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Abstract— In this paper, we present an approach for fleet sizing
in the context of flash delivery, a time-sensitive delivery service
that requires the fulfilment of customer requests in minutes.
Our approach effectively combines individual delivery requests
into groups and generates optimized operational plans that
can be executed by a single vehicle or autonomous robot.
The groups are formed using a modified routing approach
for the flash delivery problem. Combining the groups into
operational plans is done by solving an integer linear problem.
To evaluate the effectiveness of our approach, we compare it
against three alternative methods: fixed vehicle routing, non-
pooled deliveries and a strategy encouraging the pooling of
requests. The results demonstrate the value of our proposed
approach, showcasing its ability to optimize the fleet size and
improve operational efficiency. Our experimental analysis is
based on a real-world dataset provided by a Dutch retailer,
allowing us to gain valuable insights into the design of flash
delivery operations and to analyze the effect of the maximum
allowed delay, the number of stores to pick up goods from and
the employed cost functions.

I. INTRODUCTION

In the ever-evolving landscape of retail and logistics, the
prominence of flash deliveries as a powerful business model
is evident through the success of young companies like
Flink, Getir, and Gorillas. The growing demand for instant
gratification and swift order fulfillment has been the driving
force behind the surge in popularity for this time-sensitive
delivery approach. Flash deliveries provide customers with
the convenience of receiving their requests promptly, chal-
lenging traditional retailers to adapt and secure their market
share in this highly competitive arena. Collaborations be-
tween established players in the industry further exemplify
the industry’s response to this trend. For instance, in the
Netherlands, Albert Heijn partnered with Thuisbezorgd and
Deliveroo to provide faster grocery delivery [1]. Similarly,
Cornershop merged with Uber pursuing similar objectives
[2]. These processes are accelerated and challenged further
by the rapid progress in autonomous delivery robots and
autonomous driving technologies. A notable example is
Starship Technologies, which has successfully completed
millions of autonomous deliveries using their robot solution
[3]. This advancement opens up possibilities for operating
large fleets at reasonable costs.
In contrast, a potential upside that traditional retailers have
is the ban on opening new dark stores, as seen in cities
like Amsterdam [4]. Dark stores serve as dedicated pick-up
locations, and the prohibition on their establishment presents
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an opportunity for brick-and-mortar stores to step in and
utilize their existing infrastructure as depots. This allows
traditional retailers to leverage their physical presence with
existing supermarkets to support flash delivery operations.
In planning for flash delivery operations, two critical factors
come into play: the efficient routing of vehicles, or robots,
and the design of the fleet. The interplay between these
factors adds complexity to the overall system. Traditional
routing assumes a fixed number of vehicles as input and
focuses on optimizing their usage. Fleet sizing involves
determining the optimal number of vehicles required based
on how they are utilized during service. To enable fleet
sizing with sophisticated routing, we propose a novel method
that combines routing optimization and fleet design while
considering multiple stores. Taking into account the unique
characteristics of multiple stores is particularly important,
as it closely resembles the operational setup of traditional
retailers. In our study, we utilize real-world data from a
Dutch retailer, including information on the number and
location of supermarkets and real-life demand patterns in
those supermarkets. By integrating these aspects, we aim to
gain valuable insights into the optimization of flash delivery
operations.
The contributions of this work are twofold: First, our novel
method combines fleet sizing and routing for Flash Delivery
operations, two problems that are usually decoupled and
have proved very complex to address together. Second, our
experiments emulate the entrance of traditional retailers into
the flash delivery market, as we use a novel dataset from one
of the leading retailers in The Netherlands, analyzing their
brick-and-mortar supermarkets as potential stores for flash
delivery.

II. RELATED WORKS

This work deals with fleet sizing for the flash delivery
problem (FDP) [5], including the pooling of requests, i.e.
vehicles can simultaneously carry multiple requests with
similar destinations. The related literature predominantly
originates from the area of transporting people, such as
the dial-a-ride problem and ridesharing. However, there are
three key distinctions between these areas and flash deliv-
ery logistics with autonomous vehicles or robots. First, in
logistics, the pick-up location of a request is ambiguous and
needs to be decided on. Second, while minimizing delay
is crucial in people transportation, flash delivery prioritizes
operational efficiency and resource utilization over delay
reduction. Finally, the usage of autonomous vehicles or
robots enables continuous operation.



