
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ytrl20

Transportation Letters
The International Journal of Transportation Research

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ytrl20

Online flash delivery from multiple depots

Maximilian Kronmüller, Andres Fielbaum & Javier Alonso-Mora

To cite this article: Maximilian Kronmüller, Andres Fielbaum & Javier Alonso-Mora (18
Nov 2023): Online flash delivery from multiple depots, Transportation Letters, DOI:
10.1080/19427867.2023.2278859

To link to this article: https://doi.org/10.1080/19427867.2023.2278859

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 18 Nov 2023.

Submit your article to this journal

Article views: 698

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ytrl20
https://www.tandfonline.com/journals/ytrl20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19427867.2023.2278859
https://doi.org/10.1080/19427867.2023.2278859
https://www.tandfonline.com/action/authorSubmission?journalCode=ytrl20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ytrl20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/19427867.2023.2278859?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/19427867.2023.2278859?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/19427867.2023.2278859&domain=pdf&date_stamp=18 Nov 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/19427867.2023.2278859&domain=pdf&date_stamp=18 Nov 2023

Online flash delivery from multiple depots
Maximilian Kronmüller a, Andres Fielbaumb and Javier Alonso-Moraa

aAutonomous Multi-Robots Lab, Delft University of Technology, Delft, Netherlands; bTransportLab, School of Civil Engineering at the University of
Sydney

ABSTRACT
We study routing for on-demand last-mile logistics with two crucial novel features: i) Multiple depots,
optimizing where to pick-up every order, ii) Allowing vehicles to perform depot returns prior to being
empty, thus adapting their routes to include new orders online. Both features result in shorter distances and
more agile planning.We propose a scalable dynamic method to deliver orders as fast as possible. Following a
rolling horizon approach, each time step the following is executed. First, define potential pick-up locations
and identify which groups of orders can be transported together, with which vehicle and following which
route. Then, decide which of these potential groups of orders will be executed and by which vehicle by
solving an integer linear program. We simulate one day of service in Amsterdam that considers 10,000
requests, compare results to several strategies and test different scenarios. Results underpin the advantages
of the proposed method.

ARTICLE HISTORY
Received 20 January 2023
Accepted 30 October 2023

KEYWORDS
Flash delivery problem;
vehicle routing; same-day
delivery; multi-depot VRP;
on-demand Logistics

Introduction

The possibility to order and have one’s goods delivered within the
next minutes is appreciated by many customers. For groceries and
products of daily need, such services are summarized under the
term Flash Deliveries. Young companies offering such services
established themselves in recent years. Examples such as Gorillas,
Flink, Getir, or GoPuff promise to deliver groceries to customers’
homes in minutes. During the last months of 2021, in the
Netherlands alone, consumers spent around 40 million euros per
month on Flash Deliveries, a trend that is continuously rising
(Kantar 2022). Even some supermarket chains are starting their
first trials of Flash Deliveries. For instance, a recent collaboration in
the Netherlands between the supermarket chain Albert Heijn and
the food delivery companies Thuisbezergd and Deliveroo aims to
provide faster delivery of groceries (Albert Heijn Nieuws 2022).
Similarly, in several countries in South and North America, the
delivery company Cornershop has recently merged with Uber with
a similar purpose (Cbinsights Research Briefs 2021).1

This work tackles the real-world problem of Flash Deliveries,
especially planning and routing algorithms that are necessary to
compute vehicle plans during operation. This problem has not been
formalized yet, and methods to solve it are also unknown, so this
paper is devoted to filling that research gap.

The Flash Delivery Problem (FDP) can be described as follows:
Orders are placed continuously throughout the day and need to be
delivered within a short time window after they get known. The
goods need to be picked up at depots and delivered to customers’
locations, leveraging a fleet of vehicles. For each vehicle, a trip needs
to be found such that a given objective function is optimized, for
example, maximizing the number of delivered orders or minimiz-
ing customers’ waiting time. This paper formally defines the Flash
Delivery Problem and proposes a method to find high-quality
solutions. As such, the FDP forms a variant of the Same-Day
Delivery Problem (SDDP). Moreover, most on-demand last-mile

deliveries, such as SDDP, are operated using a single depot and with
vehicles’ trips planned and fixed when leaving the depot. This paper
relaxes these two assumptions, proposing methods to choose the
best depot and to update the vehicles’ trips online. In all, the here
studied problem combines several NP-hard problems, including the
capacitated vehicle routing problem (Bernardo, Du, and Pannek
2021; Ralphs et al. 2003) and the multi-depot vehicle routing pro-
blem (Montoya-Torres et al. 2015). Moreover, it requires dynamic
optimization, and can easily scale to large problem sizes.

To illustrate the concept that considering multiple depots and
en-rote adaptions can lead to shorter trips that deliver more orders
quicker, we give an example. The example is illustrated in Figure 1.
Orders 1 and 2 are known and loaded into the vehicle. While the
vehicle is on its tour a new order (order 3) occurs. If using depot
A only and not allowing for pre-empty depot returns, the vehicle
serves the two loaded orders, following the first part of the solid
tour, shown in yellow. Subsequently, it needs to return to depot
A and then drive to the new customer individually, the second part
of the solid tour, shown in orange. If a second depot was available
(depot B) and the possibility of depot returns prior to being empty
was allowed, the original tour can be altered online. The vehicle can
load the new order at depot B after serving order 1, and can then
service order 3 before serving customer 2 (dashed green tour). By
doing so, the long way back to the depot (orange part) can be saved,
and shorter trips are possible. Further, customer 3 is served more
quickly at the price of delaying order 2 slightly. As such, both
operators and users can benefit.

The FDP is dynamic and, as such evolves with time; new orders
arrive throughout the day. The operation needs to be planned and
executed simultaneously. We propose an approach, which is given
a specific problem state at a specific time t, it takes a decision which
is followed till the time at which the next decision is taken. To solve
a single state, we first select potential pick-up locations from the set
of depots for each order individually. Second, potential feasible trips

CONTACT Maximilian Kronmüller m.kronmueller@outlook.com Autonomous Multi-Robots Lab, Delft University of Technology, Delft, Netherlands

TRANSPORTATION LETTERS
https://doi.org/10.1080/19427867.2023.2278859

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on
which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0002-5199-7942
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19427867.2023.2278859&domain=pdf&date_stamp=2023-11-24

are calculated, i.e. sequences to pick up goods and deliver orders. To
assign these trips to vehicles, an integer-linear program is solved. As
a result, each vehicle has a constantly updated trip to follow, i.e.
which orders to pick up and where, as well as in which sequence to
deliver them.

