
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ytrl20

Transportation Letters
The International Journal of Transportation Research

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ytrl20

Online flash delivery from multiple depots

Maximilian Kronmüller, Andres Fielbaum & Javier Alonso-Mora

To cite this article: Maximilian Kronmüller, Andres Fielbaum & Javier Alonso-Mora (18
Nov 2023): Online flash delivery from multiple depots, Transportation Letters, DOI:
10.1080/19427867.2023.2278859

To link to this article:  https://doi.org/10.1080/19427867.2023.2278859

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 18 Nov 2023.

Submit your article to this journal 

Article views: 698

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ytrl20
https://www.tandfonline.com/journals/ytrl20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19427867.2023.2278859
https://doi.org/10.1080/19427867.2023.2278859
https://www.tandfonline.com/action/authorSubmission?journalCode=ytrl20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ytrl20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/19427867.2023.2278859?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/19427867.2023.2278859?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/19427867.2023.2278859&domain=pdf&date_stamp=18 Nov 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/19427867.2023.2278859&domain=pdf&date_stamp=18 Nov 2023


Online flash delivery from multiple depots
Maximilian Kronmüller a, Andres Fielbaumb and Javier Alonso-Moraa

aAutonomous Multi-Robots Lab, Delft University of Technology, Delft, Netherlands; bTransportLab, School of Civil Engineering at the University of 
Sydney

ABSTRACT
We study routing for on-demand last-mile logistics with two crucial novel features: i) Multiple depots, 
optimizing where to pick-up every order, ii) Allowing vehicles to perform depot returns prior to being 
empty, thus adapting their routes to include new orders online. Both features result in shorter distances and 
more agile planning.We propose a scalable dynamic method to deliver orders as fast as possible. Following a 
rolling horizon approach, each time step the following is executed. First, define potential pick-up locations 
and identify which groups of orders can be transported together, with which vehicle and following which 
route. Then, decide which of these potential groups of orders will be executed and by which vehicle by 
solving an integer linear program. We simulate one day of service in Amsterdam that considers 10,000 
requests, compare results to several strategies and test different scenarios. Results underpin the advantages 
of the proposed method.
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Introduction

The possibility to order and have one’s goods delivered within the 
next minutes is appreciated by many customers. For groceries and 
products of daily need, such services are summarized under the 
term Flash Deliveries. Young companies offering such services 
established themselves in recent years. Examples such as Gorillas, 
Flink, Getir, or GoPuff promise to deliver groceries to customers’ 
homes in minutes. During the last months of 2021, in the 
Netherlands alone, consumers spent around 40 million euros per 
month on Flash Deliveries, a trend that is continuously rising 
(Kantar 2022). Even some supermarket chains are starting their 
first trials of Flash Deliveries. For instance, a recent collaboration in 
the Netherlands between the supermarket chain Albert Heijn and 
the food delivery companies Thuisbezergd and Deliveroo aims to 
provide faster delivery of groceries (Albert Heijn Nieuws 2022). 
Similarly, in several countries in South and North America, the 
delivery company Cornershop has recently merged with Uber with 
a similar purpose (Cbinsights Research Briefs 2021).1

This work tackles the real-world problem of Flash Deliveries, 
especially planning and routing algorithms that are necessary to 
compute vehicle plans during operation. This problem has not been 
formalized yet, and methods to solve it are also unknown, so this 
paper is devoted to filling that research gap.

The Flash Delivery Problem (FDP) can be described as follows: 
Orders are placed continuously throughout the day and need to be 
delivered within a short time window after they get known. The 
goods need to be picked up at depots and delivered to customers’ 
locations, leveraging a fleet of vehicles. For each vehicle, a trip needs 
to be found such that a given objective function is optimized, for 
example, maximizing the number of delivered orders or minimiz-
ing customers’ waiting time. This paper formally defines the Flash 
Delivery Problem and proposes a method to find high-quality 
solutions. As such, the FDP forms a variant of the Same-Day 
Delivery Problem (SDDP). Moreover, most on-demand last-mile 

deliveries, such as SDDP, are operated using a single depot and with 
vehicles’ trips planned and fixed when leaving the depot. This paper 
relaxes these two assumptions, proposing methods to choose the 
best depot and to update the vehicles’ trips online. In all, the here 
studied problem combines several NP-hard problems, including the 
capacitated vehicle routing problem (Bernardo, Du, and Pannek  
2021; Ralphs et al. 2003) and the multi-depot vehicle routing pro-
blem (Montoya-Torres et al. 2015). Moreover, it requires dynamic 
optimization, and can easily scale to large problem sizes.

To illustrate the concept that considering multiple depots and 
en-rote adaptions can lead to shorter trips that deliver more orders 
quicker, we give an example. The example is illustrated in Figure 1. 
Orders 1 and 2 are known and loaded into the vehicle. While the 
vehicle is on its tour a new order (order 3) occurs. If using depot 
A only and not allowing for pre-empty depot returns, the vehicle 
serves the two loaded orders, following the first part of the solid 
tour, shown in yellow. Subsequently, it needs to return to depot 
A and then drive to the new customer individually, the second part 
of the solid tour, shown in orange. If a second depot was available 
(depot B) and the possibility of depot returns prior to being empty 
was allowed, the original tour can be altered online. The vehicle can 
load the new order at depot B after serving order 1, and can then 
service order 3 before serving customer 2 (dashed green tour). By 
doing so, the long way back to the depot (orange part) can be saved, 
and shorter trips are possible. Further, customer 3 is served more 
quickly at the price of delaying order 2 slightly. As such, both 
operators and users can benefit.

The FDP is dynamic and, as such evolves with time; new orders 
arrive throughout the day. The operation needs to be planned and 
executed simultaneously. We propose an approach, which is given 
a specific problem state at a specific time t, it takes a decision which 
is followed till the time at which the next decision is taken. To solve 
a single state, we first select potential pick-up locations from the set 
of depots for each order individually. Second, potential feasible trips 
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are calculated, i.e. sequences to pick up goods and deliver orders. To 
assign these trips to vehicles, an integer-linear program is solved. As 
a result, each vehicle has a constantly updated trip to follow, i.e. 
which orders to pick up and where, as well as in which sequence to 
deliver them.

The main contributions of this paper are threefold:

● We formally define the Flash Delivery Problem by modeling it 
as a Markov Decision Process and propose a method to solve it.

● The proposed method can deal with multiple depots at which 
orders can be picked up. The method decides endogenously 
which depot to use for each order. To the best of our knowl-
edge, this is the first work that considers multiple depots per 
order simultaneously for a dynamic vehicle routing problem 
without decomposing it into sub-problems, each having 
a single depot. Further, the approach allows vehicles to visit 
a depot to load additional orders before distributing their 
already loaded ones if beneficial.

● Finally, our method can scale up to scenarios with thousands of 
orders and tens of vehicles. It finds good quality solutions online.

We evaluate the performance of our proposed solution approach by 
comparing the results to a scenario applying a greedy assignment 
strategy. Further, we quantify the effects of not allowing the exten-
sions of the second contribution, namely: i) assuming that each order 
is picked up at its closest depot and ii) prohibiting pre-empty depot 
returns. A comprehensive sensitivity study analyzes the effects of the 
number of considered stores, the total number of stores, the effect of 
allowing to reinsert orders into the problem to enable longer delivery 
times, the number of used vehicles and the used cost function.

