equations (6) to (8) need to be changed to
separately update survived and newborn particles. Details of
the changed Equations can be found in [55].

The resampling step is to mitigate the particle degeneracy
problem and control the number of particles. We still use the
rejection sampling [56] approach for each voxel subspace in
the map [15]. Particles in one voxel subspace are resampled
by their weights, regardless of the instance ID. Particles with
higher weights are more likely to survive or be duplicated in
the resampling process, while the particles with lower weights
are more likely to be removed, which is the “death” of the
particles. The overall weight of the particles in one voxel
subspace is the same before and after resampling. Therefore,
the resampling process does not affect the occupancy status
estimation. Particles newly born in the same step are excluded
from the resampling process. To reduce computational cost,
resampling is triggered to halve the number of particles only
when a voxel becomes full, thereby freeing up space for the
insertion of new particles.

Considering Eq. (3) and (8-10), the cardinality expectation
of points that has id = I in a voxel subspace V (constrained
by position dimensions) is calculated by:

E
[
|XV

I |
]
=

∫∫∫
V
DXI

dxdydz =

LV
I∑

i=1

w
(i)
k (21)

where the subscript or superscript V suggest the point or
particle is in the voxel subspace. LV

I is the number of particles

with id = I in the voxel subspace. Time step k is omitted in
the equation for simplicity. The cardinality expectation of all
points in the voxel subspace is:

E
[
|XV|

]
=
∑
I

E
[
|XV

I |
]

(22)

We adhere to an “occupancy first and ID second” strategy, pri-
oritizing the occupancy status over the object ID in navigation
tasks. Therefore, the occupancy status of the voxel subspace
is first estimated by applying a threshold on E

[
|XV|

]
. If the

voxel subspace is determined occupied, then its ID is estimated
by finding the ID with the largest E

[
|XV

I |
]
.

D. Memory Enhancement

Since objects with the same semantic label in one envi-
ronment usually geometrically resemble each other, memory
of previously observed objects can be used to conjecture the
occluded portion of an object. For example, in Fig. 4 (a), the
surface facing the camera is observed while the remaining area
on the object is occluded. We store particles from previously
observed objects as templates, which serve as a memory to
account for the occluded parts of newly observed instances that
have the same semantic label. This conjecture is important for
navigation tasks because it can help the robot avoid planning
in the space that is likely to be occupied. Additionally, it
accelerates the map’s response to previously observed objects
by bearing particles to the occluded portion in advance.

1) Structure: Fig. 4 (b) illustrates the structure of the mem-
ory enhancement module. The memory library is illustrated in
the middle row of the figure. During the mapping process, we
have particles with different instance IDs. Suppose an instance
J is well observed from various directions and is completely
modeled. In that case, the particles with ID J are stored as a
template with the semantic label of J in the memory library.
Each label in the library can encompass several templates
with distinct shapes. In practical navigation scenarios, a robot
rarely observes an object from all directions. We evaluate the
completeness of the instance by uniformly sampling rays from
the mass center of the voxels of this instance and calculating
the percentage of rays that intersect with the voxels. If this
percentage exceeds a predefined threshold, the instance is
considered completely modeled, and its particles are stored
as a template.

The memory is integrated into the particle birth step. When
a new instance with measurement points ZI is observed
and the number of measurement points exceeds a threshold
(e.g., five thousand), we match these points with templates
of the same semantic label and generate additional newborn
particles based on the best-matched template. Let T̄J =

{P (1)
J , P

(2)
J , . . . , P

(LT)
J } denote the template generated from

instance J , containing LT particles. We then add LT newborn
particles in addition to the newborn particles in Section V-C.
Each newborn particle P

(i)
b has the same position as the

particle P
(i)
J but weight wb,k, which turns to

wb,k =
vb,k|k−1

MkLb + LT
(23)

8

Observed Points
Points from memory

(a) Memory Illustration (b) Memory Operations Structure

Matchingwith the
Label B

Newborn
Particles

for I

?

Particles
with ID J

Object
template

Check if
complete

Memory library
Templates
Label A

Templates
Label B …

Fig. 4. Illustration of the memory enhancement. In (a), the blue points are
currently observed while the white points are occluded and are aimed to be
conjectured. In (b), the memory enhancement structure is shown. The first row
shows the process of adding a template in the memory library, which is shown
in the middle row. The last row shows the process of matching the particles
with a template in the memory library. The green background indicates that
the particles or templates correspond to the same semantic label.

In the update step, the weight of these particles is updated
with lateral observations, the same as the other particles, so
that the conjecture can be corrected. If a voxel subspace is
not determined occupied but contains non-updated conjectured
particles, it is labeled “speculatively occupied.”

2) Matching: The matching algorithm matches the particles
in the template with the measurement points of a new instance.
The matching algorithm should be efficient since there can
be multiple new instances at a time. Unlike the matching
between two regular point clouds, the matching between the
particles and the measurement points should consider the
nature of the particles representing the PHD and having
different weights. In addition, the measurement points also
contain hidden information, which is, the space between the
camera and the measurement points should be free space.
Therefore, we introduce a PHD-based matching algorithm to
match the particles with the measurement points.

The algorithm relies on a similarity score defined with
the property of PHD described in Eq. (3). Suppose the
measurement points in ZI are in a bounding box space SI ,
where I is the instance ID, and the boundary of SI can be
found by searching the minimum and maximum coordinates
of the measurement points. We divide SI into voxel subspaces
{S(i)I , i ∈ NI}, where NI is the number of subspaces. Suppose
h(S(i)I) is the expected point number in S(i)I . If S(i)I contains
at least one measurement point, h(S(i)I) is considered as 1. If
S(i)I is observed to be free space (determined by raycasting),
h(S(i)I) is considered as −1. Otherwise, h(S(i)I) = 0. Then we
iterate over the voxel subspaces and calculate the similarity
score with the Jth template T̄J using the following equation:

Score(ZI , T̄J) =
1

NI

NI∑
i=1

min{
∫
S(i)I

DT̄J
(x)dx, 1} · h(S(i)I)

(24)
where DT̄J

(x) is the PHD of T̄J at position x.
∫
S(i)I

DT̄J
(x)dx

is the PHD integral of T̄J in S(i)I and equals the weight
summation of the template particles in S(i)I according to Eq.
(3) and (8). The integral and h(S(i)I) are both normalized to
one to avoid the influence caused by the voxel size, which
is determined by a balance between the accuracy and the

efficiency of the matching algorithm. With the similarity score,
the matching is performed using the RANSAC algorithm [57]
to search for transformation matrices that maximize the score.

VI. IMPLEMENTATION DETAILS

This section describes two implementation details of the
proposed system: the data structure and the measurement
points generation method. The former is to realize an efficient
S2MC-PHD filter, and the latter describes our choices of
existing methods to implement the preprocessing modules.

A. Data Structure
As described in Section IV-A, we use voxel subspaces to

store the particles and use pyramid subspaces to distinguish
the occluded area in the continuous space and accelerate the
update process with an activation space as in [15]. To represent
the voxel subspaces and the pyramid subspaces in practice, our
previous work [15] uses a regular array and a dynamic vector,
respectively, resulting in a high computational cost. To address
this issue and consider the instance ID, we propose a new data
structure composed of three parts: 1) a 3D circular buffer, 2)
an instance hash map, and 3) an update indices image. The
data structure is illustrated in Fig. 5.

