
Probabilistic Motion Planning and Prediction via Partitioned Scenario Replay

Oscar de Groot, Anish Sridharan, Javier Alonso-Mora and Laura Ferranti

Abstract— Autonomous mobile robots require predictions of
human motion to plan a safe trajectory that avoids them.
Because human motion cannot be predicted exactly, future
trajectories are typically inferred from real-world data via
learning-based approximations. These approximations provide
useful information on the pedestrian’s behavior, but may deviate
from the data, which can lead to collisions during planning.
In this work, we introduce a joint prediction and planning
framework, Partitioned Scenario Replay (PSR), that stores and
partitions previously observed human trajectories, referred to
as scenarios. During planning, scenarios observed in similar
situations are reintroduced (or replayed) as motion predictions.
By sampling real data and by building on scenario optimization
and predictive control, the planner provides probabilistic col-
lision avoidance guarantees in the real-world. Relying on this
guarantee to remain safe, PSR can incrementally improve its
prediction and planning performance online. We demonstrate
our approach on a mobile robot navigating around pedestrians.

I. INTRODUCTION

AUTONOMOUS navigation among humans typically
builds on a pipeline that perceives humans

(perception), predicts their future motion (prediction)
and plans a safe motion around them (planning). Predicting
human motion is subject to significant uncertainty because
the intentions of humans cannot directly be observed.
Therefore, several distinct future trajectories may be
plausible at any time. Human behavior additionally varies
per person (e.g., age) and depends on the environment (e.g.,
the layout of the space or position of other humans).
The uncertainty of human motion is typically predicted by
learning a probability distribution of future motion con-
ditioned on contextual information (e.g., velocity or the
position of other humans). Although the learned distribution
approximates the real distribution, it can deviate from the
data points to improve the overall fit. This makes it hard
to provide guarantees on inferred trajectories, since not all
data points are respected. Additionally, prediction methods
are typically designed in isolation, without considering the
planner that relies on its outputs.
In this work, we propose Partitioned Scenario Replay (PSR),
for data-driven prediction and planning, illustrated in Fig. 1.
Instead of learning a probability distribution from previously
observed human trajectories and the associated contextual in-
formation, we first partition human trajectories offline based
on the context in which they were observed. In each online
iteration of the planner, we use the context to decide from
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Fig. 1: Illustration of PSR. Human trajectories are collected
in a database and partitioned based on the associated context
(highlighted in red and cyan). During planning, the current
context identifies one of the partitions and trajectories in this
partition (e.g. cyan) are replayed as motion predictions that
the planned trajectory (in yellow) must avoid.

which partition trajectories are reintroduced (or replayed) to
predict the human’s motion. We use scenario-based trajectory
optimization [1] to avoid all of the replayed trajectories,
which inherently provides a probabilistic safety guarantee
on the planned trajectory in the real-world.

A. Related Work - Human Motion Prediction

Human motion prediction methods can be categorized by
how they incorporate models and data.
1) Model-Based Human Motion Prediction methods such
as constant velocity or physics based rules predict human
trajectories based on model-based approximations and are
popular for their simplicity [2], [3]. They fail, however, to
capture contextual information.
2) Planning-Based Human Motion Prediction methods apply
motion planning methods from the perspective of the human
to predict the human’s future motion. In [4] pedestrian pre-
dictions are modeled by a relaxed maximum value Markov
Decision Process (MDP) that infers pedestrian goal locations
from previously observed trajectories. These predictions are
used to avoid humans using a graph-based planner. Static ob-
stacles are considered in [5], where predictions are informed
with their distance to goals. Nonlinear optimization towards
goals is used in [6]. Planning-based methods capture human
intent more accurately, but due to the planning step suffer
from long inference times. Additionally, wrongly inferred
goals result in incorrect predictions and can lead to collisions.
3) Learning-Based Human Motion Prediction methods
learn a distribution of probable human trajectories from a
dataset (e.g., [7]). The temporal dependencies of human
motion can be modeled by Recurrent Neural Networks [8]