Related work

The FDP is a variant of the SDDP. The SDDP transposes into the 
FDP if each order needs to be delivered within minutes after being 
placed instead of until the end of the day. The FDP is 
a deterministic and dynamic problem following the definition of 
(Bernardo, Du, and Matias 2023). To the best of our knowledge, 
there are no works tackling routing for the FDP up to now.2 For 
clarity, this work is an extension to the conference paper 
(Kronmueller, Fielbaum, and Alonso-Mora 2021) and presents 
a novel, more rigorous formulation of the FDP, additional explana-
tion, clarification and experiments. As such, in Section 2.1, we 
discuss the most relevant SDDP works. In Section 2.2, we have 
a look at other related works.

Same-day delivery problem

Both the FDP and the SDDP evolve dynamically over one 
operational day and must incorporate newly requested orders 
while executing the trips. The main difference is the deadline in 
which orders need to be delivered to the customers; in the SDDP 
the deadline is the end of the day, which can be hours away; in 
contrast, flash deliveries aim to deliver each order in minutes after 
receiving them.

This related work section focuses on routing optimizations for 
the SDDP (Voccia, Campbell, and Thomas 2017), (Ulmer, Thomas, 
and Mattfeld 2019) and (Côté et al. 2021), routing refers to actively 
deciding on the routes of vehicles. This excludes works on order 
assignment or the sole dispatching of vehicles (Azi, Gendreau, and 
Potvin 2012; Ghiani et al. 2009; Klapp, Erera, and Toriello 2016,  
2018, 2020; Ulmer and Streng 2019).

(Voccia, Campbell, and Thomas 2017) use a multi-scenario sam-
pling approach, first introduced by (Bent and Van Hentenryck 2004). 
They are leveraging waiting strategies and test on scenarios with up to 
800 orders and up to 13 vehicles. Similar to our work, [(Ulmer, 
Thomas, and Mattfeld 2019)] allows for preemptive depot returns, 
i.e. depot returns before finishing the currently planned tour based on 
expectations of future events. The authors proposed a method that 
builds on approximate dynamic programming combined with an 
insertion routing heuristic. The method allows vehicles to return to 
depots before finishing their current trips. The method by (Ulmer, 
Thomas, and Mattfeld 2019) can plan for a single vehicle. [(Côté et al.  
2021)] proposes different large neighborhood search-based 
approaches for the SDDP problem ranging from a re-optimization 
heuristic to a branch-and-regret heuristic. They rely on a multi- 
scenario approach to anticipate future events; and their approach is 
capable of performing preemptive depot returns as well. Algorithms 
were tested based on the same scenarios as (Voccia, Campbell, and 
Thomas 2017). Scenarios of up to 10 vehicles were analyzed. A SDDP 
with micro-hubs was tackled by (Ackva and Ulmer 2022) using 
a two-stage stochastic programming approach. Also, (Zhen et al.  
2023) studies general instant delivery services with deadlines of up 
to hours. They focus on heterogeneous types of orders and apply 
a column generation approach. Order acceptance and scheduling for 
the instant delivery problem, here a deadline of 45 minutes was used, 
was looked at by (Xue and Wang 2023). The problem is divided into 
a series of static problems. Orders are inserted online into trajectories 
based on a similarity measure.

Our work adds to the introduced works by scaling to larger 
problem sizes and allowing us to consider picking up orders at 
multiple depots. Further, our approach differs because pre-empty 
depot returns do not use anticipation of the unknown future but 
only use currently available information. In contrast, the proposed 
approach works myopically.

Other related problems

Additional to the SDDP, other problems are related to the FDP. The 
meal delivery routing problem (Reyes et al. 2018; Yildiz and 
Savelsbergh 2019; Ulmer et al. 2021) shares the same nature of 
quick deliveries but has longer lead times and a fixed pick-up 
location for each order. Similarly, multi-robot task assignment 
problems (Khamis, Hussein, and Elmogy 2015), but often differing 
in their focus. They become specifically challenging if incorporating 
heterogeneous and unreliable robots, each equipped with different 
capabilities needed to serve different kinds of tasks.

Additionally, vehicle routing to transport people, the dial-a-ride 
problem (Alonso-Mora et al. 2017; Cordeau and Laporte 2007) is 
related, especially, pooled dial-a-ride problems. The FDP mainly 

Figure 1. An exemplary tour of one vehicle serving two known orders (1 & 2) and 
one newly requested order (3) that gets placed after the vehicle has already left 
depot A. The solid yellow and orange arrows show the trip of the vehicle when 
there is only one depot and no pre-empty depot returns. The dashed green arrows 
show the trip when using multiple depots (A & B) and allowing for pre-empty depot 
returns.
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differs in two aspects. First, customers do not mind where their 
goods are picked up from. As such, this is up to the approach to 
decide unless there is a single option. Some ridesharing works also 
try to loosen fixed pick-up points, as in (Fielbaum, Bai, and Alonso- 
Mora 2021), who consider the option that passengers walk short 
distances. Second, the urgency of picking up an order fast is lower 
for delivering goods than for transporting people, as humans dislike 
waiting times. An overview of ridesharing methods can be found in 
(Agatz et al. 2012; Mourad, Puchinger, and Chu 2019; Narayanan, 
Chaniotakis, and Antoniou 2020).

The approach proposed in the work is based upon a routing 
method for a ridesharing system (Alonso-Mora et al. 2017) that 
transports people in metropolitan areas. This method is called 
Vehicle-Group Assignment Method (VGA). VGA splits the proce-
dure into two steps: First, it generates potential groups of orders 
that each vehicle can serve, and second, an optimal assignment of 
these potential groups to individual vehicles is computed. With 
realistic enough computation time, the method can solve large- 
scale real-world instances, up to thousands of vehicles, in an any- 
time optimal manner.

In regard to considering multiple depots for dynamic problems, 
this work is connected to the dynamic multi-depot vehicle routing 
problem (DMDVRP). Only a few works tackled this problem. It has 
been tackled by decomposing the problem into multiple single- 
depot dynamic vehicle routing problems (DVRP), where each 
order is assigned to one fixed depot, and each sub-problem is solved 
separately (Yu et al. 2013; Xu, Pu, and Duan 2018). In contrast, we 
include the decision of which depot should be used within the 
routing decision itself, and thus, this paper is the first, up to our 
knowledge, to consider multiple depots simultaneously for a DVRP.

Problem formulation

This section presents our mathematical model of the FDP. Because 
the problem is dynamic, we model it as a Markov Decision Process 
(MDP). In the FDP, a vehicle fleet must pick up orders at one of the 
multiple depots and deliver them to the customer’s goal locations. 
Orders are placed dynamically over the course of the operation. 
Time is denoted as t. The operation starts at t ¼ Tstart and ends 
at t ¼ Tend.

The fleet V consists of M identical vehicles. Vehicles v are 
ground-bound, have a maximum capacity of C, and are assumed 
to drive with constant speed μ along the roads of a street network.

This street network, the operational environment, is described 
using a weighted directed graph G ¼ ðN;AÞ where N defines a set 
of nodes and A defines a set of weighted arcs. Each node represents 
a potential delivery location. The arcs’ weights represent the travel-
ing times between two connected nodes.3 We denote the shortest 
travel time between any two locations n1; n2 2 N by τn1;n2 , which is 
calculated as the sum of all weights of traversed arcs following the 
shortest-path. A depot or store � 2 N is a specific node where goods 
can be picked up. There are H depots in total, which are summar-
ized in the set of depots Ξ � N. We assume that every depot has all 
goods that customers can order in stock, meaning every order can 
be picked up at any depot.4

The demand set is denoted by O and consists of all individual 
orders placed by customers. A total of U ¼ jOj orders are placed. 
Each order o ¼ ðto; goÞ 2 O is revealed at time to and has to be 
delivered to its destination go 2 N. We assume 
to 2 ½Tstart;Tend � δT �, where δT is a constant time span before the 
end of the operation, in which no more orders are placed. For 
simplicity, we assume all orders are the same size,5 set to one. 
This assumption can easily be extended to variable order sizes. 