1) 3D circular buffer: We store the particles in a 3D
circular buffer indexed by Morton Code for efficiency. Each
element in the buffer represents a voxel subspace and contains
the particles within the subspace. With the circular buffer, only
the indices of the voxel subspaces need to be updated when
the robot moves. Following Ewok [19], at the start of each
time step, the indices are updated using the localization data,
accounting for the relative motion of background particles
to the sensor. For instances of interest, their particles are
relocated to new voxels by recalculating their voxel indices
based on their predicted positions, as described in Eq. (14). A
position vector is maintained to compensate for position errors
caused by the limited resolution of the voxel.

Each voxel has a fixed particle capacity. If particles move
to a voxel that has already reached its maximum capacity,
resampling, as described in Section V-C, is applied to this
voxel to reduce the number of particles and free up space. If
after resampling the space remains insufficient, the excess par-
ticles are discarded. Each particle contains the states described
in Eq. (13), namely position, weight, and instance ID, along
with additional attributes such as a timestamp and a validity
flag. The timestamp records the moment when the particle
is updated with a measurement sharing the same ID, and it
is used to calculate the forgetting function in Eq. (18). The
validity flag indicates whether the particle is valid, facilitating
efficient particle deletion by setting the flag to false.

2) Instance hash map: A hash map is employed to store
the instance ID along with the corresponding instance-level
states. These states encompass each instance’s semantic label,
previous transformation matrices, and particle indices in the
circular buffer. The particles’ indices are used to quickly locate
the particles in the buffer and predict the particles’ positions in
the prediction step (Section V-A). The previous transformation
matrices are used to predict a new transformation matrix in the
prediction step when the instance is occluded.

9

Particles Instance 1 : (label1,), [Indices]

Instance 2 : (label2,), [Indices]

Instance 3 : (label3,), [Indices]

…

2) Instance Hash Map

Update

Project

Measurement points

Particle Index
Neighbor

bounding box

3) Update Indices Image

…

…

…

Fig. 5. Data structure. Different colors of particles and measurement points
represent different instance IDs. The blue object is newly observed. The red
rectangle represents the neighbor bounding box area (activation space) of the
pixel with a particle in red.

3) Update indices image: Since only a part of the particles
in the circular buffer are visible to the camera and should be
updated, we present an update indices image to leverage the
Pinhole model to find these particles and store the indices.
Specifically, a breadth-first search is used to identify the voxel
subspaces in the FOV. In each voxel subspace in the FOV,
the particles are projected to the image with the camera
intrinsics and extrinsics. If the particle’s depth is smaller than
the depth of the corresponding measurement (indicating that
the particle is not occluded), the particle’s index is stored in
a pixel. In this context, each pixel serves a role similar to
the pyramid subspace in [15], as is illustrated by Fig. 1 (c).
Subsequently, the weights of particles in each pixel are updated
using only measurement points in a neighboring bounding box
area, which act as the activation space in [15], to accelerate
the update process. In other words, the particles outside the
bounding box area of a measurement point do not need to
be updated with this measurement point. In Fig. 5, the red
rectangle represents the neighbor bounding box area of the
pixel with a particle in red. The size of the bounding box area
is determined by the noise model and the distance from the
camera to the measurement points. We present the derivation
of the bounding box area in Appendix A.

B. Preprocessing

Generating the measurement points requires preprocessing
modules in Fig. 2. As discussed in Section IV-B, these prepro-
cessing modules can be implemented using existing methods.
The panoptic segmentation is realized by Mask2Former [58]
using the OpenMMLab [59] framework. For object tracking
and transformation estimation, we employ Superpoint [60]
and Superglue [61] to extract feature points for the instances
and match them between two frames. Tracking is then im-
plemented by voting the matched points, while transformation
estimation is accomplished by applying RANSAC [57] on the
matched feature points (considering depth) of each object.
When an object is partially occluded, the transformation

estimation can still be conducted with the matched feature
points in the visible area.

VII. EXPERIMENT

This section presents the experimental results. We first com-
pare the proposed map with state-of-the-art mapping systems
in terms of occupancy, semantic and instance estimation. The
occupancy information is the foundation for the robot to
realize safe navigation, while the semantics and instances of
the occupied space are crucial for the robot to understand the
environment. Then, the ablation study is conducted to compare
the results of the proposed map with different update methods,
and with and without memory enhancement. Moreover, the
efficiency of the proposed system is evaluated with computa-
tional time. Finally, real-world data is used to demonstrate the
effectiveness of the proposed system in realistic scenarios.

A. Occupancy Estimation

We adopt Virtual KITTI 2 [62] [63] for evaluation. The cars,
vans, etc., with possible dynamic motions in the dataset, are
objects of interest. The dataset was chosen because it provides
the ground truth about depth, panoptic segmentation, instance
ID and object poses over time, which is essential to creating
the ground truth of occupancy and instance-aware semantics
estimation in the dynamic environment. Creating the ground
truth local instance-aware semantic occupancy map involves
a two-step process. The first step is accumulating the point
cloud in the global coordinate using each frame’s depth image,
panoptic segmentation, and ego-pose, attributing semantic and
instance IDs to individual points. As new frames emerge,
points associated with the moving objects are transformed
to their new positions using the ground truth object poses.
Subsequently, at each time step k, the accumulated point cloud
from 0 to k is divided into voxel subspaces and the occupancy
status of each voxel in the local map range is determined by
whether a point is present. The semantic label of the voxel
subspace is determined by the majority of the points in the
subspace.

The occupancy estimation is evaluated using the Average
Hausdorff Distance (AHD), the F1 score, and the Average
Distance of movable objects (ADm). The AHD measures the
average distance between the center points of the estimated
occupancy voxels and those of the ground truth. A smaller
AHD indicates better surface reconstruction performance. The
F1 score is the harmonic mean of precision and recall. A
higher F1 score shows better occupancy classification per-
formance. The ADm is utilized to specifically measure the
average Euclidean distance of the movable objects to the
closest occupied voxels in the map. The movable objects
in our scene are the aforementioned the objects of interests
with possible dynamic motions. A smaller ADm indicates
better mapping performance of these objects. Note the above
metrics are evaluated for the local map with the ego-vehicle
moving. Therefore, the metrics are calculated for each frame
and then averaged over all frames. All the five sequences
from Virtual KITTI 2 are used for evaluation and the results
are averaged. These sequences contain {93, 17, 15, 21, 127}

10

vehicles, with the percentage of moving vehicles being
{9.7, 52.9, 93.3, 100.0, 60.6}%, respectively.

The comparison is conducted with five state-of-the-art maps:
ewok [19], k3dom [31], dsp map [15], kimera-semantic [4],
and voxblox++ [5]. Table I shows a general comparison of
the maps. In these maps, k3dom and dsp map are particle-
based methods designed for dynamic environments, while
Ewok uses raycasting for mapping without special consid-
eration for dynamic objects, and none of the three methods
considers semantics. Kimera-semantic and voxblox++ are both
TSDF-based semantic maps. Voxblox++ is instance-aware.
In comparison, our map is an instance-aware semantic map
and considers dynamic objects. Each map is evaluated in the
situation with ground truth depth and noised depth based on a
real-world noise model introduced in [64]. Furthermore, two
cases are evaluated for the map with semantics: one with the
ground truth semantics and tracking, and the other using the
method in Section VI-B. The lateral contains segmentation and
tracking noise and is represented with a superscript ∗ in the
result tables.