A. Fleet Sizing

Fleet Sizing generally answers the question, “How many
vehicles are required to serve some demand?”. [6] shows that
various effects drive these decisions. The existing literature
offers two primary categories of approaches: simulation-
based and chaining-based methods. Simulation-based ap-
proaches aim to identify optimal fleet designs and sizes by
simulating operations with different fleet compositions. For
example, in [7], an agent-based micro-simulation model was
employed to analyze shared ride services in Austin, Texas.
Through cost estimates and simulations with varying fleet
sizes, an optimal fleet size was determined using the Golden
Section Search method [8]. Chaining-based approaches, on
the other hand, involve sequencing requests into chains by
reallocating vehicles from completed tasks to subsequent
ones. The concept of chaining was initially introduced by
[9] to address the minimum fleet problem for taxi rides in
Manhattan. They utilized a shareability graph and applied a
maximum matching algorithm to find the minimum fleet.
Building upon chaining, several papers extended the ap-
proach to ridesharing applications, enabling vehicles to
serve multiple requests. For instance, in [10], chains were
iteratively formed using an Integer Linear Programming
(ILP) solver, progressively extending existing chains by
adding new tasks. [11] presented a combined optimization
model that integrated pooling and chaining, demonstrating
the potential for reduced fleet sizes through pooling. [12]
proposed a novel order graph capturing complex inter-order
shareability and solved a coverage problem over the graph to
determine the required fleet sizes. The following two works
share a similar idea to the approach presented here, which
involves initially calculating how requests or passengers can
be served together and then applying chaining. In [13], a
routing approach and demand forecasting were employed
to maximize their proposed utility metric called ”demand
utility” on shared trips, with chaining based on [9]. Addition-
ally, [14] utilized temporal and spatial aggregation to form
trips, formulating fleet sizing as an ILP and solving it as a
minimum flow problem.

B. Routing for the Flash Delivery Problem

The routing aspect of the FDP represents a specialized
domain within dynamic vehicle routing problems. While
the FDP shares similarities with the Same-Day Delivery
Problem, it poses unique challenges by requiring requests to
be fulfilled within minutes after being placed rather than by
the end of the day. In the existing literature, only a few works
have focused specifically on routing for the FDP, namely
[15], [5]. These studies adopt a rolling horizon approach to
address the dynamic nature of the problem by dividing it into
multiple snapshot problems. Their methodology involves a
two-step process for each snapshot. Firstly, a comprehensive
set of potential plans for each vehicle is generated. Subse-
quently, an assignment problem is solved to determine which
plans are executed by which vehicles. These works build the

foundation for the routing approach applied in this work. 1

Not focusing on flash delivery, but the instant delivery
problem are the works of [17] and [18]. In [17], a column
generation approach is used to optimize the assignment of
orders to a heterogeneous fleet of vehicles, considering dead-
lines of up to hours. In [18], the instant delivery problem with
shorter deadlines of 45 minutes is addressed by decomposing
it into a series of static problems. Orders are inserted into
existing trajectories based on a similarity measure.
Methodologically, this work combines pooled routing for the
FDP [15], [5] with chaining [9].

III. PROBLEM FORMULATION

Intuitively described, the fleet sizing problem poses a prob-
lem in which the number of vehicles and their operational
plans need to be found to fulfil a given demand. It becomes
the fleet sizing problem for the FDP when all requests need
to be delivered within the constraints posed by the flash
delivery operation. Solutions are optimized based on a given
objective.
The inputs are the demand, as a set of requests R which
need to be serviced, the capacity of the vehicles, and a graph
G = (V,E) representing the operation environment. The
operational environment is represented as a weighted directed
graph denoted as G = (V,E), with vertices V representing
different locations l ∈ V and edges E indicating connections
between them. The weight of each edge, denoted as w(e),
represents the traversal time. The stores S form a subset
of vertices V , where vehicles can pick up goods to fulfil
customer requests. All stores have a full stock of goods at
all times.
The demand set R consists of individual customer requests
r = (lgoalr , tr), where lgoalr ∈ V represents the goal location
and tr is the request placement time. It is important to note
that no specific pickup location for each request is specified,
as well as no specific set of products, as we assume each
request to be unique. In the FDP, each request must be
dropped off within a maximum delay ρmax