Note that an order itself does not specify a depot to use (pick-up 
location) po 2 Ξ.6 With time, the status of an order evolves. As such, 
at time t, the demand set O can be split into subsets depending on 
the status of each order o 2 O: The set LOt consists of all orders 
o 2 O that are currently loaded to any vehicle v 2 V. The set DOt 
consists of all orders o 2 O that were delivered to their destinations 
go before t. The set JOt consists of all ignored orders that can not 
be delivered within the problem’s constraints at time t. The set POt 
consists of all orders o 2 O that are already known (i.e. to � t) but 
have not been picked-up, delivered or ignored yet. For complete-
ness, UOt is the set of all unknown orders, consisting of all orders 
o 2 O such that to > t. The subsets are defined such that each order 
only belongs to one subset at time t, thus they are disjoint, and fulfill 
O ¼ UOt [ POt [ LOt [ DOt [ JOt. At the beginning of the day 
(t ¼ Tstart), all orders are unknown, i.e. UOTstart ¼ O. At the end of 
the day (t ¼ Tend), all orders are either delivered or ignored, i.e. 
DOTend [ IOTend ¼ O and UOTend ¼ POTend ¼ LOTend ¼ ;.

Major point of distinction of the SDDP and the FDP is the latest 
point when an order must be delivered before being considered 
failed. We assign each order a maximal drop-off time 
tdrop;o;max ¼ tideal;o þ δdelay, where δdelay is the maximally allowed 
delay per order, and is predefined by the operator to ensure 
a desired service level. For the FDP, δdelay is in the order of minutes. 
Each order is allowed to have a maximum delay of δdelay otherwise, 
the order is ignored θo � δdelay "o 2 OnJO. Hereby, θo is the 
actual delay of order o. It is calculated as the difference between the 
ideal and the actual delivery time, θo ¼ tdrop;o � tideal;o � 0. The ear-
liest time an order can be delivered is described by tideal;o. To do so, an 
idle vehicle needs to be located at the closest depot to the order’s 
destination �best;o, and start serving the customer immediately with-
out any detours, resulting in tideal;o ¼ to þ δload þ τ�best;o;go þ δservice. 
Note that we assume that vehicles need some constant time to load or 
deliver a single order, denoted by δload and δservice, during which they 
are parking. Last, the times at which an order o is picked up and 
dropped off are denoted by tpick;o and tdrop;o, respectively. A summary 
of all involved points in time for one order is illustrated in Figure 2.

Following (Ulmer et al. 2020) on modeling MDPs for dynamic 
vehicle routing problems, we define decision points, the problem 
state, a decision, a transition between states, a reward and an 
objective. Further, an initial state at t ¼ Tstart needs to be set. 
Generally, given a state at a decision point, a decision is taken 
based on the reward, and the problem transitions to the next state 
at the next decision point.

The set of decision points is denoted as ψ, which can be 
determined during operation or beforehand. Individual decisions 
and corresponding states are enumerated by k. The time at decision 
point k is tk and the problem is characterized by the state Sk.

The state Sk contains all information needed to fully characterize 
the problem at tk and make decisions. In the FDP, the state Sk is 
fully characterized by the time itself tk, the vehicle’s fleet state, 
denoted as Vk, and the set of orders to be delivered. Thereby, the 
fleet’s state Vk are the states of all individual vehicles v 2 V at tk. At 
each time t, a single vehicle v 2 V is fully described by its current 
location lv;t , and the orders it has loaded (picked up and not yet 
dropped off), denoted as the set LOv;t . These definitions allow us to 
describe the state Sk formally as 

Sk ¼ ðtk;Vk;POkÞ:

For the initial problem state S0, with k ¼ 0, at time t0 ¼ Tstart , we 
assume that all vehicles v 2 V are equally distributed over all depots 
� 2 Ξ and are empty LOv;Tstart ¼ ; "v 2 V.

The decision/action ak at tk is to assign each vehicle a plan, which it 
follows till the next decision point at tkþ1. For clarity, we refer to the 
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plans as trips. A trip v of a vehicle v is defined as an ordered set of 
locations n 2 N, each assigned one of the following activities. At each 
location, the vehicle either picks up an order, delivers an order to 
a customer or waits for further instructions. Between locations, the 
vehicle follows the shortest path. As such, a trip delivers a set of orders 
which, for simplicity, are denoted as oT . Note that a trip can be longer 
than the time span between subsequent decision points, and a previous 
trip can be updated, followed further or canceled entirely. A decision in 
the FDP is to decide on a trip Tv for each vehicle v, which it will follow 
until the next decision point tkþ1. The number of orders considered in 
the decision ak is joak j. Further, each vehicle trip Tv needs to obey the 
following constraints to be feasible. The vehicle’s maximum capacity C 
needs to be respected, LOv;t � C "v 2 V; t 2 ½0;Tend�. Second the 
orders, which will be delivered through the trip oTv , need to be 
delivered before their respective deadline at tdrop;o;max.

In contrast to (Ulmer et al. 2020), we do not model a reward 
to maximize but equivalently a cost to minimize. The cost of 
a decision a is the sum of costs to execute the trips of all vehicles 
plus extra costs for the orders that are not considered in any trip. 
First, we formulate a general cost function that considers the 
operator’s and customers’ costs. The customer’s cost is based on 
the orders. The cost of order o is defined as its delay θo, so that it 
measures the quality of service. Thus, the faster an order is 
delivered, the better. The operator’s costs are defined as the 
traveling time of the vehicle τv to serve all orders assigned to it. 
The two costs are combined convexly via the cost weight β. Last, 
we add a fixed cost α for each order o that is in the set POk, but 
is not considered in the decision a. The penalty α can be inter-
preted as a potential cost the operator has to cover if a third party 

is hired to deliver the respective order. Note that these orders are 
not necessarily ignored, as they might be included in later deci-
sions. As such the costs for a decision ak at tk are calculated 
following Equation 1, 

Jðak; tkÞ ¼ ð1 � βÞ �
X

oTv "Tv2ak

θo þ β �
X

Tv2ak

τTv þ α � ðjPOkj � joak jÞ

2

4

3

5

(1) 

In this work, we set α to be considerably larger than the sum of the 
other two cost terms, meaning that the system first aims at max-
imizing the number of served orders, and then to minimize the 
combination of operators’ cost and customers’ cost.

The transition from a current state Sk to a future state Skþ1 can 
be split into two. On one side, a deterministic part, which consists of 
two aspects. First, the transition of the vehicle fleet’s status Vt . This 
transition is known and only determined by the made decision ak. 
Second, following the trips, some orders get loaded or are consid-
ered ignored, thus are not in the set PO anymore. On the other 
side, PO changes as customers place new orders. This transition is 
unknown exogenous information. We assume to have no knowl-
edge about these future orders and also do not include any predic-
tions about them. The orders are fully known once placed, and we 
do not consider any demand uncertainties such as (Bernardo, Du, 
and Pannek 2021). Figure 3 depicts a schematic visualisation of the 
transition between subsequent states.

We formulate the objective of the FDP to minimize overall costs 
at the end of the operation. The overall objective function at 
t ¼ Tend is represented by Equation 2, 

Figure 2. Visualization of the different times and time spans for one order.