The voxel resolution in the test is 0.2 m, and the map size is
(51.2, 51.2, 51.2) m (with 28 voxels on each dimension). All
the maps are compared in the voxelized form. For the TSDF-
based maps [4], [5], a distance threshold is applied to deter-
mine the occupied voxels. We tested different distance thresh-
olds with a sampling step of 0.05 m for the TSDF-based maps,
and different occupancy thresholds with a sampling step of 0.1
for the rest maps to find the best performance of each map. The
remaining mapping parameters for our method are detailed in
Appendix C, while the parameters for other maps are kept
at their default values as specified in their respective released
code. The input images are from front camera with ID 0 in
the dataset. The image size is 1242× 375 pixels. K3dom [31]
uses CUDA parallel computing and is tested with an NVIDIA
RTX 2060S GPU. The rest of the maps are tested with an
AMD Ryzen 9 5900X CPU with single-core computing. Since
kimera-semantic and voxblox++ are global maps, we crop out
a local map to compare with the ground truth. The results are
shown in Table II. The arrows after each metric indicate the
direction of the improvement. The best performance is in bold.
Fig. 6 presents an example mapping result of three time steps.

When using ground truth inputs, our map achieves the best
performance in terms of all three metrics. The AHD and
ADm are 73.8% and 34.8% smaller than the second-best map
kimera-semantics, respectively, which indicates that our map
has significantly improved the overall surface reconstruction
and the movable object mapping performance in dynamic
environments. The F1 score doesn’t show a distinct difference
between our map and the dsp map, but ours is still 4.1% higher.
From Fig. 6, it can be seen that our map does not suffer from
the missing object problem and the trace noise problem as the
other maps do.

When the depth with noise [64] is used, our map is the third
best in terms of F1 score but is at least 57.7% and 33.5% better
than other maps in terms of AHD and ADm, respectively.
For the case that uses non-ground-truth segmentation and
tracking (with superscript ∗), our map also shows a significant
advantage over kimera-semantic and voxblox++. Fig. 7 further

TABLE I
GENERAL COMPARISON OF THE MAPPING SYSTEMS.

Map Base Semantics Instance Dynamic
ewok [19] Raycasting No No No
k3dom [31] Particles No No Yes
dsp map [15] Particles No No Yes
voxblox++ [5] TSDF Yes Yes No
kimera-s. [4] TSDF Yes No No
Ours Particles Yes Yes Yes

TABLE II
OCCUPANCY ESTIMATION COMPARISON.

Depth Image GT Depth Depth With Noise
Map AHD↓ F1↑ ADm↓ AHD↓ F1↑ ADm↓
ewok [19] 0.460 0.871 0.534 0.504 0.738 0.405
k3dom [31] 1.006 0.643 0.425 3.858 0.467 0.508
dsp map [15] 0.316 0.908 0.596 0.549 0.747 0.747
voxblox++ [5] 0.998 0.641 0.468 1.624 0.444 0.596
kimera-s. [4] 0.256 0.878 0.423 0.461 0.634 0.364
ours 0.067 0.945 0.276 0.195 0.689 0.242
voxblox++∗ [5] 0.999 0.647 0.475 1.535 0.412 0.639
kimera-s.∗ [4] 0.255 0.878 0.424 0.462 0.634 0.364
ours∗ 0.066 0.945 0.318 0.201 0.682 0.278
∗ indicates the case using segmentation and tracking from VI-B.

illustrates the mapping result of the three maps using non-
ground-truth segmentation and tracking.

Overall, our map shows the best performance in terms of
the occupancy estimation and is more robust to the noise in
depth image, and segmentation and tracking.

B. Semantic and Instance Estimation

Since our map is instance-aware, we evaluate both semantic
segmentation and instance segmentation performance. The
semantic segmentation performance is evaluated with 2D and
3D mean Intersection over Union (mIoU) of 15 classes in
the Virtual KITTI 2 [62] [63] dataset when ground truth
segmentation is used. For the case that uses the OpenMMLab
framework for segmentation, only the trees and cars are
evaluated because the other classes are annotated differently
or unavailable with the tested pre-trained segmentation model
[65]. In the 2D case, the labeled voxels in the map are
projected to the image and compared with the ground truth
segmentation image. In the 3D case, the labeled voxels are
compared with the ground truth labeled voxels generated with
the steps described in VII-A. We present the results of static
objects and movable objects separately in Table III and Table
IV to show the performance of the map towards different
types of objects. Voxblox++ [5] receives only the instance
segmentations, which are available just for movable objects
in the dataset, and thus, is not included in the Table III. In
both tables, our map has the best performance regarding each
metric. The advantage is distinctive regarding movable objects
and the 3D mIoU metric. The 2D and 3D mIoU for movable
objects are at least 45% better than the second-best map,
regardless of whether the depth, segmentation, and tracking
have noise, in the tested cases.

The instance segmentation performance is evaluated with
the mean F1 score of the instances in different frames. An
instance in the ground truth and the estimated map is consid-
ered matched if the IoU is larger than 0.5. If no matching is

11

(a) ground truth (b) ewok [19] (c) k3dom [29] (d) dsp map [15] (g) ours

(2)

(3)

(f) kimera-s. [4](e) voxblox++ [5]

(1)

Tree VegetationRoad Terrain Traffic Light Traffic Sign Background
0 Height>5 m

Missing Object Trace Noise

t=86.0s

t=88.3s

t=93.3s

Car *

Car *

Particle Noise

Fig. 6. Mapping result comparison when using ground truth segmentation and tracking. The first column shows the ground truth map at three time steps,
t = {86.0, 88.3, 93.3}s. The rest columns show the result of different maps, among which ours is presented in the last column. Voxels in the FOV are
brighter than the rest to illustrate the currently observed area. In (e) voxblox++ [5] and (g) ours, the vehicles are painted in random colors to show their
instance-awareness. The meaning of the rest of the colors is illustrated in the legend above. If no semantic meaning is provided, the voxel is painted light
blue to dark blue according to the height. Axes in the subfigures indicate the pose of the ego-vehicle. The red rectangles indicate the missing objects, while
the red dashed ellipses illustrate the trace noise in the compared maps. The red solid ellipses in (d) suggest the noise in the occluded space caused by the
individual particle motion model used in dsp map [15]. In Row (1) and (2) in Column (a), a car in orange is marked with “Car∗”. The motion of this car
causes the missing object or trace noise problem in the compared maps.

(1)

t=86.0s

t=88.3s

t=93.3s
(a) voxblox++ [5] (b) kimera-s. [4] (c) ours

(3)

(2)

Fig. 7. Mapping result comparison when segmentation and tracking are
realized with the method described in Section VI-B. Columns (a) to (c)
show the mapping result of voxblox++ [5], kimera-semantic [4] and our map,
respectively. The three time steps, the ground truth mapping result, and the
legend are the same as in Fig. 6. voxblox++ [5] and kimera-semantic [4]
suffer from the trace noise problem. Voxblox++ [5] also misses details like
the traffic sign and branches of the trees.

found, the F1 score of the instance is 0. The results are shown
in Table V. Compared with voxblox++, our map shows over
60% improvement in terms of 2D and 3D F1 score in all cases.

Overall, our map has a significant advantage in terms of both
semantic segmentation and instance segmentation. The noise

TABLE III
SEMANTIC SEGMENTATION RESULTS OF STATIC OBJECTS.