such as Long Short-Term Memory (LSTM). We distinguish
between uni-modal and multi-modal prediction models.
Uni-modal methods, such as Social LSTM [9] and Social-
STGCNN [10], predict a single trajectory (or mode) for each
human. Hence, when multiple distinct trajectories (modes
of the probability distribution) are possible, they tend to
average the modes without representing any of the modes
accurately [11], [12].
Multi-modal methods do account for multiple distinct trajec-
tories. Variational methods such as the Conditional Varia-
tional AutoEncoder (CVAE) [13] (based on the Variational
AutoEncoder (VAE) [14]), model latent variables to rep-
resent the data as a lower dimensional distribution. Tra-
jectron++ [15] is a CVAE that incorporates dynamics and
scene context to improve predictions. Variational Recurrent
Neural Networks (VRNN) [16] are extended VAEs that
model high dimensional sequences. This network was ap-
plied for Social-VRNN [17] where scene-aware multi-modal
trajectory predictions are represented by a Gaussian Mixture
Model (GMM). Y-Net [18] predicts several trajectories per
endpoint using waypoints. NSP-SFM [19] incorporates a
physics model and CVAE to learn realistic physical behavior.
Generative Adversarial Networks (GANs) [20] train a gener-
ator together with a discriminator network. The discriminator
enforces the generator to produce realistic predictions, which
can be queried after training. Examples are Social-GAN [21]
that encodes pedestrian interactions and MG-GAN [22] that
produces modes through multiple generators.
State-of-the-art learning-based prediction algorithms still
have severe limitations. The accuracy of the learned distri-
bution is limited because finite data is available and may
be insufficient for guaranteeing safety [23]. In addition, the
model distribution has a predefined structure, assuming for
example a static number of modes [17], [24], which may
not accurately capture the real distribution and auxiliary
uncertainties such as tracking and sensing errors. While these
inaccuracies are always present, the planner is typically not
aware of their magnitude, which may lead to collisions in
practice. Finally, learning-based models are computationally
expensive and resource intensive to train and deploy.
B. Related Work - Motion Planning under Uncertainty

The planning problem can be solved via an optimiza-
tion problem, where constraints impose collision avoidance
(e.g., [25]). Under uncertainty, constraints can be reformu-
lated as chance constraints, i.e., constraints that must hold
with a probability. Chance constraints cannot be evaluated
online due to their computational complexity, but several
works have formulated approximations, such as [26]-[27] for
Gaussian uncertainty and [28] for non-Gaussian distributions.
Similarly for non-Gaussian distributions, [1] and [29] use
scenario optimization to reformulate the chance constraints
as a large number of sampled deterministic constraints. All
of these planners rely on a learned distribution of human
trajectories to evaluate the chance constraint and associated
probabilistic safety guarantees are subject to the accuracy of
the predicted distribution.

Because of potential errors in learning the distribution,
distributionally robust planners (e.g., [30]) account for the
mismatch between the predicted and real distributions. These
methods currently rely on strong assumptions and are orders
of magnitudes too slow for online control.

C. Contribution
Under the previous considerations, we propose a data-driven
framework for prediction and planning that does not learn
the distribution, but rather reintroduces previously observed
human trajectories during online planning. In contrast with
learning-based methods, we do not need to assume any
structure on the distribution and we can provide a real-
world safety guarantee on the planned trajectory. We achieve
this via scenario optimization [31]. Scenario optimization
is a data-based decision framework under uncertainty that
leverages recorded samples of a distribution to satisfy chance
constraints. Scenario-based optimization was previously used
in [1] and [29]. Compared to these works where a model dis-
tribution generated the scenarios for optimization, this work
replays observed human trajectories to achieve collision-free
motion planning. By using real data, the probabilistic safety
guarantee in this work applies to the real recorded data rather
than an estimated model. Our contributions are:

1) A joint data-driven method (PSR) for prediction and
planning under arbitrary uncertainty that provides a
real-world safety guarantee for collision avoidance (see
Theorem 1), while optimizing planning task perfor-
mance. Our framework divides the training data into
partitions. During planning, the current sensor data
is mapped to one of the partitions and data in this
partition is replayed to represent the uncertainty in
the scenario-based planner [1]. The approach is fast
to train and query and supports diverse inputs such
as contextual information (e.g., road-layout, tracking
information, social cues) or pre-processed contextual
data (e.g., classifier or autoencoder outputs).