Figure 3. Visualization of the transition between two consecutive states. The transition of the vehicle fleet is known. In contrast, the transition of the open demand is partly 
unknown due to customers placing new orders.
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J Tend ¼ ð1 � βÞ �
X

o2DOTend

θo þ β �
X

v2V
τv þ

X

o2JOTend

α

2

4

3

5 (2) 

Two details worth highlighting. First, the sum of individual rewards 
of all decisions and the overall objective at the end of the day are not 
identical. This is because trips of vehicles Tv can span greater times 
than Δt and that they are subject to change. Further, not considered 
orders in a decision are not identical to the finally ignored ones. 
Second, the method we propose in Section 4 does not depend on 
this specific cost function (and reward); in other words, a different 
cost function could be used, and the proposed method still applies.

Method

This section gives a short overview of the proposed method and 
subsequently explains each method’s component in detail.

Method overview

The set of decision points ψ is constructed by dividing the full operation 
into steps. We do so by a fixed step size of Δt. This results in 
K ¼ Tend=Δt decisions from start to end of the operation. A fixed time 
step Δt means that our approach is ‘batch-based,’ in which a number of 
requests are accumulated before deciding how to assign, as opposed to 
‘event-based’ approaches, where each request is assigned as soon as it 
appears. The extra information allows to make better decisions, as has 
already been acknowledged by the industry (Uber 2022).

Our approach is myopic, i.e. it does not explicitly consider future 
states. We regard this assumption as reasonable (not optimal), as 
Δt, the time between two consecutive decisions, is rather short (100  
seconds in our experiments) and trips T span longer times. Thus, 
new information is included to the problem fast and previous 
solutions are updated frequently. Further, myopic approaches are 
usual in the scientific literature, although anticipatory techniques 
can be used to improve the solutions. For a discussion on this topic, 
see (Bent and Van Hentenryck 2004; Fielbaum, Kronmüller, and 
Alonso-Mora 2021; Hyland et al. 2020; Ulmer et al. 2019).

To take a decision ak given a state Sk we propose a method 
divided into four steps: First, potential pick-up locations for each 
order are found. Second, orders with associated pick-up locations 
are grouped into potential trips, taking the current location of each 
vehicle into account. With enough computational time, we calcu-
late all possible trips for each vehicle. Third, we decide which of 
these potential trips are being executed. Last, vehicles follow their 
assigned trips as time is propagated forward until the next decision 
is taken. These steps are explained in the next sections. An overview 
of the approach is depicted in Figure 4.

Finding pick-up locations

Each individual order o 2 O needs to be assigned to a specific 
pick-up location po 2 Ξ. A depot � 2 Ξ is a feasible option for 
an order o if a vehicle can pick up the goods at � and delivery 
them in time. Each order might have more than one feasible 
depot. To select one of these options, we first define the term 
candidate c of an order o 2 O as follows.

Definition: A candidate c is a tuple containing an order oc 2 O

and an associated pick-up location pc 2 Ξ. Thus, a candidate is 
described as c ¼ ðoc; pcÞ.

A candidate c is unique, but one order o 2 O can have multiple 
candidates, each having a different pick-up location pc 2 Ξ. J Co 
denotes the set of candidates that belong to order o. The set of all 
candidates is denoted by C. Ck is the set of candidates at time tk 
corresponding to all placed orders o 2 POk.

We introduce a tuneable heuristic to select a subset of pick-up 
locations. We do so to control the number of candidates per order 
and, thus, the number of potential trips for each vehicle, which is 
directly correlated to the required computational effort. For each 
order, we consider the x depots closest to the order’s destination in 
terms of travel time. The parameter x can be tuned. This results in 
maximally x candidates per placed order. If x ¼ H, all feasible depots 
are considered, and if x ¼ 1, only the closest depot is considered for 
each order. For x ¼ 1, the approach resembles a decomposition of 
the full problem into multiple single-depot problems. In decomposi-
tion approaches, vehicles are fixed to one depot, which is more 
restrictive than our approach even if we use x ¼ 1.

Trip generation

In the trip generation step at tk we calculate the set of feasible trips 
T k. This set describes potential trips that vehicles can follow. Recall, 
we define a trip Tv of a vehicle v as an ordered set of locations 
n 2 N, each assigned one of the following activities. At each loca-
tion, the vehicle either picks up an order, delivers an order to 
a customer or waits for further instructions. Between locations, 
the vehicle follows the shortest path. As such, a trip delivers a set 
of orders which, for simplicity, are denoted as oT . In the same 
fashion, a trip delivers candidates which, equivalently, are denoted 
as cT .

The trip generation process is done iteratively, it starts by calcu-
lating small trips. We do so to leverage the idea that a trip can only 
be feasible if all its sub-parts are feasible as well. A trip’s size l, 
measured as the number of considered candidates, is thereby step- 

Figure 4. Schematic overview of our solution approach. Step a assigns several potential pick-up locations to each order. During step B, individual candidates c 
(combinations of orders and specific pick-up locations) are combined to feasible trips. In step C, trips to be executed and corresponding vehicles are selected. Within 
step D, we propagate time and vehicles follow their assigned trips.
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wise increased starting at a size of one until a maximum size η is 
reached. The operator sets η. Additionally, huge trips are prevented 
as each order has a latest drop-off time tdrop;o;max. The result of this 
step is a set of potential trips for each vehicle.

The algorithm to calculate the set of all feasible trips T k at time tk is 
shown in Algorithm 1. In Algorithm 1 we use four functions: 
CandidateVehicleðÞ, TwoCandidatesðÞ, FeasibleTripðÞ and 
BestTripSequenceðÞ, each explained in detail in the following:

● The binary logic function Candidate Vehicle(v; c) is valid if 
vehicle v can feasibly serve candidate c.

● The binary logic function Two Candidates(ci; cj) checks whether 
the two candidates ci and cj are combinable, i.e. if they can both 
be served by a hypothetical vehicle located at the corresponding 
depot satisfying all the constraints. As multiple candidates per 
order exist, we add a constraint to the existing time and capacity 
constraints: For two candidates to be combinable into one trip, 
we require them to share their pick-up location.

● The binary logic function Feasible Trip(v;T) checks whether 
all orders of a trip T can be feasibly served by the vehicle v.

● If a trip T is feasible, we determine the sequence in which to deliver 
all its candidates using the function Best Trip Sequence(T).

The cost of visiting a sequence of locations in trip T by vehicle v is 
given by γT;v, which is derived from Equation 2, and calculates as 
follows: 

γT;v :¼ ð1 � βÞ �
X

oT

θo þ β � τT; (3) 

where τT represents the total travel time to complete trip T. For 
vehicles that already contain load, the sequence includes those 
loaded orders. The sequence in which the prior loaded and new 
orders are served is not fixed. Herein the possibility of pre-empty 
depot returns occurs. We only keep the trip that minimizes the 
costs (Equation 3) for a specific vehicle and a set of candidates. 
Taking the minimal cost trip is included in the subsequent notation 
of a trip T. Calculations for one vehicle are stopped if a predefined 
time, ρmax, has passed. In this case, the trips generated up to this 
point are considered.