r , as [15], [5].
The drop-off delay ρr is the difference between the actual
drop-off time and the drop-off time if the request was served
immediately via the shortest path from the nearest store.
Additionally, we consider fixed times tload to load a request
to a vehicle and tdeliver to deliver it to the customer. The
assumed capabilities for vehicles are as follows: Each vehicle
has a maximum capacity of κ and drives along the graph,
specifying the needed travelling times.
The objective of the fleet sizing problem is to determine the
number of vehicles required and their corresponding opera-
tional plans ω. An operational plan consists of an ordered set
of locations l ∈ V , where each location is assigned one of the
following activities: picking up a request, delivering a request
to a customer, or waiting for further instructions. The vehicle
follows the shortest path between locations. Consequently,
following an operational plan results in the delivery of a

1Another variation of this approach, generalizing to heterogeneous vehi-
cles, was proposed in [16].



set of requests denoted as oω . Accordingly, the total driving
time of a single trajectory ω is ϕ(ω), and the resulting total
delay if following this plan is ρ(ω). The starting time of
an operational plan is tstartω , and tendω is the ending time,
respectively, starting and ending location are lstartω and lendω .
To execute one operational plan ω, one vehicle is needed.
As such, a set of operational plans Ω can be a solution
to the fleet sizing problem if it satisfies certain conditions.
First, to qualify as a solution, together all operational plans
ω ∈ Ω must successfully deliver all requests. Thereby, each
request must be picked up from a store and delivered to
the customer before its specified maximum drop-off time.
Second, the capacity of each vehicle must not exceed the
maximum capacity constraint.
The evaluation of a solution Ω is based on the cost function
J(Ω). The cost function incorporates various factors, includ-
ing the number of vehicles used (representing fixed capital
costs), travel time (representing variable capital costs), and
delay costs (representing the quality of service experienced
by customers). For each vehicle or executed trajectory in Ω,
a fixed capital cost of Mfix is incurred. Additionally, the
costs of travel time and delay are weighted convexly using
a cost weight parameter α ∈ [0, 1]. This results in the cost
function as follows:

J(Ω) = Mfix · |Ω|+
∑
ω∈Ω

[(1− α) · ρ(ω) + α · ϕ(ω)] (1)

Let ℧ be the set that includes all feasible sets of operational
plans Ω, representing solutions to the FDP. Given the set ℧,
the fleet sizing problem can be formulated as follows:

min
Ω∈℧

J(Ω) (2)

Note that constraints are implicit in the set ℧.

IV. METHOD

To determine the solution Ωsol, our proposed approach
consists of two key steps: pooling and chaining.
Pooling involves the computation of multiple groups of
requests that can be efficiently combined in one trip and
the route to be followed. This results in small operational
plans. For clarity, these small operational plans are not yet
the final operational plans spanning the entire operation but
rather smaller components, which we describe in detail in
Sec. IV-A. Thus, we refer to these small operational plans
as tasks T . The notation for tasks is identical to operational
plans. For example, a task’s starting and ending times are
tstartT and tendT . Similarly, the starting and ending locations
are lstartT and lendT . Intuitively, tasks represent individual units
of work that can be performed efficiently by one vehicle.
Chaining combines these small operational plans, or tasks T ,
to create final operational plans ω that cover the entire op-
eration. This is done by assembling the tasks in a sequential
manner, considering dependencies and optimizing the overall
delivery process, which we explain in detail in Sec. IV-B.
An overview of the approach is provided in Figure 1.