2) We propose a scenario optimization for non-stationary
(i.e., context dependent) probability distributions.

The prediction component of PSR attains close to state-of-
the-art performance on the ETH/UCY data-set [7], in terms
of the Average Displacement Error (ADE) and the Final
Displacement Error (FDE). In comparison, our method is
simpler, computationally more efficient and includes a plan-
ner with a real-world safety guarantee. We demonstrate on a
mobile robot in the real-world that the joint prediction and
planning framework evades pedestrians, without an initial
model of pedestrian motion.

II. PROBLEM FORMULATION

A. Human Motion Prediction
Accurate prediction of human motion relies on contextual
information. We associate with each human a context state
xfull
obs ∈ Xfull

obs, that is partially unobservable from the robot’s
perspective (e.g., human intentions). We denote the observ-
able subset of the context state by

xobs ∈ Xobs ⊆ Xfull
obs, (1)
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Fig. 2: Schematic overview of PSR. Raw or processed observations are recorded into a dataset D containing contextual
information and associated trajectories. (1) The dataset is partitioned into P partitions. (2) The current contextual information
identifies a single partition. Trajectories in this partition are replayed to predict motion of nearby humans.

which is available to the prediction and planning pipeline in
each iteration. These observations can contain deterministic
mappings of sensor data such as classification or autoencoder
outputs. The uncertain position of a single human at future
time k is denoted by δk ∈ R2 and its future N positions by
δ = {δ1, . . . , δN}. We assume that there exists a probability
distribution P that describes human motion and denote with
Px = P [δ | xobs] the probability distribution conditioned on
the observed context. Finally, we assume that a dataset,

D = {(x(1)
obs, δ

(1)), . . . , (x
(D)
obs , δ

(D))), (2)

containing observed contextual information and the associ-
ated realization of the uncertainty (i.e., trajectories) is avail-
able. This dataset can be recorded at runtime, accumulating
over time, or can be a public dataset recorded in a similar
setting (e.g., [7]).

B. Scenario-Based Robot Motion Planning

We control a robot with nonlinear discrete-time dynamics

xk+1 = f(xk,uk), (3)

where xk ∈ Rnx and uk ∈ Rnu denote the states and
inputs, respectively and nx and nu are the number of states
and inputs, respectively. The vehicle state is assumed to
contain its x-y position p = [x, y] ∈ R2 ⊆ Rnx . For
simplicity, consider collision avoidance with a single human.
A collision avoidance constraint g(xk, δk) ≤ 0 imposes
that the vehicle does not collide with the human at time
k. For example, g(xk, δk) = r − ||pk − δk||2, with r the
summed radius of robot and human. With the human’s future
motion uncertain, we may formulate the following Chance
Constrained Problem (CCP):

min
u∈U,x∈X

N∑
k=0

J(xk,uk) (4a)

s.t. x0 = xinit (4b)
xk+1 = f(xk,uk), k = 0, . . . , N − 1 (4c)

P

[
N∧

k=1

(g(xk, δk) ≤ 0)

]
≥ 1− ϵ, δ ∈ ∆, (4d)

where formally the joint uncertainty δ belongs to a proba-
bility space ∆ = R2N , associated with a σ-algebra F and
probability measure1 P, and we use

∧
to denote the “and”

operation. Our goal is to solve the CCP in Eq. 4 to find robot
control inputs u that avoid collisions with humans with a
probability of at least ϵ in the real-world.