The main contributions of this paper are threefold:

● We formally define the Flash Delivery Problem by modeling it
as a Markov Decision Process and propose a method to solve it.

● The proposed method can deal with multiple depots at which
orders can be picked up. The method decides endogenously
which depot to use for each order. To the best of our knowl-
edge, this is the first work that considers multiple depots per
order simultaneously for a dynamic vehicle routing problem
without decomposing it into sub-problems, each having
a single depot. Further, the approach allows vehicles to visit
a depot to load additional orders before distributing their
already loaded ones if beneficial.

● Finally, our method can scale up to scenarios with thousands of
orders and tens of vehicles. It finds good quality solutions online.

We evaluate the performance of our proposed solution approach by
comparing the results to a scenario applying a greedy assignment
strategy. Further, we quantify the effects of not allowing the exten-
sions of the second contribution, namely: i) assuming that each order
is picked up at its closest depot and ii) prohibiting pre-empty depot
returns. A comprehensive sensitivity study analyzes the effects of the
number of considered stores, the total number of stores, the effect of
allowing to reinsert orders into the problem to enable longer delivery
times, the number of used vehicles and the used cost function.

Related work

The FDP is a variant of the SDDP. The SDDP transposes into the
FDP if each order needs to be delivered within minutes after being
placed instead of until the end of the day. The FDP is
a deterministic and dynamic problem following the definition of
(Bernardo, Du, and Matias 2023). To the best of our knowledge,
there are no works tackling routing for the FDP up to now.2 For
clarity, this work is an extension to the conference paper
(Kronmueller, Fielbaum, and Alonso-Mora 2021) and presents
a novel, more rigorous formulation of the FDP, additional explana-
tion, clarification and experiments. As such, in Section 2.1, we
discuss the most relevant SDDP works. In Section 2.2, we have
a look at other related works.

Same-day delivery problem

Both the FDP and the SDDP evolve dynamically over one
operational day and must incorporate newly requested orders
while executing the trips. The main difference is the deadline in
which orders need to be delivered to the customers; in the SDDP
the deadline is the end of the day, which can be hours away; in
contrast, flash deliveries aim to deliver each order in minutes after
receiving them.

This related work section focuses on routing optimizations for
the SDDP (Voccia, Campbell, and Thomas 2017), (Ulmer, Thomas,
and Mattfeld 2019) and (Côté et al. 2021), routing refers to actively
deciding on the routes of vehicles. This excludes works on order
assignment or the sole dispatching of vehicles (Azi, Gendreau, and
Potvin 2012; Ghiani et al. 2009; Klapp, Erera, and Toriello 2016,
2018, 2020; Ulmer and Streng 2019).

(Voccia, Campbell, and Thomas 2017) use a multi-scenario sam-
pling approach, first introduced by (Bent and Van Hentenryck 2004).
They are leveraging waiting strategies and test on scenarios with up to
800 orders and up to 13 vehicles. Similar to our work, [(Ulmer,
Thomas, and Mattfeld 2019)] allows for preemptive depot returns,
i.e. depot returns before finishing the currently planned tour based on
expectations of future events. The authors proposed a method that
builds on approximate dynamic programming combined with an
insertion routing heuristic. The method allows vehicles to return to
depots before finishing their current trips. The method by (Ulmer,
Thomas, and Mattfeld 2019) can plan for a single vehicle. [(Côté et al.
2021)] proposes different large neighborhood search-based
approaches for the SDDP problem ranging from a re-optimization
heuristic to a branch-and-regret heuristic. They rely on a multi-
scenario approach to anticipate future events; and their approach is
capable of performing preemptive depot returns as well. Algorithms
were tested based on the same scenarios as (Voccia, Campbell, and
Thomas 2017). Scenarios of up to 10 vehicles were analyzed. A SDDP
with micro-hubs was tackled by (Ackva and Ulmer 2022) using
a two-stage stochastic programming approach. Also, (Zhen et al.
2023) studies general instant delivery services with deadlines of up
to hours. They focus on heterogeneous types of orders and apply
a column generation approach. Order acceptance and scheduling for
the instant delivery problem, here a deadline of 45 minutes was used,
was looked at by (Xue and Wang 2023). The problem is divided into
a series of static problems. Orders are inserted online into trajectories
based on a similarity measure.

Our work adds to the introduced works by scaling to larger
problem sizes and allowing us to consider picking up orders at
multiple depots. Further, our approach differs because pre-empty
depot returns do not use anticipation of the unknown future but
only use currently available information. In contrast, the proposed
approach works myopically.

Other related problems

Additional to the SDDP, other problems are related to the FDP. The
meal delivery routing problem (Reyes et al. 2018; Yildiz and
Savelsbergh 2019; Ulmer et al. 2021) shares the same nature of
quick deliveries but has longer lead times and a fixed pick-up
location for each order. Similarly, multi-robot task assignment
problems (Khamis, Hussein, and Elmogy 2015), but often differing
in their focus. They become specifically challenging if incorporating
heterogeneous and unreliable robots, each equipped with different
capabilities needed to serve different kinds of tasks.

Additionally, vehicle routing to transport people, the dial-a-ride
problem (Alonso-Mora et al. 2017; Cordeau and Laporte 2007) is
related, especially, pooled dial-a-ride problems. The FDP mainly

Figure 1. An exemplary tour of one vehicle serving two known orders (1 & 2) and
one newly requested order (3) that gets placed after the vehicle has already left
depot A. The solid yellow and orange arrows show the trip of the vehicle when
there is only one depot and no pre-empty depot returns. The dashed green arrows
show the trip when using multiple depots (A & B) and allowing for pre-empty depot
returns.

2 M. KRONMÜLLER ET AL.

differs in two aspects. First, customers do not mind where their
goods are picked up from. As such, this is up to the approach to
decide unless there is a single option. Some ridesharing works also
try to loosen fixed pick-up points, as in (Fielbaum, Bai, and Alonso-
Mora 2021), who consider the option that passengers walk short
distances. Second, the urgency of picking up an order fast is lower
for delivering goods than for transporting people, as humans dislike
waiting times. An overview of ridesharing methods can be found in
(Agatz et al. 2012; Mourad, Puchinger, and Chu 2019; Narayanan,
Chaniotakis, and Antoniou 2020).

The approach proposed in the work is based upon a routing
method for a ridesharing system (Alonso-Mora et al. 2017) that
transports people in metropolitan areas. This method is called
Vehicle-Group Assignment Method (VGA). VGA splits the proce-
dure into two steps: First, it generates potential groups of orders
that each vehicle can serve, and second, an optimal assignment of
these potential groups to individual vehicles is computed. With
realistic enough computation time, the method can solve large-
scale real-world instances, up to thousands of vehicles, in an any-
time optimal manner.