Assignment of trips to vehicles

After calculating the set of potential feasible trips T k in the previous 
step, we need to decide which of them should be carried out. We 
call this step the Assignment of Trips to Vehicles. The assignment is 
formulated as an integer linear program (ILP). The ILP is presented 
in Equations 4-8. 

argminχ
X

T;r2PT V

ðγT;v � γloaded;vÞPT ;v þ
X

o2f1;...;jPOt jg

αχo (4) 
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X

T2J T
v

PT ;v � 1 "v 2 V (5) 

X

c2J Co

X

T2J T
co

X

v2J VT

PT ;v þ χo ¼ 1 "o 2 POt (6) 

χo 2 0; 1f g (7) 

PT ;v 2 0; 1f g (8) 

Thereby, PT V denotes the set of all feasible trip vehicle combina-
tions, and PT ;v is the corresponding binary variable, taking the 
value 1 if the combination is executed. Further, we define the 
following sets: J T

v , the set of trips that can be serviced by a fixed 
vehicle v 2 V; J T

c , the set of trips that contain candidate c; J VT , the 
set of vehicles that can service trip T; J Co , the set of candidates that 
belong to order o. Further, χo is a binary variable, taking the value of 
one if the corresponding order is ignored, and X is a set of all 
variables X ¼ fPT ;v; χo; "PT V and "o 2 Og.

Equation 4 describes the objective function. Note that the con-
sidered costs are relative. From the costs of a vehicle’s trip γT;v (see 
Equation 3), the costs for the considered vehicle to serve its already 
loaded orders are subtracted, γloaded;v. Thus, we only account for 
changes in the vehicle’s trip. If a vehicle’s trip is not changed by not 
assigning any new orders, the assignment poses no costs. 
Equation 5 ensures that each vehicle is at most assigned to one 
trip. Equation 6 ensures that each order is assigned to a single 
vehicle or is rejected in this decision and the penalty α is charged. 
Furthermore, it ensures that no more than one candidate belonging 
to the same order is chosen. Equations 7-8 ensure that the corre-
sponding variables are binary. χo takes the value one if its associated 
order o 2 O can not be served by any vehicle or is ignored. 
Equation 8 defines PT ;v as binary. As a result, each vehicle is 
assigned to a new trip or does not receive any new orders. If 
a vehicle receives no new orders, it will follow its current trip of 
delivering the currently loaded orders or be considered idle if it has 
none.

To fasten the time needed to solve the above-presented ILP, we 
initialize it by a greedy solution. The greedy solution is constructed 
by selecting the largest trip, measured by the number of served 
candidates l, first. If multiple trips serve the same amount of 
candidates, the trip with the lowest cost is selected. We remove all 
trips which include already assigned orders or vehicles. We iterate 
until there are either no more vehicles or no more orders to assign.

If a vehicle is considered idle after an assignment, we perform 
a rebalancing step. The corresponding vehicle’s trip sends it to the 
closest depot from its current location. We do so to enable the 
vehicle to pick up orders quickly in the following steps. 
Nevertheless, it may still be assigned otherwise in a future time 
step before reaching that depot.

Time-propagation

In this step, we propagate time and update all elements affected by 
it, until the next decision kþ 1 is triggered, tkþ1 ¼ tk þ Δt. Each 
vehicle follows its trip determined in the decision ak. As time is 
propagated, each order can be in one of the following five states: 
First, an order is picked up by a vehicle at a depot (o! LOkþ1). As 
soon as an order is picked up its vehicle allocated cannot be 
changed. Multiple candidates belonging to one order are available, 
but only one of them is selected, and so all other candidates of the 
order are removed. gets served, the other candidates belonging to 

this order are removed. Second, an order is delivered to its destina-
tion (o! DOkþ1). Third, an order is assigned to a trip, and the 
planned pick-up time is later than tkþ1, the time of the next deci-
sion. Thus, we consider the order as not picked up, yet. All not 
picked up orders, more precisely the associated candidates, are 
reinserted into the trip generation step for the next decision, thus 
allowing for reassignment (o! POkþ1).

Fourth, an order is assigned to no vehicle. This order (associated 
candidates) is reinserted into the trip generation step for the next 
decision (o! POkþ1), unless it is no longer feasible to serve it as 
explained in the next bullet point. Last, an order is ignored 
(o! JOkþ1), i.e. it is not feasible to deliver it without violating 
a constraint. All candidates belonging to this order are removed.

Note that an order o 2 O is ignored in the case it can’t be 
delivered before the latest drop-off time 
tdrop;o;max ¼ tideal;o þ δdelay. Hereby, tdrop;o;max is mainly influenced 
by the value of δdelay. The smaller δdelay is set, the harder it is to 
combine multiple candidates to be served by one vehicle. On the 
other hand, if δdelay is set too large, the number of possible combi-
nations becomes vast, which can hinder solving the problem in the 
first place due to increased combinatorial size. A good balance has 
to be found by the system operator. We distinguish between 
δdelay;real, defined by the service level and δdelay;heuristic, the maximum 
delay at which the method performs well. In case that 
δdelay;heuristic < δdelay;real, the former should be used. To adjust to 
δdelay;real we allow a candidate to be reinserted into the problem 
after it has violated δdelay;heuristic, but not δdelay;real. The candidate 
gets reinserted with a new request time of tk, the current time. Each 
candidate can be ignored up to a limit of ζ times, which is 
defined as: 

ζ ¼ ðδdelay;real � ðδdelay;real mod δdelay;heuristicÞÞ=δdelay;heuristic: (9) 

When a candidate gets ignored ζ times, it is removed from the 
problem. Note that for feasibility calculations, the new request time 
has to be used. Nevertheless, the original request time is used to 
calculate the users’ costs of a candidate on a trip.

Complexity and Optimality Analysis

Complexity
Our approach divides the full-day problem (Section 3) into multiple 
sub-problems at specific times tk. Each sub-problem deals with it’s 
associated state Sk. The trip generation step (Section 4.3) is the most 
complex and thus the bottleneck of the proposed approach. The ILP 
(Section 4.4) can become large but stays solvable in a reasonable 
time by state-of-the-art solvers. Thus we analyze the trip generation 
step in more detail.

Let us do a worst-case scenario analysis, where all the orders are 
associated with the same x depots, the corresponding candidates are 
all combinable, and all sets of candidates can be served by any 
vehicle. Recall that the maximum trip size is η. This leads to 
a complexity of: 

O ðjVj � jOj
η
� xÞ

If the trips’ size become large, limited by η, the complexity can increase 
rapidly. In practice, the trip size is further influenced by two other 
factors: First, the density of orders, i.e. the relation of the spatial size of 
the graph and the size of the set of orders, which affects how orders can 
be combined. The lower the density of orders is, the harder it becomes 
to serve them together. As a result, the maximum trip size decreases. 
Second, a short maximum delivery time also decreases the maximum 
length of potential trips and also their number.
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Optimality
The proposed approach is able to solve a sub-problem, regarding a single 
state, to optimality. To achieve this, all depots have to be considered 
(x ¼ H), enough computational time has to be given, and the maximum 
trip length has to be unconstrained. Note that even if each sub-problem is 
solved exactly, this does not imply an optimal solution to the full-day 
problem, due to the myopic approach employed.

Experiments

In this section, we present the computational experiments. First, 
Section 5.1 analyzes one run in detail, representing a day of on- 
demand grocery delivery in Amsterdam, where we are able to deal 
with thousands of requests. Second, in Section 5.2, we assess the 
performance of our solution approach by comparing it with 
a greedy approach, a scenario that considers a single depot per 
order, and a scenario that does not allow for pre-empty depot 
returns. Finally, in Section 5.3 we present the results of 
a sensitivity analysis of the main parameters, including the number 
of considered stores, the number of vehicles and the used cost 
functions. Table A1 in the Appendix contains all results of all 
analyzed scenarios.