III. PRELIMINARY - SCENARIO PROGRAM

The CCP in Eq. 4 can be solved via a sampling-based
reformulation, known as a Scenario Program (SP) [1]. In
the reformulation, one collects an independent set of sam-
ples {δ(1), . . . , δ(S)} from P referred to as scenarios and
formulates a deterministic variant of the constraint (4d) for
each sample. This gives the following SP

min
u∈U,x∈X

N∑
k=0

J(xk,uk) (5a)

s.t. x0 = xinit (5b)
xk+1 = f(xk,uk), k = 0, . . . , N − 1 (5c)
N∧

k=1

(
g(xk, δ

(i)
k ) ≤ 0

)
, i = 1, . . . , S. (5d)

The SP is deterministic and can therefore be solved using
a NonLinear Program (NLP) solver. Independent of the
probability distribution P, the required number of scenarios
S can be computed from a desired risk ϵ (collision avoid-
ance probability), confidence 1 − β (probability that (4d)
is satisfied by the SP) and support n (number of scenarios
that affect the solution). A Jupyter notebook to perform this
computation is provided with this paper [33].

IV. PARTITIONED SCENARIO REPLAY

The SP in Eq. 5 offers a data-driven way to compute a
solution to the CCP in Eq. 4 in the real-world, using recorded
observations of human motion. However, it does not consider
the context in which these trajectories were recorded. This
leads in practice to poor predictions since human motion
is strongly context dependent. In the following, we extend
the SP to a context dependent distribution that leads to a
provably safe prediction and planning framework.

1For more details, see [32].



A. Partitioning the dataset

By leveraging on the properties of scenario-based motion
planning [1], probabilistic collision avoidance can be ensured
in the real-world in two steps: an offline training phase and
an online replay phase. In the training phase, realizations of
an uncertainty distribution P are collected in a dataset D.
In the online replay phase, S samples from the dataset are
reintroduced in the planner as scenarios δ(1), . . . , δ(S) for
the SP in Eq. 5.
We need to carefully consider the distribution P and dataset
D. Ignoring context, any sample in D is an independent
sample of P. Although this means that we can solve the
SP in Eq. 5 by drawing scenarios from D, its solution will
be conservative as any sample may be replayed at any time.
To incorporate contextual information, the CCP in Eq. 4
should consider the conditioned distribution Px. The as-
sociated SP in Eq. 5 is then constructed by accumulating
and replaying samples from Px. However, as the domain of
the observed information Xobs is generally continuous, the
probability of observing any particular case, xobs ∈ Xobs is
zero. We therefore cannot accumulate samples from Px.
We propose instead to partition the space of observed infor-
mation Xobs into a finite number of subsets or partitions.
Each partition is constructed such that the probability of
observing data belonging to the partition is non-zero. To
formalize this idea, we construct P > 0 partitions Xp

obs ⊆
Xobs as follows:

P⋃
p=0

Xp
obs = Xobs (Partitioning) (6)

P⋂
p=0

Xp
obs = ∅ (No Overlap) (7)

P [xobs ∈ Xp
obs] > 0. (Density) (8)

Considering the partitioned contextual information, we can
formulate the following chance constraint,

P

[
N∧

k=1

(g(xk, δk) ≤ 0) | xobs ∈ Xp
obs

]
≥ 1− ϵ, (9)

for which the associated SP is given by (5), but where
samples of δ come from a subset of the dataset.

B. Prediction and Planning Algorithm

We propose the following prediction and planning frame-
work, outlined in Algorithm 1. Offline, we take the dataset
D and assign each data point to the associated partition (see
(1) in Fig. 2 and lines 4-7 in Algorithm 1), resulting in a
partitioned dataset D =

⋃P
p=0 Dp, where

x
(i)
obs ∈ Xp

obs → (x
(i)
obs, δ

(i)) ∈ Dp. (10)

Online, given a currently active partition Xp
obs, we satisfy

chance constraint (9) by solving the SP in Eq. 5 with samples
from Dp (see (2) in Fig. 2 and lines 8− 13 in Algorithm 1).
The risk of the planning and prediction pipeline is then
certified in the sense that (9) is satisfied in the real-world.