In regard to considering multiple depots for dynamic problems,
this work is connected to the dynamic multi-depot vehicle routing
problem (DMDVRP). Only a few works tackled this problem. It has
been tackled by decomposing the problem into multiple single-
depot dynamic vehicle routing problems (DVRP), where each
order is assigned to one fixed depot, and each sub-problem is solved
separately (Yu et al. 2013; Xu, Pu, and Duan 2018). In contrast, we
include the decision of which depot should be used within the
routing decision itself, and thus, this paper is the first, up to our
knowledge, to consider multiple depots simultaneously for a DVRP.

Problem formulation

This section presents our mathematical model of the FDP. Because
the problem is dynamic, we model it as a Markov Decision Process
(MDP). In the FDP, a vehicle fleet must pick up orders at one of the
multiple depots and deliver them to the customer’s goal locations.
Orders are placed dynamically over the course of the operation.
Time is denoted as t. The operation starts at t ¼ Tstart and ends
at t ¼ Tend.

The fleet V consists of M identical vehicles. Vehicles v are
ground-bound, have a maximum capacity of C, and are assumed
to drive with constant speed μ along the roads of a street network.

This street network, the operational environment, is described
using a weighted directed graph G ¼ ðN;AÞ where N defines a set
of nodes and A defines a set of weighted arcs. Each node represents
a potential delivery location. The arcs’ weights represent the travel-
ing times between two connected nodes.3 We denote the shortest
travel time between any two locations n1; n2 2 N by τn1;n2 , which is
calculated as the sum of all weights of traversed arcs following the
shortest-path. A depot or store � 2 N is a specific node where goods
can be picked up. There are H depots in total, which are summar-
ized in the set of depots Ξ � N. We assume that every depot has all
goods that customers can order in stock, meaning every order can
be picked up at any depot.4

The demand set is denoted by O and consists of all individual
orders placed by customers. A total of U ¼ jOj orders are placed.
Each order o ¼ ðto; goÞ 2 O is revealed at time to and has to be
delivered to its destination go 2 N. We assume
to 2 ½Tstart;Tend � δT �, where δT is a constant time span before the
end of the operation, in which no more orders are placed. For
simplicity, we assume all orders are the same size,5 set to one.
This assumption can easily be extended to variable order sizes.

Note that an order itself does not specify a depot to use (pick-up
location) po 2 Ξ.6 With time, the status of an order evolves. As such,
at time t, the demand set O can be split into subsets depending on
the status of each order o 2 O: The set LOt consists of all orders
o 2 O that are currently loaded to any vehicle v 2 V. The set DOt
consists of all orders o 2 O that were delivered to their destinations
go before t. The set JOt consists of all ignored orders that can not
be delivered within the problem’s constraints at time t. The set POt
consists of all orders o 2 O that are already known (i.e. to � t) but
have not been picked-up, delivered or ignored yet. For complete-
ness, UOt is the set of all unknown orders, consisting of all orders
o 2 O such that to > t. The subsets are defined such that each order
only belongs to one subset at time t, thus they are disjoint, and fulfill
O ¼ UOt [POt [LOt [DOt [JOt. At the beginning of the day
(t ¼ Tstart), all orders are unknown, i.e. UOTstart ¼ O. At the end of
the day (t ¼ Tend), all orders are either delivered or ignored, i.e.
DOTend [IOTend ¼ O and UOTend ¼ POTend ¼ LOTend ¼ ;.

Major point of distinction of the SDDP and the FDP is the latest
point when an order must be delivered before being considered
failed. We assign each order a maximal drop-off time
tdrop;o;max ¼ tideal;o þ δdelay, where δdelay is the maximally allowed
delay per order, and is predefined by the operator to ensure
a desired service level. For the FDP, δdelay is in the order of minutes.
Each order is allowed to have a maximum delay of δdelay otherwise,
the order is ignored θo � δdelay "o 2 OnJO. Hereby, θo is the
actual delay of order o. It is calculated as the difference between the
ideal and the actual delivery time, θo ¼ tdrop;o � tideal;o � 0. The ear-
liest time an order can be delivered is described by tideal;o. To do so, an
idle vehicle needs to be located at the closest depot to the order’s
destination �best;o, and start serving the customer immediately with-
out any detours, resulting in tideal;o ¼ to þ δload þ τ�best;o;go þ δservice.
Note that we assume that vehicles need some constant time to load or
deliver a single order, denoted by δload and δservice, during which they
are parking. Last, the times at which an order o is picked up and
dropped off are denoted by tpick;o and tdrop;o, respectively. A summary
of all involved points in time for one order is illustrated in Figure 2.

Following (Ulmer et al. 2020) on modeling MDPs for dynamic
vehicle routing problems, we define decision points, the problem
state, a decision, a transition between states, a reward and an
objective. Further, an initial state at t ¼ Tstart needs to be set.
Generally, given a state at a decision point, a decision is taken
based on the reward, and the problem transitions to the next state
at the next decision point.

The set of decision points is denoted as ψ, which can be
determined during operation or beforehand. Individual decisions
and corresponding states are enumerated by k. The time at decision
point k is tk and the problem is characterized by the state Sk.

The state Sk contains all information needed to fully characterize
the problem at tk and make decisions. In the FDP, the state Sk is
fully characterized by the time itself tk, the vehicle’s fleet state,
denoted as Vk, and the set of orders to be delivered. Thereby, the
fleet’s state Vk are the states of all individual vehicles v 2 V at tk. At
each time t, a single vehicle v 2 V is fully described by its current
location lv;t , and the orders it has loaded (picked up and not yet
dropped off), denoted as the set LOv;t . These definitions allow us to
describe the state Sk formally as

Sk ¼ ðtk;Vk;POkÞ:

For the initial problem state S0, with k ¼ 0, at time t0 ¼ Tstart , we
assume that all vehicles v 2 V are equally distributed over all depots
� 2 Ξ and are empty LOv;Tstart ¼ ; "v 2 V.