A. Pooling

The pooling step of our method is based on a dynamic
routing approach for on-demand last-mile logistics from
multiple stores [5], [19]. However, we adapt this approach to
eliminate the requirement of a fixed fleet of vehicles as input,
following the methodology proposed in [20]. By building
upon the principles of [5], we can ensure that our method
generates high-quality routes that satisfy the constraints of
the FDP. To address the dynamic nature of the problem, we
employ a rolling horizon approach by dividing the entire
operation into multiple snapshot problems.
For each snapshot problem, we first calculate a large set
of potential routes for the vehicles. We then select the
routes to be executed from this set. Routes represent vehicle-
specific operational plans, considering the vehicle’s current
state. These routes are designed to be feasible, adhering to
the vehicle’s capacity constraints and ensuring the timely
completion of all assigned requests. Routes overlap multiple
snapshot problems and are subject to change. For algorithmic
details on the approach to efficiently calculate the route set,
we refer to [5].
Each route is assigned a cost to execute it, following Equa-
tion 1. The set of vehicles to calculate routes for is not
fixed in this work but differs for each snapshot problem. In
each step, we consider the none idle vehicles of the previous
time step and introduce new potential vehicles. We assume
that one potential vehicle is available for each request at the
closest store to its goal location starting from the request’s
placement time tr.
The selection of routes to execute is performed through a
coordinated process using an assignment problem, which is
formulated and solved as an ILP. The ILP is a standard
formulation to assign routes to vehicles such that all users are
served2 and no vehicle is assigned to more than one route; its
explicit formulation can be found in [5]. If a new potential
vehicle is chosen by the assignment, it is instantiated into
the problem and follows the assigned route. Any potential
vehicles that are not assigned are disregarded.
Each vehicle follows its assigned route until the next snap-
shot, at which point the routes of all vehicles are updated and
thus can be prolonged. Once a vehicle completes its assigned
route and becomes idle, it is removed from the problem. The
full route that each vehicle executes, from its creation until it
is removed, constitutes a task T . All tasks T are summarized
in the set T which covers all the requests.

B. Chaining

The chaining step is employed to combine the tasks T
generated by the pooling step into operational plans ω
spanning the entire operation. The objective of chaining is
to optimally sequence tasks in a way that allows them to be
executed by a single vehicle.
In order for two tasks Ti and Tj to be executed consecutively
by a single vehicle, the vehicle must be able to relocate from

2Serving all individual requests is always possible due to the possibility
of creating new vehicles.



Fig. 1: Method Overview: Our method takes a set of requests as input. The first step, pooling, involves grouping the requests
into groups that can be efficiently delivered by one vehicle in a trip. These groups are referred to as tasks, which include the
corresponding routing optimization. The second step, chaining, focuses on sequencing the tasks to create operational plans,
with each plan requiring a single vehicle. To provide visual clarity, different colours are used to represent each vehicle at
each step of the process. Dashed lines represent vehicles driving in between tasks (chaining).

the end location of task Ti, denoted as lendTi
, to the start

location of the subsequent task Tj , denoted as lendTj
, and reach

it before its designated starting time tstartTj
. The travel time

required to drive from lendTi
to lstartTj

is represented as τi,j .3

Thus, two tasks Ti and Tj can be chained if the following
equation is satisfied: tendi + τi,j ≤ tstartj . All pairs of tasks
(i, j) that fulfil this equation are summarized in the set X . To
coordinate which pairs of tasks from the set X are actually
executed in sequence by one vehicle (chained), an ILP can
be formulated and solved [9]. The ILP minimises the overall
costs, Equation 3.4

min
∑
i,j∈X

xi,j ·
[
−Mfix + α · τi,j

]
(3)

Being subject to each task having maximally one preceding
and one subsequent task. Successfully chained tasks form a
single operational plan ω within the solution Ωsol. The size
of the solution |Ωsol| defines the number of required vehicles,
as each plan requires one.

V. DATASET

This case study is based on a dataset that describes the
shopping behaviour of walk-in customers in regular brick-
and-mortar supermarkets in Amsterdam, Netherlands. The
locations of 42 stores belonging to a single retail company in
the city center are known and considered as pick-up locations
S. Figure 2a displays a map of Amsterdam’s city center,
highlighting the locations of all stores in the dataset. The
dataset provides information on the number of transactions
per hour for each store, although the exact transaction times
are not available. This transaction data is available from 8
a.m. to 8 p.m. Figure 2b shows the used demand pattern
as the average number of transactions for all stores against
time. Most notably, clear peaks in demand during noon
and the evening are present. In this study, we simulate a
flash delivery operation by modifying the original data. One
crucial aspect that undergoes changes is the set of requests
R. We presume that people reside in close proximity to the
stores they frequent. Specifically, we assume that each person

3During relocation, the vehicle is empty.
4This is equivalent to the overall cost function in Equation 1, as the cost

to execute tasks can be excluded as it is constant.

(a) All store locations over a
map of Amsterdam.

(b) Average number of transac-
tions per store.