Algorithm 1: Partitioned Scenario Replay
Input: Dataset D, Observed features xobs, Trajectories δ,

Sample size S, Partition threshold Sth
1 // Process new data
2 for each pedestrian do
3 Append (xobs, δ) to dataset D
4 // Partition the dataset (training phase)
5 if |D| > Sth then
6 Xp

obs ∀p ← Size Constrained K-Means(D, S)
7 Dp ← Partition(D, Xp

obs) ∀p (Eq. (10))

8 // Retrieve scenarios (replay phase)
9 for each pedestrian do

10 Find p for which xobs ∈ Xp
obs (Assign partition)

11 (δ(0), . . . , δ(S)) ← Dp (Retrieve scenarios)

12 // Trajectory optimization
13 x,u ← Solve SP in Eq. 5 for retrieved scenarios
14

Output: u0

The risk ϵ that can be guaranteed depends on the number
of data points in the smallest partition argminp |Dp|, since
the sample size cannot be larger than any of the datasets. In
practice, we set a desired risk ϵ and compute a sample size S
for a given confidence β and support n using Notebook [33].
Then we ensure that each partition is large enough, that is,

|Dp| ≥ S, ∀p. (Data Requirement) (11)

We obtain the following main result.
Theorem 1: Consider the CCP in Eq. 4 and the associated
SP in Eq. 5. Assume that dataset D containing Independent
and Identically Distributed (IID) trajectories and observations
is partitioned into P partitions according to partitioning
rules (6)-(8) and that for the desired risk ϵ, data requirement
(11) is satisfied. Then, the trajectory computed by the SP in
Eq. 5 where scenarios are sampled from the current partition
p (i.e.,

{
δ(1), . . . , δ(S)

}
⊆ Dp) is collision free in the real-

world, in the sense that (9) is satisfied.
Proof: First note that (7) ensures that each observation

xobs ∈ Xobs identifies a single partition, while together
with (6) it is guaranteed that there is always a single partition
for each observation. Hence, one may consider the motion
planning problem of the CCP in Eq. 4 as P different motion
planning problems (each with its own dataset Dp, collected
for the same problem) where one problem is active at each
time instance. For each problem, the scenario approach
certifies the risk ϵ based on S (and β, n) [31, Theorem 1].
Finally, (11) ensures that S samples can be sampled from
each partition, proving the result.
In practice, Theorem 1 provides a safety guarantee that helps
to understand how safe the predictions are based on the size
of the collected dataset. Several observations are in order.
First, note that safety and performance are traded-off through
the size of the partitions. A partition is safe when (11)
holds. With more data available, the partition volumes shrink,
leading to more accurate predictions and faster motion plans.
More insight can come from the two extreme applications of
Theorem 1. If the dataset has S samples, it fits in a single



partition. The planner evades all previously seen human
trajectories and will be overly conservative in practice, but
safe by Theorem 1. In the other extreme, many low variance
partitions with at least S samples exist. It may happen that a
new data point lands far away from each partition in which
case it is likely that the low variance predictions do not
capture the true future motion. Theorem 1 captures this in
the risk ϵ. That is, given that we observed S samples in this
partition without observing the new sample, the probability
of seeing the current case is in the ϵ tail of the distribution.

C. Partitioning Algorithm

Deciding how the observation space Xobs is divided into P
partitions, according to partition rules (6)-(8), can be seen
as an unsupervised learning problem. In this work, priori-
tizing simplicity and computational efficiency, we normalize
the observations and apply K-means clustering [34] to the
resulting data points. K-means partitions the dataset in K
clusters, where each data point belongs to the cluster with
the nearest mean. To satisfy the data requirement in Eq. 11,
we run a size constrained K-means clustering [35] with a
minimum cluster size of S (see lines 4-7 in Algorithm 1).
Online, we retrieve the active partition Xp

obs by classifying
the current context xobs (see line 10 of Algorithm 1). We note
that Theorem 1 does not assume the partitioning to be static.
When a partition has more than S samples, we replay the S
samples with the most similar current velocity magnitude.