Depth Image GT Depth Depth With Noise
Map mIoU↑ mIoU 3D↑ mIoU↑ mIoU 3D↑
kimera-s. [4] 0.586 0.494 0.339 0.233
ours 0.629 0.834 0.468 0.322
kimera-s.∗ [4] 0.613 0.245 0.165 0.110
ours∗ 0.636 0.473 0.355 0.245

TABLE IV
SEMANTIC SEGMENTATION RESULTS OF MOVABLE OBJECTS.

Depth Image GT Depth Depth With Noise
Map mIoU↑ mIoU 3D↑ mIoU↑ mIoU 3D↑
voxblox++ [5] 0.360 0.112 0.394 0.087
kimera-s. [4] 0.464 0.212 0.365 0.101
ours 0.680 0.596 0.660 0.256
voxblox++∗ [5] 0.364 0.112 0.382 0.085
kimera-s.∗ [4] 0.462 0.161 0.353 0.085
ours∗ 0.685 0.367 0.591 0.198

in depth image and segmentation and tracking affects more
on the 3D metrics than the 2D metrics for all maps, which is
reasonable because the noise in 2D is further amplified in 3D
depending on the distance from the camera.

C. Ablation Study

The presented results use the memory enhancement and
the CF method in Section V-B. In this subsection, we further
conduct an ablation study to compare the difference of using
IF and CF methods for the update step and show the effect of
using the memory enhancement.

When the ground truth segmentation and tracking are used,
the IF and CF methods show very similar performances.

12

TABLE V
INSTANCE SEGMENTATION RESULTS.

Depth Image GT Depth Depth With Noise
Map mF1↑ mF1 3D↑ mF1↑ mF1 3D↑
voxblox++ [5] 0.381 0.154 0.174 0.000
ours 0.667 0.588 0.409 0.186
voxblox++∗ [5] 0.372 0.208 0.169 0.055
ours∗ 0.606 0.402 0.345 0.177

(1)

IF

(2)

CF

t=92.1s t=92.7s t=93.3s

(a)

(b) (c)

t =
92.1s

t =
92.7s

Fig. 8. (a) Illustration of the missing object problem with the IF method. At
92.0 s, the car in the dashed red rectangle is occluded by the car in the red
ellipse. At time 92.7 s, the former car is redetected and allocated with a new
ID, which causes instance noise and is mostly missing in the map when using
IF. In comparison, CF correctly updates the car. (b) shows the corresponding
RGB images. The red rectangle indicates the occluded car. (c) presents several
instances that have been matched with templates. The gray voxels show the
voxels that are not observed but are “speculatively occupied”.

When the segmentation and tracking method in Section VI-B
is used, CF shows 7.1% higher performance on ADm but
1.6% lower performance on mF1 3D. The difference is in-
significant because the instance noise takes a small portion
of the instance estimations. However, if an instance in the
measurement is allocated with a wrong ID due to missing
detection, mislabeling or mismatching, the IF method suffers
from the missing object problem that is highly detrimental
to safety. An example mapping result is shown in Fig. 8 (a).
Therefore, CF is preferred in the proposed system.

With memory enhancement, the map’s response to the newly
observed space on an instance is improved. Fig. 9 shows the
2D and 3D mF1 score changing curve when the same instance
is and is not matched with a template. At Step 0, a template
is matched for the blue curve. Then, from Step 0 to 1, the F1
score increase of the blue curve is 12.9% and 18.8% faster
than the red curve in 2D and 3D, respectively. The results
indicate that memory enhancement is beneficial for the map
in responding to the newly observed area on an instance. We
illustrate some conjectured occupied voxels in Fig. 8 (c) using
the gray color. These conjectured voxels have also been proven
helpful in motion planning [66], [67].

0 1 2 3
0.65

0.7

0.75

A
vg

. F
1

Sc
or

e
2D

With Matching
Without Matching

0 1 2 3
0.6

0.65

0.7

0.75

0.8

0.85

 A
vg

. F
1

Sc
or

e
3D

With Matching
Without Matching

Step After Matching Step After Matching

Fig. 9. Response Comparison with and without Memory Enhancement.

0 0.5 1 1.5 2 2.5 3

dsp map
[15]

ours

0 0.05 0.1 0.15 0.2 0.25

dsp map
[15]

ours

Computation Time (s)

M
ap

 T
yp

e

Map Size: 51.2 m

Map Size: 25.6 m

Prediction Update New-born Matching Occ. Est.

Fig. 10. Average computation time two particle-based maps: our map and
the dsp map [15]. When the map size is 25.6 m with voxel resolution 0.2
m, our mapping approach takes 103.2 ms per frame, reaching near real-time
performance. The time consumption of different mapping steps is shown in
different colors. The hardware is specified in VII-A.

D. Computation Time

We compared the computational time of the proposed map
and the dsp map [15], in Fig. 10. An additional map size
of 25.6 m is tested, while the rest settings are the same as
used in the previous tests. The hardware has been specified
in VII-A, and both maps use only a single core of the CPU.
The time consumption of different mapping steps is shown
in different colors. The preprocessing modules adopt existing
works and can be adjusted with different models, and thus is
not included. It can be seen from Fig. 10 that the most time-
consuming step is the update step. The template matching step
in our map takes 9.8 ms with a big map size and 1.3 ms with
a small map size. In total, the proposed map takes 437.7 ms
on average per frame when the map size is 51.2 m, which is
six times faster than the dsp map. If the map size is reduced
to 25.6 m, the proposed map takes 103.2 ms while the dsp
map takes 236.9 ms. This demonstrates that the proposed map
with the improved data structure described in Section VI-A,
our map is much more efficient than the dsp map though we
have added more complex semantics and instance information.

Ewok [19] takes less than 100 ms per frame to process, even
with large map sizes, but it isn’t suitable for dynamic envi-
ronments and doesn’t contain semantic information. Kimera-
semantic [4] and voxblox+ [5] are static global maps whose
computation time increases from around 100 ms to over 1000
ms as the map grows. K3dom [31], a particle-based dynamic
local map similar to the DSP map and ours, requires over 26
seconds per frame when conducting parallel computing on an
RTX 2060S GPU when the map size is 25.6 m. Overall, our
map emerges as the most efficient map among the compared
dynamic maps and particle-based maps.

13

E. Real-world Experiment

The real-world experiment is conducted with the RGB-D
image pairs and pose estimation data from the UT campus
object dataset [68], [69] and some additional RGB-D image
pairs recorded by ourselves. The image pairs in the UT
campus object dataset came from a ZED 2 camera3 mounted
on a mobile robot, while those recorded by ourselves came
from a RealSense D455 camera. Fig. 11 shows scenes of the
original images and the constructed map, where the brighter
part illustrate the area in the FOV. Scenes (a), (b), and (d-
g) are from the UT campus object dataset and contain cars
and people. Scene (c) and (h-i) are recorded by ourselves
and contain people and objects moved by people, such as a
chair and an umbrella. In scenes (a), (b) and (c), the first
frame shows a time step when the moving objects can be
observed, while the second frame shows a while later when the
moving objects cannot be observed, our map gives a predicted
occupancy status of the objects. Although people have moving
joints and are not rigid, we treat them as rigid bodies and
consider the shape changes caused by the joint motions as
noisy measurements. Instance segmentation and tracking are
realized with the method described in Section VI-B. The
computation frequency of the mapping component reaches 10
Hz with the hardware specified in VII-D when the map size
is 12.8 m. More results, including real-time tests conducted
in Delft using a ZED 2 camera, can be found in the attached
video. We also tested our method on the semantic mapping
task of the KITTI-360 dataset [70]. The results show that our
method achieves the highest mIoU performance. Details can
be found in Appendix B.