The decision/action ak at tk is to assign each vehicle a plan, which it
follows till the next decision point at tkþ1. For clarity, we refer to the

TRANSPORTATION LETTERS 3

plans as trips. A trip v of a vehicle v is defined as an ordered set of
locations n 2 N, each assigned one of the following activities. At each
location, the vehicle either picks up an order, delivers an order to
a customer or waits for further instructions. Between locations, the
vehicle follows the shortest path. As such, a trip delivers a set of orders
which, for simplicity, are denoted as oT . Note that a trip can be longer
than the time span between subsequent decision points, and a previous
trip can be updated, followed further or canceled entirely. A decision in
the FDP is to decide on a trip Tv for each vehicle v, which it will follow
until the next decision point tkþ1. The number of orders considered in
the decision ak is joak j. Further, each vehicle trip Tv needs to obey the
following constraints to be feasible. The vehicle’s maximum capacity C
needs to be respected, LOv;t � C "v 2 V; t 2 ½0;Tend�. Second the
orders, which will be delivered through the trip oTv , need to be
delivered before their respective deadline at tdrop;o;max.

In contrast to (Ulmer et al. 2020), we do not model a reward
to maximize but equivalently a cost to minimize. The cost of
a decision a is the sum of costs to execute the trips of all vehicles
plus extra costs for the orders that are not considered in any trip.
First, we formulate a general cost function that considers the
operator’s and customers’ costs. The customer’s cost is based on
the orders. The cost of order o is defined as its delay θo, so that it
measures the quality of service. Thus, the faster an order is
delivered, the better. The operator’s costs are defined as the
traveling time of the vehicle τv to serve all orders assigned to it.
The two costs are combined convexly via the cost weight β. Last,
we add a fixed cost α for each order o that is in the set POk, but
is not considered in the decision a. The penalty α can be inter-
preted as a potential cost the operator has to cover if a third party

is hired to deliver the respective order. Note that these orders are
not necessarily ignored, as they might be included in later deci-
sions. As such the costs for a decision ak at tk are calculated
following Equation 1,

Jðak; tkÞ ¼ ð1 � βÞ �
X

oTv "Tv2ak

θo þ β �
X

Tv2ak

τTv þ α � ðjPOkj � joak jÞ

2

4

3

5

(1)

In this work, we set α to be considerably larger than the sum of the
other two cost terms, meaning that the system first aims at max-
imizing the number of served orders, and then to minimize the
combination of operators’ cost and customers’ cost.

The transition from a current state Sk to a future state Skþ1 can
be split into two. On one side, a deterministic part, which consists of
two aspects. First, the transition of the vehicle fleet’s status Vt . This
transition is known and only determined by the made decision ak.
Second, following the trips, some orders get loaded or are consid-
ered ignored, thus are not in the set PO anymore. On the other
side, PO changes as customers place new orders. This transition is
unknown exogenous information. We assume to have no knowl-
edge about these future orders and also do not include any predic-
tions about them. The orders are fully known once placed, and we
do not consider any demand uncertainties such as (Bernardo, Du,
and Pannek 2021). Figure 3 depicts a schematic visualisation of the
transition between subsequent states.

We formulate the objective of the FDP to minimize overall costs
at the end of the operation. The overall objective function at
t ¼ Tend is represented by Equation 2,

Figure 2. Visualization of the different times and time spans for one order.

Figure 3. Visualization of the transition between two consecutive states. The transition of the vehicle fleet is known. In contrast, the transition of the open demand is partly
unknown due to customers placing new orders.

4 M. KRONMÜLLER ET AL.

J Tend ¼ ð1 � βÞ �
X

o2DOTend

θo þ β �
X

v2V
τv þ

X

o2JOTend

α

2

4

3

5 (2)

Two details worth highlighting. First, the sum of individual rewards
of all decisions and the overall objective at the end of the day are not
identical. This is because trips of vehicles Tv can span greater times
than Δt and that they are subject to change. Further, not considered
orders in a decision are not identical to the finally ignored ones.
Second, the method we propose in Section 4 does not depend on
this specific cost function (and reward); in other words, a different
cost function could be used, and the proposed method still applies.

Method

This section gives a short overview of the proposed method and
subsequently explains each method’s component in detail.

Method overview

The set of decision points ψ is constructed by dividing the full operation
into steps. We do so by a fixed step size of Δt. This results in
K ¼ Tend=Δt decisions from start to end of the operation. A fixed time
step Δt means that our approach is ‘batch-based,’ in which a number of
requests are accumulated before deciding how to assign, as opposed to
‘event-based’ approaches, where each request is assigned as soon as it
appears. The extra information allows to make better decisions, as has
already been acknowledged by the industry (Uber 2022).

Our approach is myopic, i.e. it does not explicitly consider future
states. We regard this assumption as reasonable (not optimal), as
Δt, the time between two consecutive decisions, is rather short (100
seconds in our experiments) and trips T span longer times. Thus,
new information is included to the problem fast and previous
solutions are updated frequently. Further, myopic approaches are
usual in the scientific literature, although anticipatory techniques
can be used to improve the solutions. For a discussion on this topic,
see (Bent and Van Hentenryck 2004; Fielbaum, Kronmüller, and
Alonso-Mora 2021; Hyland et al. 2020; Ulmer et al. 2019).

To take a decision ak given a state Sk we propose a method
divided into four steps: First, potential pick-up locations for each
order are found. Second, orders with associated pick-up locations
are grouped into potential trips, taking the current location of each
vehicle into account. With enough computational time, we calcu-
late all possible trips for each vehicle. Third, we decide which of
these potential trips are being executed. Last, vehicles follow their
assigned trips as time is propagated forward until the next decision
is taken. These steps are explained in the next sections. An overview
of the approach is depicted in Figure 4.

Finding pick-up locations

Each individual order o 2 O needs to be assigned to a specific
pick-up location po 2 Ξ. A depot � 2 Ξ is a feasible option for
an order o if a vehicle can pick up the goods at � and delivery
them in time. Each order might have more than one feasible
depot. To select one of these options, we first define the term
candidate c of an order o 2 O as follows.

Definition: A candidate c is a tuple containing an order oc 2 O

and an associated pick-up location pc 2 Ξ. Thus, a candidate is
described as c ¼ ðoc; pcÞ.

A candidate c is unique, but one order o 2 O can have multiple
candidates, each having a different pick-up location pc 2 Ξ. J Co
denotes the set of candidates that belong to order o. The set of all
candidates is denoted by C. Ck is the set of candidates at time tk
corresponding to all placed orders o 2 POk.

We introduce a tuneable heuristic to select a subset of pick-up
locations. We do so to control the number of candidates per order
and, thus, the number of potential trips for each vehicle, which is
directly correlated to the required computational effort. For each
order, we consider the x depots closest to the order’s destination in
terms of travel time. The parameter x can be tuned. This results in
maximally x candidates per placed order. If x ¼ H, all feasible depots
are considered, and if x ¼ 1, only the closest depot is considered for
each order. For x ¼ 1, the approach resembles a decomposition of
the full problem into multiple single-depot problems. In decomposi-
tion approaches, vehicles are fixed to one depot, which is more
restrictive than our approach even if we use x ¼ 1.