Fig. 2: Store distribution and demand data of the used data.

exclusively shops at their nearest store, thereby defining an
area As associated with each store s. This area comprises
all vertices l ∈ V for which store s is the closest one.
We iterate through all stores and time windows to construct
the individual requests r within the demand set R. For a
given store s and a specific time window k (one hour), the
provided data includes the number of transactions conducted
at that store. We assume that a constant percentage5 of
these transactions will shift from traditional brick-and-mortar
stores to the flash delivery service.
For each individual request r, we sample the goal location
lgoalr from the set of vertices within the corresponding area
As. We assume that customers are uniformly distributed
within this area. The request time tr is also uniformly
sampled from the corresponding time window k (one hour).

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experiments focus on Amsterdam’s city centre, repre-
sented by a graph of 2717 vertices and 5632 edges. However,
we reduce the set of stores S. This decision is based on
the retailer’s reasoning that some stores are too busy to
be suitable as pick-up locations. As such, we exclude the
busiest half, measured in total number of transactions, of all
stores from being pick-up locations. Below we also analyze
a scenario using all stores. The demand, as described above,
stays identical, as it is not affected by the strategic decisions
of which stores are used, assuming the same quality of
service.

5Due to confidentiality reasons, we can not report exact numbers here.



Fig. 3: The status of each vehicle throughout the day.

We assume a loading and service time of 1 minute for each
request (tload = tdeliver = 60[sec]). The maximum delay al-
lowed during pooling is set to 5 minutes (ρmax

r = 300[sec]).
A snapshot problem is solved every 100 seconds. Following
the logic that delays in on-demand delivery operations are
nearly neglectable as long as the request is delivered within
the promised time window, we set the cost weight in all
functions to α = 1, fully focusing on total driving time. In
the cost functions, we use a large value of Mfix = 2000[sec],
making the minimization of fleet size the first priority6.
Due to the nature of the data used to generate the demand, it
exhibits an inherent structure divided into one-hour intervals,
clearly seen in Figure 2b. First, we apply the proposed
method to each interval separately. Second, we repeat the
chaining step, chaining the obtained operational plans per
interval.

B. Results

For the entire day, and in our study scenario, a total of
459 vehicles are needed. Figure 3 illustrates the status of
each vehicle throughout the day. The number of working
vehicles (green) increases, i.e. the number of vehicles yet to
start (purple) decreases, reaching the highest fleet utilization
during the hour with the highest demand. The steps in the
graph are due to the hourly segmentation of the demand.
To further understand the results we analyze each hour in
more detail. The number of requests, the number of tasks
(the result of pooling) and the required fleet size per hour are
shown in Figure 4. As the number of initial requests increases
in one interval, more tasks are generated, leading to higher
fleet sizes. The difference between the number of requests
and tasks becomes more significant with higher demand,
indicating that it is easier to group and serve requests together
when there is a larger volume of demand.
During the peak hour (17:00-18:00), 5054 requests were
grouped into 2278 tasks. Each task serves an average of
2.22 requests and takes 445.7 seconds. To handle these tasks,
a fleet of 443 vehicles is required, which is slightly less
than for the entire day. Each vehicle serves 11.40 requests
on average, and an operational plan takes approximately 55
minutes and 33 seconds. This duration is close to spanning
the full hour, indicating effective utilization of the vehicles.
Total traffic by all vehicles shows the same correlation with
demand (Figure 5). It is observed that traffic originating from
the pooling step (pooling traffic) exceeds traffic originating

6Mfix larger than the maximal time for relocating, determined by the
environment, is sufficient to achieve this effect.

Fig. 4: The number of requests, the number of tasks (result
of pooling) and the required fleet size for each interval for
the entire day are shown.

Fig. 5: The total traffic and its breakdown into polling traffic
and chaining traffic for each interval throughout the day is
shown.

from the chaining step (chaining traffic). This difference
becomes more pronounced with higher demand. Generally,
with higher demand, the average chaining traffic per vehicle
decreases.
Figure 6a presents the average delay per request over the
course of the entire day. It differs by about 1 minute between
140 and 200 seconds over the day. About 50 seconds, half of
the time step of the pooling algorithm is due to the applied
rolling horizon approach.
Additionally, Figure 6b displays the delay distribution for all
requests between 17:00 and 18:00. Each request experiences
an average delay of 199 seconds. There is a noticeable
increase in the number of requests with higher delays ap-
proaching the maximum allowed delay of 300 seconds. 7

To conduct a comparative analysis and examine the key
parameters, the focus of the study is narrowed down to the
peak hour interval, from 17:00 to 18:00. This time period is
chosen due to its significance, as it represents the hour with
the highest number of transactions throughout the entire day.
To range in the performance of the proposed approach, we
compare it against three opposing approaches. First, ‘en-
couraged pooling”, we apply a strategy encouraging pooling
to decrease the number of tasks obtained. To do so, we

7Recall that delay was not considered as part of the cost function. We do
so as part of the sensitivity analysis below.