VIII. CONCLUSION

This paper presents a dynamic instance-aware semantic map
based on an S2MC-PHD filter. Experimental results on the
Virtual KITTI 2 dataset demonstrate significant improvements
in semantic and instance segmentation performance for pos-
sibly moving objects, such as cars, by over 45% and 60%,
respectively, in both 2D and 3D, compared to SOTA maps.
Moreover, the segmentation performance of static objects also
excels, benefiting from the multi-hypotheses nature of the
proposed method. Regarding occupancy estimation, our map
outperforms SOTA maps by at least 30% in terms of AHD
and ADm under different noise conditions while maintaining
a comparable F1 score. Additionally, an online memory en-
hancement module has been introduced and shown to improve
the map’s response to previously observed objects by 12.9%
and 18.8% in 2D and 3D, respectively. It is worth noting that
the proposed method introduces a way to cohesively integrate
the filtering-based mapping method with object motion pre-
diction and memory-based geometric information conjecture,
respectively, in the prediction and particle birth steps. While
a constant velocity model and an online template matching
method are used in the current implementation, extensions to
learning-based motion prediction and 3D shape estimation or
generation methods will be considered in future works, aiming

3ZED 2 Camera: https://www.stereolabs.com/products/zed-2

to combine robustness and consistency inherent in the filtering-
based method with the scalability and adaptability of learning-
based methods.

APPENDIX A
ACTIVATION BOUNDING BOX

The activation space is used to determine the range of
pyramid subspaces whose particles should be updated with
a measurement point [15]. The general idea is to ignore the
particles in the pyramid subspaces that make the following
condition true: for any particle x̃

(i)
k in the pyramid subspace,

gk(zk|x̃(i)
k) ≤ ϵ, where gk(zk|x̃(i)

k) is the likelihood described
in Eq. (16) and ϵ ≈ 0 is a threshold. As is mentioned
in Section IV-A, the Pinhole model is used to realize the
pyramid subspace division. Thus, each pixel in the image plane
corresponds to a pyramid subspace, as Fig. 1 (c) shows, and we
can calculate an activation bounding box in the image plane to
define the activation space. Any particle whose projection on
the image plane is outside the bounding box can be ignored,
while the weights of particles whose projections are inside the
bounding box should be either increased or decreased in the
update step. We illustrate the Pinhole model and the activation
bounding box in Fig. 12.

Since Fgt(x̃
(i)
k) ≤ 1 and Tr(zk, x̃

(i)
k) ≤ 1, the activation

bounding box can be determined by finding the range of
pixel position (u, v), whose corresponding x̃

(i)
k can possibly

satisfy N
(
zk; x̃

(i)
k ,Σ

)
≤ ϵ, according to Eq. (16). Let P =

(x1, y1, z1) and Q = (x2, y2, z2), z1, z2 > 0, be the position
points of a measurement point zk and a particle x̃

(i)
k in the

camera frame, respectively. P ′ = (u1, v1) and Q′ = (u2, v2)
are the projections of P and Q on the image plane. As is used
in [15], we assume the covariance matrix Σ as a diagonal
matrix with the same diagonal value ρ(z1), where ρ(z1) can be
estimated by experiments with a sensor [64]. Then the particles
that satisfy the condition N

(
zk; x̃

(i)
k ,Σ

)
> ϵ are in a sphere

with radius l:

l =

√
2ρ2 (z1) ln

(
1

(2π)
3
2 ρ3 (z1) ϵ

)
(25)

The projection of this sphere on the image plane can
be proved to be an ellipse. The activation bounding box is
calculated by finding the minimum and maximum values of
u2 and v2 in this ellipse, given P = (x1, y1, z1) and l. Take u2

as an example. Since u2 = f x2

z2
, where f is the focal length,

the minimum and maximum values of u2 are equivalent to
those of x2

z2
. Considering the projection of the sphere on the

x-z plane, x2

z2
can be represented by:

f(α) =
x2

z2
=

x1 + l sin(α)

z1 + l cos(α)
(26)

where α is the angle shown in Fig. 12. By solving f′(α) = 0,
the minimum and maximum values of f(α) is taken when

α = 2arctan

(
x1 ±

√
x2
1 + z21 − l2

z1 − l

)
(27)

14

(a1)

(b1) (b2)

(a2)

Predicted

(d)

(f)

(e)

(f)(g)

(c1) (c2)

Predicted

Predicted

(h) (i)

Predicted

chair

umbrella

Fig. 11. Mapping result in the real world. On the left side of the figure, three scenes (a-c) are presented. Each scene has two frames, for example, (a1)
and (a2), captured at two different time steps. In each frame, a depth image and an RGB image with segmentation masks are presented on the left, while
the mapping result is shown on the right. In the map view, the objects of interest are depicted in random colors, and the background is painted in green to
light blue and then to dark blue according to the height. The camera’s pose is illustrated by axes, with areas within the FOV appearing brighter than the
surrounding areas. In (a1), a human is running towards the camera and exits the FOV in (a2), where the map gives a predicted occupancy status of the human.
Similarly, (b1) and (b2) show a scenario with a car and a human. In (c1), both the human and the chair are moving, while the chair is occluded in (c2), and
the predicted occupancy status of the chair is shown. Red and yellow rectangles outline the cars and the other objects of interest, respectively, with dashed
rectangles indicating the objects that are occluded or out of the FOV. Additional scenes are shown in (d-i) on the right side of the figure. Scenes (a-b) and
(d-g) are from a ZED 2 camera used in the UT campus object dataset, while the rest are recorded by ourselves with a RealSense D455 camera.

Projection in x-z plane

Camera Frame

Image
plane

Activation
bounding box

Fig. 12. Illustration of calculating the activation bounding box when using the
Pinhole model. P is the position of a measurement point, and Q represents
the position of a particle. P ′ and Q′ are the projections of P and Q on the
image plane. C is the center of the image. f is the focal length of the camera.
l is the radius of the sphere which represents the surface where the Gaussian
probability density is the same as a given threshold. The activation bounding
box of the measurement point is the bounding box of the sphere’s projected
ellipse on the image plane. A red rectangle is used to illustrate the bounding
box. The projection of the sphere on the x-z plane is shown in the left bottom.

if x2
1+ z21 − l2 ≥ 0 and z1 ̸= l. These conditions hold because

otherwise, the origin is in the sphere, and Q can be behind the
camera. Then, the minimum and maximum values of u2 can
be calculated by u2 = f · f(α). The minimum and maximum
values of v2 can be calculated similarly.

APPENDIX B
ADDITIONAL RESULTS

This section presents the performance of our map in the
semantic mapping task on the KITTI-360 dataset [70]. The
task evaluates global static semantic mapping performance
across four test sequences using metrics such as accuracy
(Acc.), completeness (Comp.), F1 score (F1), and mIoU over
classes. To generate the global map, we assume all objects

are static and accumulate the voxels from our map into a
global map. Localization data is obtained from ORB-SLAM2
[71], and the segmentation model used is CMNext [72], with
pretrained weights on KITTI-360. Depth images are generated
using SGM [73], without applying any filters. The benchmark
results are summarized in Table VI. Our map achieves the best
performance in terms of mIoU, outperforming the second-best
map by 5.11. Fig. 13 illustrates the result of our map on the
Test Sequence 03.