Base scenario

To analyze the proposed algorithm, we simulate a potential day 
in the city center of Amsterdam. We represent the street network 
as a directed graph containing 2717 nodes and 5632 edges, 

shown in Figure 5(a). Over the whole service area, there are 20 
pick-up depots which have been distributed by a k-center algo-
rithm. The travel times between nodes are calculated as their 
distance divided by the constant vehicle’s speed of μ ¼ 36 km

h . We 
simulated a demand of 10,000 orders, homogeneously distributed 
in space. Time-wise they cover a period from Tstart ¼ 08 : 00 to 
Tend ¼ 21 : 10, including two peaks: at noon and in the evening. 
The temporal demand distribution is shown in Figure 5(b). Each 
bar shows the number of newly placed orders within 10 minutes. 
In the last 10 minutes, before the end of the day Tend, no more 
orders are placed, δT ¼ 10.

The vehicle fleet V has 30 vehicles (M = 30) of capacity C ¼ 6. 
The maximum trip size η is set to 10. The maximum delay δdelay;real 

is set as 8 minutes and equal to δdelay;heuristic, resulting in a ζ of one. 
Per order, the three closest depots to the final destination (x ¼ 3) 
are considered. To load and service an order, we assume 
δload ¼ 15sec, implying that all orders are prepared in advance 
and only need to be loaded, and δservice ¼ 30sec, assuming that all 
customers are ready to grab their groceries at the front door. The 
algorithm runs in time spans Δt ¼ 100sec. The penalty for ignoring 
an order is set to equal 104 seconds. We weighted the two different 
objectives with β ¼ 1=3. These values have been chosen to create 
a scenario that is serving most orders but cannot serve everything. 
To solve the ILP described in Equations 4-8, we use the software 
Mosek 7.1 with a time budget of 50 sec. This time budget is enough 
to find the optimal solutions in about 85% of the cases. Otherwise, 
the best-obtained solution at that point is used.

Figure 5. A visual representation of the underlying graph G ¼ ðN;AÞ is shown on the left. The locations of all 20 depots are highlighted in yellow. On the right side, the 
temporal distribution of all order’s request times to "o 2 O is depicted. Each bar shows the number of newly placed orders within 10 minutes.

Figure 6. The number of open orders, the number of picked up and dropped off orders, as well as ignored orders per time step are visualized.
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First, we evaluate the service rate, which is defined by the percentage 
of served orders. A service rate of 95:19 % is achieved, which equals 481 
ignored orders. Figure 6 shows the number of open orders, pick-ups 
and drop-offs, and finally, ignored orders per decision. Most ignored 
orders happen during peak times. Peak times are characterized by large 
numbers of placed orders. The number of pick-ups shows occasional 
spikes. These appear as vehicles can load a high number of orders 
consecutively without driving when they visit a depot.

Second, we analyze different time spans (time KPIs) involved in the 
delivery process of each order, see Figure 2. The distributions of the 
time until pick-up (mean: 3 min 50 s), the time a order is loaded onto 
a vehicle (mean: 3 min 13 s), the delivery time (mean: 7 min 47 s), and 
the associated delay (mean: 5 min 43 s) are illustrated in Figure 7. These 
times can be compared to the average distance of all nodes to their 
closest depot, which is 1 min 20 s. Note that the total delivery time is 
always greater than 45s, the sum of the loading and service time 
(δload þ δservice). The delay distribution increases strongly towards 
a sharp cut-off at 480s, 8 min, the maximum allowed delay.

Let us analyze the delay in more detail. We distinguish two time 
windows of 2 hours, one in the morning (09:00 to 11:00) with low 
workload and one in the evening (17:00 to 19:00) with a high 
workload. Figure 8 shows the delay distribution for all orders placed 
in the corresponding time windows. For low workload Figure 8(a), 
the average delay is significantly lower and the overall shape of the 
distribution is less pushed toward the maximum delay. With 
a lower workload, additional resources become available, thereby 
allowing the improvement of the service level without the necessity 
of serving additional orders initially. This is also reflected in the 

number of rejected orders, as shown in Figure 6. In contrast, during 
high workload Figure 8(b) most orders are served with a high delay.

Third, we analyze how the proposed method utilizes each vehicle. 
The occupancy of all vehicles is depicted in Figure 9(a). The evening 
peak of the demand can also be identified through the brighter colors 
that appear there, meaning that many vehicles have more loaded 
orders. Idle vehicles only occur at the beginning and end of the day. 
During the rest of the day, vehicles are immediately used while or after 
returning to a depot. Figure 9(b) displays the mean number of loaded 
orders of all vehicles over time. The average load per vehicle over 
the day is 1.49 orders.

Fourth, we analyze the total traveled distance. In the base sce-
nario, a distance of 8,973.8 km is traveled by all 30 vehicles. All 
vehicles are used similarly. Driven distance per vehicle ranges from 
267.86 km to 311.86 km.

Comparison

We now assess the performance of our method by comparing it to 
three approaches. First, in Section 5.2.1, we compare the results 
obtained with our approach with those obtained by using a greedy 
assignment strategy. Second, in Section 5.2.2, we compare con-
sidering multiple depots to picking up each order at its closest 
depot. Third, we analyze the benefits of pre-empty depot returns 
in Section 5.2.3. For simplicity, we refer to the scenario analyzed in 
Section 5.1 as the base scenario. The parameters’ values are set as 
in the base scenario.

Figure 7. Distributions of time to pick-up, time of orders spend loaded to a vehicle, the total delivery time, and delay of the base scenario.

Figure 8. Distribution of delay for two different time windows differing in workload of the base scenario.
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Greedy assignment strategy
This section compares the results of the base scenario to those 
obtained by a greedy assignment strategy. We explain this strategy 
as follows. Every time an order is placed, the algorithm immediately 
checks which is the best way to serve it. For that, the strategy checks 
how the new order could be inserted into each vehicle. Then, the 
new order is assigned to the best vehicle, i.e. the one that would 
achieve the minimum added cost if such order is allocated to this 
vehicle. Thereby, all x pick-up options are considered. If an order 
can not be added to any vehicle’s trip without violating some 
constraint, then the order is rejected immediately.

The obtained results are visualized in Figure 10. Comparing the 
two approaches shows a decrease in service rate from 95.19% to 
74.18%, while delay and total driven distance increase significantly. 
This means that with the greedy algorithm fewer orders are deliv-
ered, those that are delivered require longer travel times, and total 
operators costs become larger.

Considering the closest depot only
We compare the base scenario to the case in which each order is 
picked up at the depot that is closest to its destination (i.e. applying 
our heuristic, introduced in Section 4.2 with x ¼ 1). This is similar 
to comparing to the case in which the problem is decomposed into 
several single-depot problems, although this approach is still more 
flexible as vehicles are not fixed to some specific depot. In the case 
of comparing to a decomposition approach, we expect larger differ-
ences, than the ones, discussed in the following.

For x ¼ 1, worse results in terms of service rate and total driven 
distance are obtained, as shown in Figure 11. The service rate drops 
from 95.19% to 92.68%, i.e. 251 additionally ignored orders. Even 
having fewer orders delivered overall, the total driven distance 
increases by 121.14 km, for x ¼ 1. These improvements to the 
baseline come at the cost of increased delay in the order of seconds, 
it increases from 5 min 33 s to 5 min 43 s. See Section 5.3.1 for the 
analysis of additional values of x.