(a) Average delay of intervals. (b) Distribution peak interval.

Fig. 6: Two figures showing the average delay of all intervals
(a) and the delay distribution of the peak interval (b).



Fig. 7: Comparison of the proposed approach to three dif-
ferent strategies based on the main KPIs.

Fig. 8: Comparison of fleet size, traffic and average delay
for different values of allowed maximum delay.

add costs to a route if it uses a new potential vehicle.
This extra cost was set to equal 1000 seconds. Second,
“chaining only”, we exclude the pooling step and deliver
each request individually. Third, “fixed vehicles”, we use a
fixed number of vehicles, equivalent to the results of the
proposed approach, and route them as [5] (pooling step).
The comparative results are presented in Figure 7.
In the “encouraged pooling” and “chaining only” approaches,
the fleet sizes increase and higher total driving times com-
pared to the proposed approach are needed. The “chaining
only” approach has no delay since each request is immedi-
ately served with its own vehicle. Service rates are at the
enforced 100% for all three methods (Proposed approach,
“encouraged pooling” and “chaining only”).
In contrast, using a “fixed number of vehicles” does not
enforce the service rate but serves as many requests as
possible using the available vehicles. We fixed the fleet size
to 443, the same number as for the proposed approach. As a
result, around 62.5% of requests are served, requiring more
driving time and a lower average delay. The main reason
for this difference is that the vehicles are not rebalanced
as effectively as with the chaining step, which is done
in hindsight with full information over the full planning
horizon.
Lastly, we study the effect of the maximum allowed delay
ρmax
r , the number of stores to pick up goods and the cost

weight between delay and driving time. We vary the studied
variable exclusively and compare fleet size, traffic and delay.
Delay: We vary the maximal delay as ρmax = [4, 6, 8].
Results are shown in Figure 8. The higher the maximum
allowed delay, the lower are required fleet sizes, accompanied
by lower traffic, but at the price of higher values of average
delay. This is somehow expected. Most interestingly, are the
changes in the split between pooling traffic and chaining
traffic. Both decrease with higher maximum delay, but the
amount of change in chaining is more, as more requests get
served together, which then befits the fleet size.
Number of Stores: For the experiments, up to this point, the

Fig. 9: Comparison of fleet size, traffic and average delay
for different number of available stores.

Fig. 10: Comparison of fleet size, traffic and average delay
for different values of the cost weight α.

busier half of all stores have not been considered as pick-up
locations. Here, we compare the influence of the number of
used stores. We consider using 10 stores more and 10 stores
less, as well as using all stores of the retailer. Results are
visualized in Figure 9. All KPIs improve the more stores are
used. For fleet size and traffic the marginal gains are reduced
as more stores are used. This is, for example, the gains of
using one additional store when having 11 stores are larger
than when already using 41 stores. Changes in delay are
approximately constant.
Cost Weight for Pooling α: The relation between total
driving time and delay experienced by customers is captured
in the used cost functions. For all experiments so far, we did
not consider delay as a cost, here, we do so by varying alpha
in α = [0.9, 0.95]. Obtained results are illustrated in Figure
10. As a direct result average delay decreases, the lower α
the more. This comes at the cost of an increased fleet size.
Changes in traffic are minor.

VII. CONCLUSION

We presented a novel approach for fleet sizing for the flash
delivery problem. The comparison with alternative strategies
demonstrates the benefits of our approach, showing that
the integration of both pooling and chaining steps leads to
improved performance compared to using only one of these
strategies. Furthermore, by utilizing a real-world dataset, we
were able to gain valuable insights into the operation of flash
delivery services. We explored the effects of store selection,
maximum delay, and cost weighting on fleet size, traffic,
and delay. These findings provide practical knowledge for
designing and managing flash delivery systems in urban
environments. For future work, it is essential to reduce
assumptions and incorporate real-life features such as traffic
conditions.

ACKNOWLEDGEMENTS

This research was supported by Ahold Delhaize. All content
represents the opinion of the author(s), which is not necessar-
ily shared or endorsed by their respective employers and/or
sponsors.