We further conducted an ablation study by comparing the
results of using our map with directly accumulating semantic
points acquired using ORB-SLAM2, CMNext, and SGM, in
the first global map of Sequence 0. Our map significantly im-
proves accuracy from 29.6 to 72.8 and the F1 score from 44.9
to 76.5, demonstrating its denoising capability.

TABLE VI
SEMANTIC MAPPING RESULTS IN KITTI-360 DATASET [70]

Method Acc. Comp. F1 mIoU
ORB-SLAM2 [71] + PSPNet [74] 81.77 74.89 78.15 32.48
SUMA++ [26] 90.98 64.19 75.27 19.40
Ours + Preprocessing [71], [72] 79.15 72.45 75.64 37.59

APPENDIX C
PARAMETERS

The parameters used in the experiments are listed in Table
VII. To enhance computational efficiency, several simplifica-
tions were made: the clutter intensity κk(zk) was simplified to
a constant κk, the prediction covariance Q was simplified to a
constant diagonal matrix, and the positional noise covariance
Σ of the depth camera was simplified to a diagonal matrix
that changes linearly with the depth d. Thrscore represents the

15

Fig. 13. The semantic mapping result of our method on Test Sequence 03
of the KITTI-360 [70] semantic mapping challenge. Five specific locations,
marked with yellow spots, are enlarged and illustrated for a detailed view.
The color of each label follows the scheme used in the Cityscapes dataset
[65].

TABLE VII
PARAMETERS USED IN EXPERIMENTS

Param. Value Param. Value Param. Value
Pd 0.98 Ps 1 κk 0.01
Q 0.01I Σ (10−3d+ 10−2)I Ptr 0.5
S 1 ∆k̄ 5 Lb 5
wb,k 0.001 Thrscore 0.6 lvoxel 0.2 m
Throcc 0.8 NV

max 8 Nbbox
pix 5 pix

matching score threshold used in Section V-D2. N bbox
pix denotes

the pixel number from the center of the neighbor bounding
box in Section VI-A3 to its edges. lvoxel is the size of the
voxel subspace, and NV

max specifies the maximum number of
particles per voxel.

The occupancy threshold Thrscore was determined through
uniform sampling, as described in Section VII-A, and was
identified to be 0.2 for the tests with depth noise. The rest
of the parameters were tuned based on experience. Specifi-
cally, κk, Σ, and Q need to be adjusted to account for differ-
ent depth camera noise characteristics. In the tests with depth
noise, κk = 0.4, Σ = (0.03d+ 0.1)I , and Q = 0.05I were
used. In real-world experiments (Section VII-E), κk and Σ
were further adjusted to 0.5 and (0.02d+ 0.3)I , respectively.
Since the panoptic segmentation and tracking errors usually
remain consistent between simulation and real-world environ-
ments, parameters related to these processes, such as Ptr, S,
and ∆k̄, were not adjusted.

REFERENCES

[1] B.-s. Kim, P. Kohli, and S. Savarese, “3d scene understanding by voxel-
crf,” in Proc. of the IEEE/CVF Comput. Vis. and Pattern Recognition
Conf. (CVPR), 2013, pp. 1425–1432.

[2] S. Yang, Y. Huang, and S. Scherer, “Semantic 3d occupancy mapping
through efficient high order crfs,” in Proc. of the IEEE/RSJ Intl. Conf.
on Intell. Robots and Syst. (IROS). IEEE, 2017, pp. 590–597.

[3] N. Sunderhauf, T. T. Pham, Y. Latif, M. Milford, and I. Reid, “Mean-
ingful maps with object-oriented semantic mapping,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (IROS). Vancouver,
BC: IEEE, Sep. 2017, pp. 5079–5085.

[4] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi,
A. Gupta, and L. Carlone, “Kimera: From slam to spatial perception
with 3d dynamic scene graphs,” Intl. J. Robot. Research (IJRR), vol. 40,
no. 12-14, pp. 1510–1546, 2021.

[5] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart,
and J. Nieto, “Volumetric instance-aware semantic mapping and 3d
object discovery,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 3037–
3044, 2019.

[6] G. Narita, T. Seno, T. Ishikawa, and Y. Kaji, “Panopticfusion: Online
volumetric semantic mapping at the level of stuff and things,” in Proc.
of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (IROS), 2019,
pp. 4205–4212.

[7] D. Seichter, B. Stephan, S. B. Fischedick, S. Müller, L. Rabes, and H.-
M. Gross, “PanopticNDT: Efficient and Robust Panoptic Mapping,” in
Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (IROS).
Detroit, MI, USA: IEEE, Oct. 2023, pp. 7233–7240.

[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proc.
of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2017, pp.
2961–2969.

[9] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance
segmentation,” in Proc. of the IEEE/CVF Intl. Conf. on Computer Vision
(ICCV), 2019, pp. 9157–9166.

[10] C. Lyu, W. Zhang, H. Huang, Y. Zhou, Y. Wang, Y. Liu, S. Zhang, and
K. Chen, “Rtmdet: An empirical study of designing real-time object
detectors,” arXiv preprint arXiv:2212.07784, 2022.

[11] B. Wen and K. Bekris, “Bundletrack: 6d pose tracking for novel objects
without instance or category-level 3d models,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intell. Robots and Syst. (IROS). IEEE, 2021, pp. 8067–
8074.

[12] C. Wang, R. Martı́n-Martı́n, D. Xu, J. Lv, C. Lu, L. Fei-Fei, S. Savarese,
and Y. Zhu, “6-pack: Category-level 6d pose tracker with anchor-based
keypoints,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom.
(ICRA). IEEE, 2020, pp. 10 059–10 066.

[13] B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Müller, A. Evans, D. Fox,
J. Kautz, and S. Birchfield, “Bundlesdf: Neural 6-dof tracking and 3d
reconstruction of unknown objects,” in Proc. of the IEEE/CVF Comput.
Vis. and Pattern Recognition Conf. (CVPR), 2023, pp. 606–617.

[14] J. Wilson, J. Song, Y. Fu, A. Zhang, A. Capodieci, P. Jayakumar,
K. Barton, and M. Ghaffari, “Motionsc: Data set and network for real-
time semantic mapping in dynamic environments,” IEEE Robot. Autom.
Lett., vol. 7, no. 3, pp. 8439–8446, 2022.

[15] G. Chen, W. Dong, P. Peng, J. Alonso-Mora, and X. Zhu, “Continuous
occupancy mapping in dynamic environments using particles,” IEEE
Trans. Robot., 2023.

[16] Danescu, R., Oniga, F., Nedevschi, and S., “Modeling and tracking
the driving environment with a particle-based occupancy grid,” IEEE
Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp.
1331–1342, 2011.

[17] D. Nuss, S. Reuter, M. Thom, T. Yuan, G. Krehl, M. Maile, A. Gern,
and K. Dietmayer, “A random finite set approach for dynamic occupancy
grid maps with real-time application,” Intl. J. Robot. Research (IJRR),
vol. 37, no. 8, pp. 841–866, 2017.

[18] A. Hornung, M. W. Kai, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Auton. Robots, vol. 34, no. 3, pp. 189–206, 2013.

[19] V. Usenko, L. V. Stumberg, A. Pangercic, and D. Cremers, “Real-time
trajectory replanning for mavs using uniform b-splines and 3d circular
buffer,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst.
(IROS). IEEE, 2017, pp. 215–222.