D. Observations

The observations need to be deterministic, but each observa-
tion can be either continuous or discrete. Examples of obser-
vations are sensor data (e.g., relative position, velocity, etc.),
categorical data (e.g., obstacle is pedestrian) or Boolean data
(e.g., has/has-not seen robot). Any deterministic algorithm
that pre-processes the data is also admissible. An autoen-
coder could, for example, encode scene information into a
lower dimensional latent space that is used for partitioning.

E. Continual Application

Theorem 1 guarantees probabilistic safety in the real-world
for a given risk. While safety is guaranteed, more collected
data leads to smaller partitions which, when partitioned
effectively, leads to less conservative predictions of human
motion. Because of this ability to improve safely, PSR can
be deployed without prior data in a real-world environment.
In this setting, new observations are continuously recorded
and the partition algorithm is repeated at regular intervals
(e.g., when dataset is larger than a threshold Sth, see line
5 in Algorithm 1). This makes the proposed approach well
suited for practical applications where no model is available.

V. RESULTS

A. Comparison with Learning-Based Prediction

We compare PSR prediction against state-of-the-art predic-
tion methods on the ETH dataset for pedestrian motion pre-
diction [7]. The dataset contains 35k+ pedestrian tracks each
with 3.2s motion history and 4.8s ground-truth trajectories.

TABLE I: Comparison in ADE and FDE of state-of-the-art
prediction models and PSR on the ETH/UCY data set [7].

Method Metrics ETH Hotel UNIV ZARA1 ZARA2 AVG

[21] Social GAN ADE 0.81 0.72 0.60 0.34 0.42 0.58
FDE 1.52 1.61 1.26 0.69 0.84 1.18

[10] Social-STGCNN ADE 0.64 0.49 0.44 0.34 0.30 0.44
FDE 1.11 0.85 0.79 0.53 0.48 0.75

[15] Trajectron++ ADE 0.39 0.12 0.20 0.15 0.11 0.19
FDE 0.83 0.21 0.44 0.33 0.25 0.41

[18] Y-Net ADE 0.28 0.10 0.24 0.17 0.13 0.18
FDE 0.33 0.14 0.41 0.27 0.22 0.27

[19] NSP-SFM ADE 0.25 0.09 0.21 0.16 0.12 0.17
FDE 0.24 0.12 0.38 0.27 0.20 0.24

PSR ADE 0.60 0.22 0.41 0.24 0.18 0.33
FDE 0.94 0.40 0.79 0.41 0.33 0.57

PSR (No History) ADE 0.68 0.25 0.37 0.24 0.18 0.34
FDE 1.12 0.44 0.74 0.43 0.34 0.61

0.0 2.5 5.0 7.5
X [m]

−1

0

1

2

Y
[m

]

(a) Variance captured in regular
walking.

−6 −4 −2 0
X [m]

−2

0

Y
[m

]

(b) Multi-modal trajectory pre-
dictions.

Fig. 3: Examples of PSR predictions on the ETH dataset,
showing 20 samples. Predicted trajectories are drawn from
the first step ahead (purple) to the final time step (yellow).
The ground-truth is depicted by black stars. Positions are
drawn with increasing transparency along the time horizon.

Each trajectory contains 20 steps with a 0.4s time step.
The data is split in 5 smaller datasets where one dataset
is used as test set and the others are available for training.
We incorporate the validation set in the training set, since
the validation set is not required for PSR.
Evaluation Metrics: We evaluate motion predictions with
two metrics, similarly to prior works [15], [18], [19], [21]:

1) Average Displacement Error (ADE): the average ℓ2
distance between the ground truth and predicted tra-
jectories.

2) Final Displacement Error (FDE): the ℓ2 distance be-
tween the ground truth and predicted trajectories at the
prediction horizon T .