Figure 9. On the left, occupancy of all vehicles over the entire operation duration, the evening peak can be identified clearly. On the right, the mean number of loaded 
orders of all vehicles as the day progresses.

Figure 10. Service rate, time KPIs, mean loaded orders and total driven distance of the base scenario and the greedy assignment strategy.

Figure 11. Service rate, time KPIs, mean loaded orders and total driven distance of the base scenario and the same scenario considering the closest depot only.
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No pre-empty depot returns
One of the advantages of our proposed approach is that it allows 
for pre-empty depot returns. Here, we compare our approach to 
the case where we prohibit those depot returns. This means that 
only empty vehicles can load new orders. Results of the compar-
ison are depicted in Figure 12. They show a decrease in service 
rate (95.19% ! 94.81%) and a slight increase for all time KPIs 
(average delay: 5 min 43 s ! 5 min 46 s) and also for the total 
driven distance (8,973.8 km ! 8,975.5 km). Generally, the more 
depots are used for the operation, the less impactful allowing for 
pre-empty depot returns is. The difference in results for a similar 
comparison would be more significant if fewer depots were used, 
for example, a total of 5 or 10 depots. This is due to a smaller 
average distance of vehicles to the next depot. We remark that 
these improvements are fully achieved by modifying the trips 
without the need for additional infrastructure.

Sensitivity analysis

In this Section, we analyze the effects of five parameters, namely: 
the number of considered stores, the total number of stores, the 
effect of allowing to reinsert orders into the problem to enable 
longer delivery times, the number of used vehicles and the used 
cost function. We perform a sensitivity analysis for each one of 
them. We present the analyses in the following sections. All para-
meters are identical to the base scenario (Section 5.1), unless men-
tioned otherwise. 

Number of considered depots per order, x
Our heuristic, introduced in Section 4.2, considers the x closest 
depots to an order’s destination as potential pick-up locations. 
Therefore, the more depots are considered, the higher the number 

Figure 12. Service rate, time KPIs, mean loaded orders and total driven distance of the base scenario and the same scenario with prohibiting pre-empty depot returns.

Figure 13. The main performance indices for different numbers of considered depots per order are visualized.

Figure 14. Depots are categorised based on their distance to the goal location of the corresponding order. This figure illustrates how often the depots are used. The left 
figure shows the case in which three depots are considered per order (baseline). The right figure depicts the same case for five considered depots per order.
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of potential candidates, and consequently the higher the computa-
tional load.

Figure 13 shows the results if one (see Section 5.2.2), three, five, 
or seven depots per order are considered.

Service rate rises while total traveled distance decreases when 
three instead of one depot per order are considered. Both get worse 
if x ¼ 5 and then improve slightly if x ¼ 7. Delay increases the 
more depots are considered with a slight drop if x changes from five 
to seven. Figure 14 additionally shows the usage of depots, if they 
are ranked according to the distance to their order’s destination, for 
the baseline Figure 14(a) and the scenario considering five depots 
per order Figure 14(b). In both cases, the closer the depot, the more 
frequently it is used, with the most significant change from the 
closest to the second closest depot. The closest depot was used in 
both cases over 6000 times, leaving over 30% to be distributed over 
the others, showing again that it is beneficial to consider them.

On the one hand, considering multiple depots is beneficial, as shown 
by the improvements compared with considering the closest depot only. 
On the other hand, it is not always better to consider more depots per 
order, as revealed by the worse results obtained with x ¼ 5. This can be 
explained by the myopic nature of our approach, which can lead the 
system into unfavorable states to serve future demand. For a single 
decision, using more depots is better as it enlarges the set of feasible 
solutions, but the overall problem’s solution can worsen due to chaining 
multiple states dynamically with each other. For example, a truck might 
be sent to a depot that is far away when considering only current 
information, but if some orders appear nearby soon after, it would 
have been better to go to a closer depot in the first place. We conclude:

● Considering only one depot per order, as (Yu et al. 2013) and 
(Xu, Pu, and Duan 2018), can be inferior to considering 
multiple ones.

● To consider as many depots as possible can be inefficient for 
dynamic problems having imperfect anticipation.

The question ‘How many depots should be considered?’ emerges. 
The answer can depend on various factors, including the problem at 
hand or even the current state. This is outside of the scope of this 
work and is left for future work.

Total number of depots H
We varied the number of placed depots within the service area. We 
simulated scenarios featuring 1, 15, and 25 depots in total. Results 
are depicted in Figure 15. The service rate improves at decreasing 
rates as more depots are available. Delay shows non-monotonic 
behavior, which is related to the corresponding service rates. For 
a single depot, fewer orders are served, i.e. more orders are ignored. 
When some orders are ignored, the most complicated ones are 
ignored first, meaning that they would have had a high delay if 
delivered. The number of mean loaded orders decreases as more 
depots are available. The total driven distance generally decreases 
for more depots, except for 15 depots, compared to the single depot 
case, which the substantial increase in service rate can explain. 
Generally, the magnitude of changes in performance varies as the 
number of depots is increased linearly in steps, each of size five. 
These results raise the question: ‘How many depots are optimal, 
taking the cost to open and operate them into account?.’ We con-
sider this question interesting and relevant for future research 
related to the multi-facility location problem (Farahani and 
Hekmatfar 2009).

Allowing for reinsertion of orders
In Section 4.5, we distinguished between δdelay;real, the maximum delay 
allowed by the operator and δdelay;heuristic, the maximum delay used for 
running the proposed algorithm. Recall that this distinction is made to 
reduce the computational complexity and the time needed to solve the 
problem. If an order violates δdelay;heuristic, the orderwould be 

Figure 15. Service rate, time KPIs, mean loaded orders, and total driven distance of the four different runs, featuring a different number of total depots distributed over the 
service area.

Figure 16. Service rate, time KPIs, mean loaded orders, and total driven distance of the base scenario and the same scenario having a δdelay;real of 24 minutes, thus allowing 
reinsertion.
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considered ignored. But, by allowing reinsertions, see Section 4.5, the 
order has the chance to be still served, while not violating δdelay;real.

Here we set δdelay;real ¼ 24 minutes keeping δdelay;heuristic ¼ 8, 
which results in ζ ¼ 3 maximum reinsertions per order. Figure 16 
shows a comparison with the δdelay;real ¼ δdelay;heuristic ¼ 8, as in 
Section 5.1. We see an increase in service rate and a decrease in 
the total driven distance. All time KPIs increase. Increasing δdelay;real 
allows for a higher delay per order, which leads to an overall higher 
average delay. The corresponding delay distribution is shown in 
Figure 17(a), where we observe a repetitive nature. The number of 
reinsertions is shown in Figure 17(b), showing a significant number 
of orders that are reinserted at least once.

Number of orders U
We created two alternative demand scenarios, featuring different 
numbers of customer orders U ¼ 9; 500 and U ¼ 10; 500, for the 
entire day. Both scenarios resemble the distribution of the 10,000 
order case in time and space. Figure 18 depicts the corresponding 
results. The more orders are placed, the lower the service rate 

because available resources were kept constant. Nevertheless, the 
absolute number of delivered orders increases (from 9,268 to 9,519, 
and then to 9,867). Although more orders have been delivered, this 
does not necessarily increase the total driven distance. Compared 
with the 9,500 orders case, the driven distance decreases for both 
10,000 and 10,500 orders. In general, if there are more orders to 
serve, it will be easier to find customer destinations close to each 
other, so the average distance between them decreases. However, 
those improvements do not hold for the time KPIs as all of them 
worsen with more placed and served orders. The number of mean 
loaded orders increases in the same manner.