[20] J. Tordesillas, B. T. Lopez, M. Everett, and J. P. How, “Faster: Fast and
safe trajectory planner for navigation in unknown environments,” IEEE
Trans. Robot., vol. 38, no. 2, pp. 922–938, 2021.

[21] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav
planning,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and
Syst. (IROS), 2017.

[22] L. Schmid, O. Andersson, A. Sulser, P. Pfreundschuh, and R. Sieg-
wart, “Dynablox: Real-time Detection of Diverse Dynamic Objects in
Complex Environments,” IEEE Robot. Autom. Lett., vol. 8, no. 10, pp.
6259–6266, Oct. 2023.

[23] H. Wu, Y. Li, W. Xu, F. Kong, and F. Zhang, “Moving event detection
from LiDAR point streams,” Nature Communications, vol. 15, no. 1, p.
345, Jan. 2024.

[24] L. Schmid, M. Abate, Y. Chang, and L. Carlone, “Khronos:
A Unified Approach for Spatio-Temporal Metric-Semantic SLAM
in Dynamic Environments,” Feb. 2024. [Online]. Available: http:
//arxiv.org/abs/2402.13817

[25] B. Mersch, T. Guadagnino, X. Chen, I. Vizzo, J. Behley, and C. Stach-
niss, “Building volumetric beliefs for dynamic environments exploiting
map-based moving object segmentation,” IEEE Robot. Autom. Lett.,
2023.

16

[26] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-
niss, “Suma++: Efficient lidar-based semantic slam,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (IROS), 2019, pp. 4530–
4537.

[27] J.-W. Liu, Y.-P. Cao, W. Mao, W. Zhang, D. J. Zhang, J. Keppo,
Y. Shan, X. Qie, and M. Z. Shou, “Devrf: Fast deformable voxel radiance
fields for dynamic scenes,” Advances in Neural Information Processing
Systems, vol. 35, pp. 36 762–36 775, 2022.

[28] A. Cao and J. Johnson, “HexPlane: A Fast Representation for Dynamic
Scenes,” Jan. 2023.

[29] J. Luiten, G. Kopanas, B. Leibe, and D. Ramanan, “Dynamic 3d gaus-
sians: Tracking by persistent dynamic view synthesis,” arXiv preprint
arXiv:2308.09713, 2023.

[30] G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian, and
X. Wang, “4d gaussian splatting for real-time dynamic scene rendering,”
arXiv preprint arXiv:2310.08528, 2023.

[31] M. Youngjae, K. Do-Un, and C. Han-Lim, “Kernel-based 3-d dynamic
occupancy mapping with particle tracking,” in Proc. of the IEEE Intl.
Conf. on Robot. and Autom. (ICRA), 2021, pp. 5268–5274.

[32] Z. Zeng, Y. Zhou, O. C. Jenkins, and K. Desingh, “Semantic Mapping
with Simultaneous Object Detection and Localization,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (IROS). Madrid: IEEE,
Oct. 2018, pp. 911–918.

[33] C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei, “DS-
SLAM: A Semantic Visual SLAM towards Dynamic Environments,” in
Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (IROS).
Madrid: IEEE, Oct. 2018, pp. 1168–1174.

[34] Y. Nakajima and H. Saito, “Efficient object-oriented semantic mapping
with object detector,” IEEE Access, vol. 7, pp. 3206–3213, 2018.

[35] L. Gan, R. Zhang, J. W. Grizzle, R. M. Eustice, and M. Ghaffari,
“Bayesian spatial kernel smoothing for scalable dense semantic map-
ping,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 790–797, 2020.

[36] D. Seichter, P. Langer, T. Wengefeld, B. Lewandowski, D. Hochemer,
and H.-M. Gross, “Efficient and Robust Semantic Mapping for Indoor
Environments,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom.
(ICRA). Philadelphia, PA, USA: IEEE, May 2022, pp. 9221–9227.

[37] L. Schmid, J. Delmerico, J. Schönberger, J. Nieto, M. Pollefeys, R. Sieg-
wart, and C. Cadena, “Panoptic Multi-TSDFs: a Flexible Representation
for Online Multi-resolution Volumetric Mapping and Long-term Dy-
namic Scene Consistency,” in Proc. of the IEEE Intl. Conf. on Robot.
and Autom. (ICRA), May 2022, pp. 8018–8024.

[38] J. Wilson, Y. Fu, A. Zhang, J. Song, A. Capodieci, P. Jayakumar,
K. Barton, and M. Ghaffari, “Convolutional bayesian kernel inference
for 3d semantic mapping,” in Proc. of the IEEE Intl. Conf. on Robot.
and Autom. (ICRA). IEEE, 2023, pp. 8364–8370.

[39] J. Wilson, Y. Fu, J. Friesen, P. Ewen, A. Capodieci, P. Jayakumar,
K. Barton, and M. Ghaffari, “Convbki: Real-time probabilistic semantic
mapping network with quantifiable uncertainty,” IEEE Trans. Robot.,
2024.

[40] Z. Li, Z. Yu, D. Austin, M. Fang, S. Lan, J. Kautz, and J. M. Alvarez,
“Fb-occ: 3d occupancy prediction based on forward-backward view
transformation,” arXiv preprint arXiv:2307.01492, 2023.

[41] Y. Ding, L. Huang, and J. Zhong, “Multi-scale occ: 4th place solution
for cvpr 2023 3d occupancy prediction challenge,” arXiv preprint
arXiv:2306.11414, 2023.

[42] C. Sima, W. Tong, T. Wang, L. Chen, S. Wu, H. Deng, Y. Gu, L. Lu,
P. Luo, D. Lin, and H. Li, “Scene as occupancy,” arXiv preprint arXiv:
2306.02851, 2023.

[43] X. Tian, T. Jiang, L. Yun, Y. Mao, H. Yang, Y. Wang, Y. Wang, and
H. Zhao, “Occ3D: A Large-Scale 3D Occupancy Prediction Benchmark
for Autonomous Driving,” Dec. 2023.

[44] H. Jiang, T. Cheng, N. Gao, H. Zhang, T. Lin, W. Liu, and X. Wang,
“Symphonize 3d semantic scene completion with contextual instance
queries,” Proc. of the IEEE/CVF Comput. Vis. and Pattern Recognition
Conf. (CVPR), 2024.

[45] Y. Li, S. Li, X. Liu, M. Gong, K. Li, N. Chen, Z. Wang, Z. Li, T. Jiang,
F. Yu et al., “Sscbench: A large-scale 3d semantic scene completion
benchmark for autonomous driving,” arXiv preprint arXiv:2306.09001,
2023.

[46] R. P. S. Mahler, “Multitarget bayes filtering via first-order multitarget
moments,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 39, no. 4, pp. 1152–1178, 2003.

[47] B. Ristic, Particle Filters for Random Set Models. Springer Publishing
Company, Incorporated, 2013.

[48] G. Maggiolino, A. Ahmad, J. Cao, and K. Kitani, “Deep oc-sort:
Multi-pedestrian tracking by adaptive re-identification,” arXiv preprint
arXiv:2302.11813, 2023.

[49] S. Xu, X. Wang, W. Lv, Q. Chang, C. Cui, K. Deng, G. Wang, Q. Dang,
S. Wei, Y. Du et al., “Pp-yoloe: An evolved version of yolo,” arXiv
preprint arXiv:2203.16250, 2022.