Trip generation

In the trip generation step at tk we calculate the set of feasible trips
T k. This set describes potential trips that vehicles can follow. Recall,
we define a trip Tv of a vehicle v as an ordered set of locations
n 2 N, each assigned one of the following activities. At each loca-
tion, the vehicle either picks up an order, delivers an order to
a customer or waits for further instructions. Between locations,
the vehicle follows the shortest path. As such, a trip delivers a set
of orders which, for simplicity, are denoted as oT . In the same
fashion, a trip delivers candidates which, equivalently, are denoted
as cT .

The trip generation process is done iteratively, it starts by calcu-
lating small trips. We do so to leverage the idea that a trip can only
be feasible if all its sub-parts are feasible as well. A trip’s size l,
measured as the number of considered candidates, is thereby step-

Figure 4. Schematic overview of our solution approach. Step a assigns several potential pick-up locations to each order. During step B, individual candidates c
(combinations of orders and specific pick-up locations) are combined to feasible trips. In step C, trips to be executed and corresponding vehicles are selected. Within
step D, we propagate time and vehicles follow their assigned trips.

TRANSPORTATION LETTERS 5

wise increased starting at a size of one until a maximum size η is
reached. The operator sets η. Additionally, huge trips are prevented
as each order has a latest drop-off time tdrop;o;max. The result of this
step is a set of potential trips for each vehicle.

The algorithm to calculate the set of all feasible trips T k at time tk is
shown in Algorithm 1. In Algorithm 1 we use four functions:
CandidateVehicleðÞ, TwoCandidatesðÞ, FeasibleTripðÞ and
BestTripSequenceðÞ, each explained in detail in the following:

● The binary logic function Candidate Vehicle(v; c) is valid if
vehicle v can feasibly serve candidate c.

● The binary logic function Two Candidates(ci; cj) checks whether
the two candidates ci and cj are combinable, i.e. if they can both
be served by a hypothetical vehicle located at the corresponding
depot satisfying all the constraints. As multiple candidates per
order exist, we add a constraint to the existing time and capacity
constraints: For two candidates to be combinable into one trip,
we require them to share their pick-up location.

● The binary logic function Feasible Trip(v;T) checks whether
all orders of a trip T can be feasibly served by the vehicle v.

● If a trip T is feasible, we determine the sequence in which to deliver
all its candidates using the function Best Trip Sequence(T).

The cost of visiting a sequence of locations in trip T by vehicle v is
given by γT;v, which is derived from Equation 2, and calculates as
follows:

γT;v :¼ ð1 � βÞ �
X

oT

θo þ β � τT; (3)

where τT represents the total travel time to complete trip T. For
vehicles that already contain load, the sequence includes those
loaded orders. The sequence in which the prior loaded and new
orders are served is not fixed. Herein the possibility of pre-empty
depot returns occurs. We only keep the trip that minimizes the
costs (Equation 3) for a specific vehicle and a set of candidates.
Taking the minimal cost trip is included in the subsequent notation
of a trip T. Calculations for one vehicle are stopped if a predefined
time, ρmax, has passed. In this case, the trips generated up to this
point are considered.

Assignment of trips to vehicles

After calculating the set of potential feasible trips T k in the previous
step, we need to decide which of them should be carried out. We
call this step the Assignment of Trips to Vehicles. The assignment is
formulated as an integer linear program (ILP). The ILP is presented
in Equations 4-8.

argminχ
X

T;r2PT V

ðγT;v � γloaded;vÞPT ;v þ
X

o2f1;...;jPOt jg

αχo (4)

6 M. KRONMÜLLER ET AL.

X

T2J T
v

PT ;v � 1 "v 2 V (5)

X

c2J Co

X

T2J T
co

X

v2J VT

PT ;v þ χo ¼ 1 "o 2 POt (6)

χo 2 0; 1f g (7)

PT ;v 2 0; 1f g (8)

Thereby, PT V denotes the set of all feasible trip vehicle combina-
tions, and PT ;v is the corresponding binary variable, taking the
value 1 if the combination is executed. Further, we define the
following sets: J T

v , the set of trips that can be serviced by a fixed
vehicle v 2 V; J T

c , the set of trips that contain candidate c; J VT , the
set of vehicles that can service trip T; J Co , the set of candidates that
belong to order o. Further, χo is a binary variable, taking the value of
one if the corresponding order is ignored, and X is a set of all
variables X ¼ fPT ;v; χo; "PT V and "o 2 Og.

Equation 4 describes the objective function. Note that the con-
sidered costs are relative. From the costs of a vehicle’s trip γT;v (see
Equation 3), the costs for the considered vehicle to serve its already
loaded orders are subtracted, γloaded;v. Thus, we only account for
changes in the vehicle’s trip. If a vehicle’s trip is not changed by not
assigning any new orders, the assignment poses no costs.
Equation 5 ensures that each vehicle is at most assigned to one
trip. Equation 6 ensures that each order is assigned to a single
vehicle or is rejected in this decision and the penalty α is charged.
Furthermore, it ensures that no more than one candidate belonging
to the same order is chosen. Equations 7-8 ensure that the corre-
sponding variables are binary. χo takes the value one if its associated
order o 2 O can not be served by any vehicle or is ignored.
Equation 8 defines PT ;v as binary. As a result, each vehicle is
assigned to a new trip or does not receive any new orders. If
a vehicle receives no new orders, it will follow its current trip of
delivering the currently loaded orders or be considered idle if it has
none.

To fasten the time needed to solve the above-presented ILP, we
initialize it by a greedy solution. The greedy solution is constructed
by selecting the largest trip, measured by the number of served
candidates l, first. If multiple trips serve the same amount of
candidates, the trip with the lowest cost is selected. We remove all
trips which include already assigned orders or vehicles. We iterate
until there are either no more vehicles or no more orders to assign.

If a vehicle is considered idle after an assignment, we perform
a rebalancing step. The corresponding vehicle’s trip sends it to the
closest depot from its current location. We do so to enable the
vehicle to pick up orders quickly in the following steps.
Nevertheless, it may still be assigned otherwise in a future time
step before reaching that depot.