REFERENCES

[1] Albert Heijn Nieuws. (2022) Albert heijn breidt samen-
werking met deliveroo en thuisbezorgd.nl uit. [Online].
Available: https://nieuws.ah.nl/albert-heijn-breidt-samenwerking-met-
deliveroo-en-thuisbezorgdnl-uit

[2] Cbinsights Research Briefs. (2021) uber acquires cornershop. [On-
line]. Available: https://www.cbinsights.com/research/uber-acquires-
cornershop/

[3] S. Technologies. (2023) Comapny website of starship technologies.
[Online]. Available: https://www.starship.xyz/

[4] M. Peters and H. Ernste, “Discovering a new phenomenon inside
a dutch urban context: ‘flash delivery’,” Master Thesis at Radboud
University, 2022.

[5] M. Kronmueller, A. Fielbaum, and J. Alonso-Mora, “Online flash
delivery from multiple depots,” Transportation Letters, vol. 0, no. 0,
pp. 1–17, 2023.

[6] A. Fielbaum, A. Tirachini, and J. Alonso-Mora, “Economies and
diseconomies of scale in on-demand ridepooling systems,” Economics
of Transportation, vol. 34, p. 100313, 2023.

[7] D. Fagnant and K. Kockelman, “Dynamic ride-sharing and fleet
sizing for a system of shared autonomous vehicles in austin, texas,”
Transportation, vol. 45, 01 2018.

[8] R. Shao and L. Chang, “A new maximum power point tracking method
for photovoltaic arrays using golden section search algorithm,” in 2008
Canadian Conference on Electrical and Computer Engineering, 2008,
pp. 000 619–000 622.

[9] M. Vazifeh, P. Santi, G. Resta, S. Strogatz, and C. Ratti, “Addressing
the minimum fleet problem in on-demand urban mobility,” Nature,
vol. 557, 05 2018.

[10] A. Wallar, J. Alonso-Mora, and D. Rus, “Optimizing vehicle dis-
tributions and fleet sizes for shared mobility-on-demand,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 3853–3859.

[11] S. Hao, X. Liu, L. Miao, W. K. V. Chan, and M. Qi, “Qualifying the
benefits of ride-sharing on reducing fleet size,” Journal of Physics:
Conference Series, vol. 1903, no. 1, p. 012019, apr 2021.

[12] C. Wang, Y. Song, Y. Wei, G. Fan, H. Jin, and F. Zhang, “Towards
minimum fleet for ridesharing-aware mobility-on-demand systems,” in
IEEE INFOCOM 2021 - IEEE Conference on Computer Communica-
tions, 2021, pp. 1–10.

[13] B. Qu, L. Mao, Z. Xu, J. Feng, and X. Wang, “How many vehicles do
we need? fleet sizing for shared autonomous vehicles with rideshar-
ing,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 9, pp. 14 594–14 607, 2022.

[14] M. Balac, S. Hörl, and K. W. Axhausen, “Fleet sizing for pooled
(automated) vehicle fleets,” Transportation Research Record, vol.
2674, no. 9, pp. 168–176, 2020.

[15] M. Kronmueller, A. Fielbaum, and J. Alonso-Mora, “On-demand
grocery delivery from multiple local stores with autonomous robots,”
in 2021 International Symposium on Multi-Robot and Multi-Agent
Systems (MRS), 2021, pp. 29–37.

[16] ——, “Routing of heterogeneous fleets for flash deliveries via vehicle
group assignment,” 2022 IEEE 25th International Conference on
Intelligent Transportation Systems (ITSC), pp. 2286–2291, 2022.

[17] L. Zhen, J. Wu, G. Laporte, and Z. Tan, “Heterogeneous instant deliv-
ery orders scheduling and routing problem,” Computers & Operations
Research, vol. 157, p. 106246, 2023.

[18] G. Xue and Z. Wang, “Order acceptance and scheduling in the instant
delivery system,” Computers & Industrial Engineering, vol. 182, p.
109395, 2023.

[19] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle as-
signment,” Proceedings of the National Academy of Sciences, vol. 114,
no. 3, pp. 462–467, 2017.

[20] M. Cap and J. Alonso-Mora, “Multi-objective analysis of ridesharing
in automated mobility-on-demand,” in Robotics: Science and Systems
XIV. Robotics: Science and Systems Foundation, 2018.