Number of used vehicles
We varied the number of used vehicles to 25 and 35. Figure 19 
shows the effect of the number of used vehicles on the obtained 
solutions. The service rate increases as more vehicles are used, and 
similarly, the total driven distance increases. Time KPIs decrease 
the more vehicles are used as well as the mean loaded orders. The 
maximum traveled distance by one vehicle stays about the same, as 

Figure 17. The delay distribution having a maximum delay δdelay;real of 24 minutes, thus allowing reinsertion is shown on the left. On the right, the number of served orders 
per reinsert step is illustrated.

Figure 18. Service rate, time KPIs, mean loaded orders, and total driven distance of the three different runs, featuring different demand patterns.

Figure 19. Service rate, time KPIs, mean loaded orders, and total driven distance of the three different runs, featuring a different number of vehicles.
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those vehicles are utilized continuously throughout the whole day. 
For 25 vehicles, the maximal distance is 308 km, for 30 vehicles is 
311 km, and for 35 vehicles is 309 km. On the other hand, the 
minimal distance traveled by one vehicle varies strongly. For 25 
vehicles, the minimal distance is 290 km, for 30 vehicles is 267 km, 
and for 35 vehicles is just 228 km. When considering 35 vehicles 
some vehicles are used sparsely, especially at the start of the opera-
tion, where the overall workload is still low compared to later in 
the day.

Cost function weight β
The cost weight β, shaping the cost terms in Equations 1-4 is varied 
in this section. It weighs service level costs and operational costs. 
β ¼ 0 leads to neglecting operational costs, and the method fully 
tries to minimize delay, whereas the opposite happens for β ¼ 1 
(only optimizing on operational costs). We run simulation for 
β 2 f0; 1

3 ; 1g, the baseline scenario as well as both extreme cases. 
Figure 20 displays the obtained results. For β ¼ 0 time KPIs are the 
lowest, as expected. For β ¼ 1, the total driven distance is mini-
mized, as expected. The service rate varies slightly between the 
different runs. The highest service rate is achieved for β ¼ 1=3, 
which suggests that fully optimizing to minimize driven distance 
or delay leads the system into unfavourable states to serve future 
demand if the goal is to serve as many orders as possible.

Conclusion

In this paper, we introduce and formalize the FDP. The FDP is 
a variation of the SDDP, aiming to deliver orders in minutes. The 
proposed approach considers to pick up goods at multiple depots 
per order and allows vehicles to perform pre-empty depot returns, 
if beneficial. This enables a reduced average distance to customers’ 
homes and more agile planning. In each step, orders are assigned to 
potential pick-up locations, followed by checking how they could be 
combined into potential trips. As many potential trips as possible 
are calculated for each vehicle, limited by predefined constraints on 
the total delivery times and vehicle capacity. Vehicles are assigned 
to the potential trips via solving an integer linear program.

The proposed method can handle large problem sizes. Extensive 
computational experiments simulating one day of service have been 
carried out. Looking at one scenario in detail, in which 10,000 orders 
are placed and 30 vehicles are available to serve those, a service rate of 
95.19% was achieved, which represents an improvement of 20% over 
a greedy approach. The average delay accounts for 5 min 43 s and 
8,973.8 km needed to be driven. Further, simulations showed the value 
of using and considering multiple depots and the value of performing 
pre-empty depot returns. A sensitivity study analyzed the varying 
influence of individual parameters on the obtained solution.

Future research could extend the proposed method to look 
ahead or to actively anticipate, such that the risk that the system 
gets into unfavorable states is reduced. Further, the possibility to 
plan for heterogeneous fleets of vehicles could be added. 
Additionally, the proposed approach is designed for on-demand 
deliveries exclusively. How to integrate already known orders is 
another future research question, such as the incorporation of 
stochastic information about the presence of potential orders. 
How many depots should be operated within a given area and 
how many of them should be considered per order are two further 
interesting questions for the future. Additionally, representing the 
operational environment as realistically as possible can strongly 
increase the expressiveness of found results. This includes but is 
not limited to modeling realistic traffic conditions, considering 
dynamic travel times and congestion, or accurately representing 
parking options in cities.

Notes

1. The rapid development in the area of autonomous delivery robots and 
autonomous driving increases the relevance of such routing algorithms. 
For example, Starship Technologies already completed their 
fourth million autonomous delivery using their developed robot solution 
[(Technologies 2023)]. It might become feasible to operate large fleets 
with moderate costs and without the inherent risks that the human riders 
currently face [(Amiri, Ferguson, and Razavi 2022; Christie and Ward  
2019; Fielbaum et al. 2023; Zheng et al. 2019)]. Nevertheless, this work 
does not exclusively assume autonomous vehicles. It applies the same to 
human-driven ones.

2. One exception is [(Kronmueller, Fielbaum, and Alonso-Mora 2022)], 
which tackles routing for the FDP with heterogeneous vehicles. We 
exclude this work here as it is an extension of the work presented here.

3. The travel times are assumed to be static. They are determined as the 
real-world distance between the two locations divided by the constant 
speed of the vehicles. This assumption can be replaced by a more 
sophisticated approach, like live data from a tool like Google Maps or 
similar. Unfortunately, this is beyond the scope of the here presented 
work. Interested readers are pointed to works such as [(Musolino et al.  
2013; Musolino, Polimeni, and Vitetta 2018; Polimeni and Vitetta 2013; 
Vitetta 2023)], which tackle problems with changing travel times.

4. We take this assumption for the sake of simplicity. However, it is 
straightforward how to extend our method if this isn’t the case.

5. Size is only used to see if the maximum capacity of a vehicle is violated. 
Therefore this can be either the weight, the volume of the order or 
a combination of both.

6. Customers do not mind where their goods are picked up from.
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Appendix

A. Results

The precise numbers of all performance indices of all executed runs are shown in Table A1.

Table A1. Precise results of all performance indices of all experiments.

Service rate [%] Delivery time [s] Delay [s] Time on vehicle [s] Waiting time [s] Mean loaded orders Total distance [km]

Base scenario 
Comparison

95.19 467.07 342.61 192.53 229.54 1.49 8973.8

Greedy 74.18 533.93 406.30 184.81 304.12 1.13 10693.17
1 depot per ord. 92.68 456.74 332.82 177.23 234.51 1.36 9094.94
No pre-empty 
Considered depots

94.81 470.89 346.43 191.73 234.16 1.48 8975.48

5 depots per ord. 94.95 472.08 347.54 198.28 228.80 1.53 9077.29
7 depots per ord. 95.25 467.12 342.66 195.60 226.52 1.52 9051.34
Total depots
1 depot 75.22 569.656 332.055 337.055 187.602 1.95 9555.17
15 depots 92.59 495.94 357.07 214.50 236.44 1.59 9714.92
25 depots 95.67 459.92 341.06 184.55 230.37 1.45 8844.39
Reinserts
3 reinserts 99.0 542.99 418.26 202.44 295.55 1.63 8803.1
Demand patterns
9500 orders 97.56 458.64 333.60 187.37 226.27 1.42 9067.55
10500 orders 93.97 481.85 357.19 198.39 238.46 1.59 9050.93
Number of used vehicles
25 vehicles 84.98 491.69 367.70 213.30 233.39 1.75 7469.91
35 vehicles 99.67 396.95 272.14 164.58 187.37 1.16 10121.33
Cost weight
β ¼ 0 94.96 464.15 339.74 191.38 227.76 1.48 9140.61
β ¼ 1 94.13 510.35 385.76 217.56 247.79 1.65 8793.51
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