Time-propagation

In this step, we propagate time and update all elements affected by
it, until the next decision kþ 1 is triggered, tkþ1 ¼ tk þ Δt. Each
vehicle follows its trip determined in the decision ak. As time is
propagated, each order can be in one of the following five states:
First, an order is picked up by a vehicle at a depot (o! LOkþ1). As
soon as an order is picked up its vehicle allocated cannot be
changed. Multiple candidates belonging to one order are available,
but only one of them is selected, and so all other candidates of the
order are removed. gets served, the other candidates belonging to

this order are removed. Second, an order is delivered to its destina-
tion (o! DOkþ1). Third, an order is assigned to a trip, and the
planned pick-up time is later than tkþ1, the time of the next deci-
sion. Thus, we consider the order as not picked up, yet. All not
picked up orders, more precisely the associated candidates, are
reinserted into the trip generation step for the next decision, thus
allowing for reassignment (o! POkþ1).

Fourth, an order is assigned to no vehicle. This order (associated
candidates) is reinserted into the trip generation step for the next
decision (o! POkþ1), unless it is no longer feasible to serve it as
explained in the next bullet point. Last, an order is ignored
(o! JOkþ1), i.e. it is not feasible to deliver it without violating
a constraint. All candidates belonging to this order are removed.

Note that an order o 2 O is ignored in the case it can’t be
delivered before the latest drop-off time
tdrop;o;max ¼ tideal;o þ δdelay. Hereby, tdrop;o;max is mainly influenced
by the value of δdelay. The smaller δdelay is set, the harder it is to
combine multiple candidates to be served by one vehicle. On the
other hand, if δdelay is set too large, the number of possible combi-
nations becomes vast, which can hinder solving the problem in the
first place due to increased combinatorial size. A good balance has
to be found by the system operator. We distinguish between
δdelay;real, defined by the service level and δdelay;heuristic, the maximum
delay at which the method performs well. In case that
δdelay;heuristic < δdelay;real, the former should be used. To adjust to
δdelay;real we allow a candidate to be reinserted into the problem
after it has violated δdelay;heuristic, but not δdelay;real. The candidate
gets reinserted with a new request time of tk, the current time. Each
candidate can be ignored up to a limit of ζ times, which is
defined as:

ζ ¼ ðδdelay;real � ðδdelay;real mod δdelay;heuristicÞÞ=δdelay;heuristic: (9)

When a candidate gets ignored ζ times, it is removed from the
problem. Note that for feasibility calculations, the new request time
has to be used. Nevertheless, the original request time is used to
calculate the users’ costs of a candidate on a trip.

Complexity and Optimality Analysis

Complexity
Our approach divides the full-day problem (Section 3) into multiple
sub-problems at specific times tk. Each sub-problem deals with it’s
associated state Sk. The trip generation step (Section 4.3) is the most
complex and thus the bottleneck of the proposed approach. The ILP
(Section 4.4) can become large but stays solvable in a reasonable
time by state-of-the-art solvers. Thus we analyze the trip generation
step in more detail.

Let us do a worst-case scenario analysis, where all the orders are
associated with the same x depots, the corresponding candidates are
all combinable, and all sets of candidates can be served by any
vehicle. Recall that the maximum trip size is η. This leads to
a complexity of:

O ðjVj � jOj
η
� xÞ

If the trips’ size become large, limited by η, the complexity can increase
rapidly. In practice, the trip size is further influenced by two other
factors: First, the density of orders, i.e. the relation of the spatial size of
the graph and the size of the set of orders, which affects how orders can
be combined. The lower the density of orders is, the harder it becomes
to serve them together. As a result, the maximum trip size decreases.
Second, a short maximum delivery time also decreases the maximum
length of potential trips and also their number.

TRANSPORTATION LETTERS 7

Optimality
The proposed approach is able to solve a sub-problem, regarding a single
state, to optimality. To achieve this, all depots have to be considered
(x ¼ H), enough computational time has to be given, and the maximum
trip length has to be unconstrained. Note that even if each sub-problem is
solved exactly, this does not imply an optimal solution to the full-day
problem, due to the myopic approach employed.

Experiments

In this section, we present the computational experiments. First,
Section 5.1 analyzes one run in detail, representing a day of on-
demand grocery delivery in Amsterdam, where we are able to deal
with thousands of requests. Second, in Section 5.2, we assess the
performance of our solution approach by comparing it with
a greedy approach, a scenario that considers a single depot per
order, and a scenario that does not allow for pre-empty depot
returns. Finally, in Section 5.3 we present the results of
a sensitivity analysis of the main parameters, including the number
of considered stores, the number of vehicles and the used cost
functions. Table A1 in the Appendix contains all results of all
analyzed scenarios.

Base scenario

To analyze the proposed algorithm, we simulate a potential day
in the city center of Amsterdam. We represent the street network
as a directed graph containing 2717 nodes and 5632 edges,

shown in Figure 5(a). Over the whole service area, there are 20
pick-up depots which have been distributed by a k-center algo-
rithm. The travel times between nodes are calculated as their
distance divided by the constant vehicle’s speed of μ ¼ 36 km

h . We
simulated a demand of 10,000 orders, homogeneously distributed
in space. Time-wise they cover a period from Tstart ¼ 08 : 00 to
Tend ¼ 21 : 10, including two peaks: at noon and in the evening.
The temporal demand distribution is shown in Figure 5(b). Each
bar shows the number of newly placed orders within 10 minutes.
In the last 10 minutes, before the end of the day Tend, no more
orders are placed, δT ¼ 10.

The vehicle fleet V has 30 vehicles (M = 30) of capacity C ¼ 6.
The maximum trip size η is set to 10. The maximum delay δdelay;real

is set as 8 minutes and equal to δdelay;heuristic, resulting in a ζ of one.
Per order, the three closest depots to the final destination (x ¼ 3)
are considered. To load and service an order, we assume
δload ¼ 15sec, implying that all orders are prepared in advance
and only need to be loaded, and δservice ¼ 30sec, assuming that all
customers are ready to grab their groceries at the front door. The
algorithm runs in time spans Δt ¼ 100sec. The penalty for ignoring
an order is set to equal 104 seconds. We weighted the two different
objectives with β ¼ 1=3. These values have been chosen to create
a scenario that is serving most orders but cannot serve everything.
To solve the ILP described in Equations 4-8, we use the software
Mosek 7.1 with a time budget of 50 sec. This time budget is enough
to find the optimal solutions in about 85% of the cases. Otherwise,
the best-obtained solution at that point is used.

Figure 5. A visual representation of the underlying graph G ¼ ðN;AÞ is shown on the left. The locations of all 20 depots are highlighted in yellow. On the right side, the
temporal distribution of all order’s request times to "o 2 O is depicted. Each bar shows the number of newly placed orders within 10 minutes.

Figure 6. The number of open orders, the number of picked up and dropped off orders, as well as ignored orders per time step are visualized.