[50] M. Aygun, A. Osep, M. Weber, M. Maximov, C. Stachniss, J. Behley,
and L. Leal-Taixé, “4d panoptic lidar segmentation,” in Proc. of the
IEEE/CVF Comput. Vis. and Pattern Recognition Conf. (CVPR), 2021,
pp. 5527–5537.

[51] J. Huang, S. Yang, T.-J. Mu, and S.-M. Hu, “Clustervo: Clustering mov-
ing instances and estimating visual odometry for self and surroundings,”
in Proc. of the IEEE/CVF Comput. Vis. and Pattern Recognition Conf.
(CVPR), 2020, pp. 2168–2177.

[52] B. Bescos, C. Campos, J. D. Tardós, and J. Neira, “Dynaslam ii: Tightly-
coupled multi-object tracking and slam,” IEEE Robot. Autom. Lett.,
vol. 6, no. 3, pp. 5191–5198, 2021.

[53] Y. Qiu, C. Wang, W. Wang, M. Henein, and S. Scherer, “Airdos:
Dynamic slam benefits from articulated objects,” in Proc. of the IEEE
Intl. Conf. on Robot. and Autom. (ICRA). IEEE, 2022, pp. 8047–8053.

[54] H. Ebbinghaus, “Memory: A contribution to experimental psychology,”
Annals of neurosciences, vol. 20, no. 4, p. 155, 2013.

[55] B. Ristic, D. Clark, and B. N. Vo, “Improved smc implementation of
the phd filter,” in International Conference on Information Fusion, 2010,
pp. 1–8.

[56] G. Casella, C. P. Robert, and M. T. Wells, “Generalized accept-reject
sampling schemes,” Lecture Notes-Monograph Series, pp. 342–347,
2004.

[57] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[58] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmentation,”
in Proc. of the IEEE/CVF Comput. Vis. and Pattern Recognition Conf.
(CVPR), 2022, pp. 1290–1299.

[59] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng,
Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li,
X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and
D. Lin, “MMDetection: Open mmlab detection toolbox and benchmark,”
arXiv preprint arXiv:1906.07155, 2019.

[60] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-
supervised interest point detection and description,” in Proc. of the
IEEE/CVF Comput. Vis. and Pattern Recognition Conf. (CVPR), 2018,
pp. 224–236.

[61] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue:
Learning feature matching with graph neural networks,” in Proc. of the
IEEE/CVF Comput. Vis. and Pattern Recognition Conf. (CVPR), 2020,
pp. 4938–4947.

[62] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy
for multi-object tracking analysis,” in Proc. of the IEEE/CVF Comput.
Vis. and Pattern Recognition Conf. (CVPR), 2016, pp. 4340–4349.

[63] Y. Cabon, N. Murray, and M. Humenberger, “Virtual kitti 2,” arXiv
preprint arXiv:2001.10773, 2020.

[64] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A benchmark
for rgb-d visual odometry, 3d reconstruction and slam,” in Proc. of the
IEEE Intl. Conf. on Robot. and Autom. (ICRA). IEEE, 2014, pp. 1524–
1531.

[65] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE/CVF Comput.
Vis. and Pattern Recognition Conf. (CVPR), 2016, pp. 3213–3223.

[66] L. Wang, H. Ye, Q. Wang, Y. Gao, C. Xu, and F. Gao, “Learning-
based 3d occupancy prediction for autonomous navigation in occluded
environments,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots
and Syst. (IROS). IEEE, 2021, pp. 4509–4516.

[67] A. Elhafsi, B. Ivanovic, L. Janson, and M. Pavone, “Map-Predictive
Motion Planning in Unknown Environments,” in Proc. of the IEEE Intl.
Conf. on Robot. and Autom. (ICRA). Paris, France: IEEE, May 2020,
pp. 8552–8558.

[68] A. Zhang, C. Eranki, C. Zhang, J.-H. Park, R. Hong, P. Kalyani,
L. Kalyanaraman, A. Gamare, A. Bagad, M. Esteva et al., “Towards
robust robot 3d perception in urban environments: The ut campus object
dataset,” arXiv preprint arXiv:2309.13549, 2023.

[69] A. Zhang, C. Eranki, C. Zhang, R. Hong, P. Kalyani, L. Kalyanaraman,
A. Gamare, M. Esteva, and J. Biswas, “Ut campus object dataset (coda),”
2023. [Online]. Available: https://doi.org/10.18738/T8/BBOQMV

[70] Y. Liao, J. Xie, and A. Geiger, “Kitti-360: A novel dataset and bench-
marks for urban scene understanding in 2d and 3d,” IEEE Transactions

17

on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 3292–

Gang Chen received the B.E. degree and Ph.D. de-
gree in mechanical engineering from Shanghai Jiao
Tong University, Shanghai, China, in 2016 and 2022,
respectively. He is currently a postdoc researcher at
the Cognitive Robotics Department, Delft University
of Technology, the Netherlands. His research interest
is in perception and perception-aware planning for
the navigation of single- and multi-robot systems,
with a special focus on dynamic environments.

Zhaoying Wang received the B.E. degree in
mechanical engineering from Wuhan University,
Wuhan, China, in 2019. He is now a Ph.D. candidate
at the State Key Laboratory of Mechanical Sys-
tem and Vibration, Shanghai Jiao Tong University.
His research interests are Visual Inertial Odometry,
SLAM, and multi-robot relative localization and
mapping.

Wei Dong received the B.S. degree and Ph.D. degree
in mechanical engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2009 and 2015,
respectively. He is currently a tenured associate
professor in the Robotic Institute, School of Mechan-
ical Engineering, Shanghai Jiao Tong University. In
2022, he was selected into the Shanghai Rising-
Star Program for distinguished young scientists. His
research interests include active perception and co-
operation of unmanned systems.

3310, 2022.

[71] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras,” IEEE Trans. Robot., vol. 33,
no. 5, pp. 1255–1262, 2017.

[72] J. Zhang, R. Liu, H. Shi, K. Yang, S. Reiß, K. Peng, H. Fu, K. Wang, and
R. Stiefelhagen, “Delivering arbitrary-modal semantic segmentation,” in
Proc. of the IEEE/CVF Comput. Vis. and Pattern Recognition Conf.
(CVPR), 2023, pp. 1136–1147.

[73] D. Hernandez-Juarez, A. Chacón, A. Espinosa, D. Vázquez, J. C. Moure,
and A. M. López, “Embedded real-time stereo estimation via semi-global
matching on the gpu,” Procedia Computer Science, vol. 80, pp. 143–153,
2016.

[74] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing net-
work,” in Proc. of the IEEE/CVF Comput. Vis. and Pattern Recognition
Conf. (CVPR), 2017, pp. 2881–2890.

Dr. Javier Alonso-Mora is an associate profes-
sor at the Cognitive Robotics department of the
Delft University of Technology, where he leads the
Autonomous Multi-Robots Lab. Before joining TU
Delft, Dr. Alonso-Mora was a postdoctoral associate
at the Massachusetts Institute of Technology (MIT).
He received his Ph.D. degree in robotics from ETH
Zurich.

His main research interest is in navigation, mo-
tion planning, learning, and control of autonomous
mobile robots, and teams thereof, that interact with

other robots and humans in dynamic and uncertain environments. He is the
recipient of multiple awards, including the IEEE Transactions on Automation
Science and Engineering Best Paper Award (2024), an ERC Starting Grant
(2021), and the ICRA Best Paper Award on Multi-Robot Systems (2019). He
serves as an Associate Editor for the IEEE Transactions on Robotics and for
Springer Autonomous Robots.