To make the motion uncertainty invariant to absolute position
and orientation, we represent velocities vk in the frame
positioned at the pedestrian center and oriented forward. The
features we use for comparison are the velocity x and y
component over the past 3 steps (we found that more steps do
not improve performance). Additionally, we run an ablation
study with the last velocity only. Example predictions of PSR
are depicted in Fig. 3 and quantitative results are listed in
Table I. PSR achieves close to state-of-the-art performance.
The gap to the state-of-the-art is partially due to the inherent
safety guarantee that accounts for less likely outcomes, de-
grading average performance. PSR could be further improved
by using encoded scene information (e.g., an autoencoder)
on top of the agent’s velocity information.
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Fig. 4: Experimental setup and three observed trajectories of the robot (blue) and pedestrians (green) towards the end of the
experiment. Trajectories are depicted with increased transparency over time and start positions are indicated by a black dot.

A key feature of PSR is its computational efficiency given
that PSR simply loads samples in its partition for each
pedestrian. For 8 obstacles and S = 528, PSR takes on
average 0.94 ms to partition and sample trajectories. This
is significantly faster than other methods (e.g., [15] takes
roughly 100 ms just to fit the distribution). Existing methods
are typically limited to the order of 10 samples. The planner
therefore cannot use the predicted distribution in detail even
if the distribution is learned accurately.

B. Real-world evaluation

We demonstrate PSR (see Algorithm 1) on a mobile robot
(Clearpath Jackal) navigating among pedestrians using the
continual PSR approach described in Sec. IV-E. The exper-
imental setup is depicted in Fig. 4a. We mimic an open
environment by asking the pedestrians to move from one
side to another, standing still for a brief time afterwards.
We do not save data when a pedestrian is standing still.
The robot’s task is to drive from corner to corner while
avoiding collisions with the pedestrians. To implement this
behavior, the cost J(xk,uk) of the SP in Eq. 5 includes
contouring and lag terms (see [25]) that track a diagonal
path, a term ||v − vref||22 to track a velocity of 2 m/s, and
penalties ||a||22 and ||ω||22 on the acceleration and rotational
velocity, respectively.
We detect the robot and pedestrian positions with a marker-
based tracking system. The experiment ran for 45 minutes.
Pedestrian trajectories are continually collected and the
dataset is partitioned whenever its size increased by 10%.
We save pedestrian trajectories every 10 steps to ensure
that samples are independent. As observations, we use for
simplicity the x, y components of the previous three veloci-
ties and the current velocity magnitude. We solve the SP in
Eq. 5 online for linearized constraints (see [1]) with Forces
Pro [36]. Experimental settings are listed in Table II.
Fig. 4 depicts three experiments. Figs. 4b and 4c show
that the robot avoids collisions, while we did not encode

TABLE II: Experimental settings with Ts the control time
step and Tint the timestep of predictions.

ϵ β n̄ S Ts Tint N
0.25 0.01 5 101 0.05s 0.1s 30

1
2

3

3
4 5

6

10
minutes

45
minutes 21

7
8

Fig. 5: Trajectories in the partitions at two time instances.

any model for the pedestrians. In Fig. 4d the pedestrian
turns towards the robot, but the planner still evades the
pedestrian smoothly. This indicates that the predicted dis-
tribution captures the deviation in behavior. Partitions at two
time instances are depicted in Fig. 5. After 45 minutes the
partitions capture regular walking at different speeds (nrs.
1, 2, 6), fast walking at different speeds (nrs. 3, 7) and moving
from stand still (nrs. 4 and 8). This shows that partitions
reduce in variance over time.
On the planner side, planning performance can be further
improved by guiding the robot into the most suitable local
optimum (e.g., using global dynamic guidance [37]), but this
is outside the scope of this paper.

VI. CONCLUSION

We presented a data-driven framework for human motion
prediction and planning where we collected and categorized
observed trajectories into several partitioned datasets. During
planning, trajectories from one partition were replayed for
each human to predict their future motion. This allowed us to
provide probabilistic safety guarantees on collision avoidance
in the real-world. We showed that PSR attained close to state-
of-the-art prediction performance, while providing a safety
guarantee. We then deployed PSR on a mobile robot and
navigated successfully around pedestrians in the real-world
even when starting the framework without prior data.
Our future work will combine learning-based context pro-
cessing with PSR to generalize its applicability.
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