8 M. KRONMÜLLER ET AL.

First, we evaluate the service rate, which is defined by the percentage
of served orders. A service rate of 95:19 % is achieved, which equals 481
ignored orders. Figure 6 shows the number of open orders, pick-ups
and drop-offs, and finally, ignored orders per decision. Most ignored
orders happen during peak times. Peak times are characterized by large
numbers of placed orders. The number of pick-ups shows occasional
spikes. These appear as vehicles can load a high number of orders
consecutively without driving when they visit a depot.

Second, we analyze different time spans (time KPIs) involved in the
delivery process of each order, see Figure 2. The distributions of the
time until pick-up (mean: 3 min 50 s), the time a order is loaded onto
a vehicle (mean: 3 min 13 s), the delivery time (mean: 7 min 47 s), and
the associated delay (mean: 5 min 43 s) are illustrated in Figure 7. These
times can be compared to the average distance of all nodes to their
closest depot, which is 1 min 20 s. Note that the total delivery time is
always greater than 45s, the sum of the loading and service time
(δload þ δservice). The delay distribution increases strongly towards
a sharp cut-off at 480s, 8 min, the maximum allowed delay.

Let us analyze the delay in more detail. We distinguish two time
windows of 2 hours, one in the morning (09:00 to 11:00) with low
workload and one in the evening (17:00 to 19:00) with a high
workload. Figure 8 shows the delay distribution for all orders placed
in the corresponding time windows. For low workload Figure 8(a),
the average delay is significantly lower and the overall shape of the
distribution is less pushed toward the maximum delay. With
a lower workload, additional resources become available, thereby
allowing the improvement of the service level without the necessity
of serving additional orders initially. This is also reflected in the

number of rejected orders, as shown in Figure 6. In contrast, during
high workload Figure 8(b) most orders are served with a high delay.

Third, we analyze how the proposed method utilizes each vehicle.
The occupancy of all vehicles is depicted in Figure 9(a). The evening
peak of the demand can also be identified through the brighter colors
that appear there, meaning that many vehicles have more loaded
orders. Idle vehicles only occur at the beginning and end of the day.
During the rest of the day, vehicles are immediately used while or after
returning to a depot. Figure 9(b) displays the mean number of loaded
orders of all vehicles over time. The average load per vehicle over
the day is 1.49 orders.

Fourth, we analyze the total traveled distance. In the base sce-
nario, a distance of 8,973.8 km is traveled by all 30 vehicles. All
vehicles are used similarly. Driven distance per vehicle ranges from
267.86 km to 311.86 km.

Comparison

We now assess the performance of our method by comparing it to
three approaches. First, in Section 5.2.1, we compare the results
obtained with our approach with those obtained by using a greedy
assignment strategy. Second, in Section 5.2.2, we compare con-
sidering multiple depots to picking up each order at its closest
depot. Third, we analyze the benefits of pre-empty depot returns
in Section 5.2.3. For simplicity, we refer to the scenario analyzed in
Section 5.1 as the base scenario. The parameters’ values are set as
in the base scenario.

Figure 7. Distributions of time to pick-up, time of orders spend loaded to a vehicle, the total delivery time, and delay of the base scenario.

Figure 8. Distribution of delay for two different time windows differing in workload of the base scenario.

TRANSPORTATION LETTERS 9

Greedy assignment strategy
This section compares the results of the base scenario to those
obtained by a greedy assignment strategy. We explain this strategy
as follows. Every time an order is placed, the algorithm immediately
checks which is the best way to serve it. For that, the strategy checks
how the new order could be inserted into each vehicle. Then, the
new order is assigned to the best vehicle, i.e. the one that would
achieve the minimum added cost if such order is allocated to this
vehicle. Thereby, all x pick-up options are considered. If an order
can not be added to any vehicle’s trip without violating some
constraint, then the order is rejected immediately.

The obtained results are visualized in Figure 10. Comparing the
two approaches shows a decrease in service rate from 95.19% to
74.18%, while delay and total driven distance increase significantly.
This means that with the greedy algorithm fewer orders are deliv-
ered, those that are delivered require longer travel times, and total
operators costs become larger.

Considering the closest depot only
We compare the base scenario to the case in which each order is
picked up at the depot that is closest to its destination (i.e. applying
our heuristic, introduced in Section 4.2 with x ¼ 1). This is similar
to comparing to the case in which the problem is decomposed into
several single-depot problems, although this approach is still more
flexible as vehicles are not fixed to some specific depot. In the case
of comparing to a decomposition approach, we expect larger differ-
ences, than the ones, discussed in the following.

For x ¼ 1, worse results in terms of service rate and total driven
distance are obtained, as shown in Figure 11. The service rate drops
from 95.19% to 92.68%, i.e. 251 additionally ignored orders. Even
having fewer orders delivered overall, the total driven distance
increases by 121.14 km, for x ¼ 1. These improvements to the
baseline come at the cost of increased delay in the order of seconds,
it increases from 5 min 33 s to 5 min 43 s. See Section 5.3.1 for the
analysis of additional values of x.

Figure 9. On the left, occupancy of all vehicles over the entire operation duration, the evening peak can be identified clearly. On the right, the mean number of loaded
orders of all vehicles as the day progresses.

Figure 10. Service rate, time KPIs, mean loaded orders and total driven distance of the base scenario and the greedy assignment strategy.

Figure 11. Service rate, time KPIs, mean loaded orders and total driven distance of the base scenario and the same scenario considering the closest depot only.

10 M. KRONMÜLLER ET AL.

No pre-empty depot returns
One of the advantages of our proposed approach is that it allows
for pre-empty depot returns. Here, we compare our approach to
the case where we prohibit those depot returns. This means that
only empty vehicles can load new orders. Results of the compar-
ison are depicted in Figure 12. They show a decrease in service
rate (95.19% ! 94.81%) and a slight increase for all time KPIs
(average delay: 5 min 43 s ! 5 min 46 s) and also for the total
driven distance (8,973.8 km ! 8,975.5 km). Generally, the more
depots are used for the operation, the less impactful allowing for
pre-empty depot returns is. The difference in results for a similar
comparison would be more significant if fewer depots were used,
for example, a total of 5 or 10 depots. This is due to a smaller
average distance of vehicles to the next depot. We remark that
these improvements are fully achieved by modifying the trips
without the need for additional infrastructure.

Sensitivity analysis

In this Section, we analyze the effects of five parameters, namely:
the number of considered stores, the total number of stores, the
effect of allowing to reinsert orders into the problem to enable
longer delivery times, the number of used vehicles and the used
cost function. We perform a sensitivity analysis for each one of
them. We present the analyses in the following sections. All para-
meters are identical to the base scenario (Section 5.1), unless men-
tioned otherwise.

Number of considered depots per order, x
Our heuristic, introduced in Section 4.2, considers the x closest
depots to an order’s destination as potential pick-up locations.
Therefore, the more depots are considered, the higher the number

Figure 12. Service rate, time KPIs, mean loaded orders and total driven distance of the base scenario and the same scenario with prohibiting pre-empty depot returns.

Figure 13. The main performance indices for different numbers of considered depots per order are visualized.

Figure 14. Depots are categorised based on their distance to the goal location of the corresponding order. This figure illustrates how often the depots are used. The left
figure shows the case in which three depots are considered per order (baseline). The right figure depicts the same case for five considered depots per order.

TRANSPORTATION LETTERS 11

of potential candidates, and consequently the higher the computa-
tional load.

Figure 13 shows the results if one (see Section 5.2.2), three, five,
or seven depots per order are considered.

Service rate rises while total traveled distance decreases when
three instead of one depot per order are considered. Both get worse
if x ¼ 5 and then improve slightly if x ¼ 7. Delay increases the
more depots are considered with a slight drop if x changes from five
to seven. Figure 14 additionally shows the usage of depots, if they
are ranked according to the distance to their order’s destination, for
the baseline Figure 14(a) and the scenario considering five depots
per order Figure 14(b). In both cases, the closer the depot, the more
frequently it is used, with the most significant change from the
closest to the second closest depot. The closest depot was used in
both cases over 6000 times, leaving over 30% to be distributed over
the others, showing again that it is beneficial to consider them.

On the one hand, considering multiple depots is beneficial, as shown
by the improvements compared with considering the closest depot only.
On the other hand, it is not always better to consider more depots per
order, as revealed by the worse results obtained with x ¼ 5. This can be
explained by the myopic nature of our approach, which can lead the
system into unfavorable states to serve future demand. For a single
decision, using more depots is better as it enlarges the set of feasible
solutions, but the overall problem’s solution can worsen due to chaining
multiple states dynamically with each other. For example, a truck might
be sent to a depot that is far away when considering only current
information, but if some orders appear nearby soon after, it would
have been better to go to a closer depot in the first place. We conclude:

● Considering only one depot per order, as (Yu et al. 2013) and
(Xu, Pu, and Duan 2018), can be inferior to considering
multiple ones.

● To consider as many depots as possible can be inefficient for
dynamic problems having imperfect anticipation.

The question ‘How many depots should be considered?’ emerges.
The answer can depend on various factors, including the problem at
hand or even the current state. This is outside of the scope of this
work and is left for future work.

Total number of depots H
We varied the number of placed depots within the service area. We
simulated scenarios featuring 1, 15, and 25 depots in total. Results
are depicted in Figure 15. The service rate improves at decreasing
rates as more depots are available. Delay shows non-monotonic
behavior, which is related to the corresponding service rates. For
a single depot, fewer orders are served, i.e. more orders are ignored.
When some orders are ignored, the most complicated ones are
ignored first, meaning that they would have had a high delay if
delivered. The number of mean loaded orders decreases as more
depots are available. The total driven distance generally decreases
for more depots, except for 15 depots, compared to the single depot
case, which the substantial increase in service rate can explain.
Generally, the magnitude of changes in performance varies as the
number of depots is increased linearly in steps, each of size five.
These results raise the question: ‘How many depots are optimal,
taking the cost to open and operate them into account?.’ We con-
sider this question interesting and relevant for future research
related to the multi-facility location problem (Farahani and
Hekmatfar 2009).

Allowing for reinsertion of orders
In Section 4.5, we distinguished between δdelay;real, the maximum delay
allowed by the operator and δdelay;heuristic, the maximum delay used for
running the proposed algorithm. Recall that this distinction is made to
reduce the computational complexity and the time needed to solve the
problem. If an order violates δdelay;heuristic, the orderwould be

Figure 15. Service rate, time KPIs, mean loaded orders, and total driven distance of the four different runs, featuring a different number of total depots distributed over the
service area.

Figure 16. Service rate, time KPIs, mean loaded orders, and total driven distance of the base scenario and the same scenario having a δdelay;real of 24 minutes, thus allowing
reinsertion.

12 M. KRONMÜLLER ET AL.

considered ignored. But, by allowing reinsertions, see Section 4.5, the
order has the chance to be still served, while not violating δdelay;real.

Here we set δdelay;real ¼ 24 minutes keeping δdelay;heuristic ¼ 8,
which results in ζ ¼ 3 maximum reinsertions per order. Figure 16
shows a comparison with the δdelay;real ¼ δdelay;heuristic ¼ 8, as in
Section 5.1. We see an increase in service rate and a decrease in
the total driven distance. All time KPIs increase. Increasing δdelay;real
allows for a higher delay per order, which leads to an overall higher
average delay. The corresponding delay distribution is shown in
Figure 17(a), where we observe a repetitive nature. The number of
reinsertions is shown in Figure 17(b), showing a significant number
of orders that are reinserted at least once.

Number of orders U
We created two alternative demand scenarios, featuring different
numbers of customer orders U ¼ 9; 500 and U ¼ 10; 500, for the
entire day. Both scenarios resemble the distribution of the 10,000
order case in time and space. Figure 18 depicts the corresponding
results. The more orders are placed, the lower the service rate

because available resources were kept constant. Nevertheless, the
absolute number of delivered orders increases (from 9,268 to 9,519,
and then to 9,867). Although more orders have been delivered, this
does not necessarily increase the total driven distance. Compared
with the 9,500 orders case, the driven distance decreases for both
10,000 and 10,500 orders. In general, if there are more orders to
serve, it will be easier to find customer destinations close to each
other, so the average distance between them decreases. However,
those improvements do not hold for the time KPIs as all of them
worsen with more placed and served orders. The number of mean
loaded orders increases in the same manner.

Number of used vehicles
We varied the number of used vehicles to 25 and 35. Figure 19
shows the effect of the number of used vehicles on the obtained
solutions. The service rate increases as more vehicles are used, and
similarly, the total driven distance increases. Time KPIs decrease
the more vehicles are used as well as the mean loaded orders. The
maximum traveled distance by one vehicle stays about the same, as

Figure 17. The delay distribution having a maximum delay δdelay;real of 24 minutes, thus allowing reinsertion is shown on the left. On the right, the number of served orders
per reinsert step is illustrated.

Figure 18. Service rate, time KPIs, mean loaded orders, and total driven distance of the three different runs, featuring different demand patterns.

Figure 19. Service rate, time KPIs, mean loaded orders, and total driven distance of the three different runs, featuring a different number of vehicles.

TRANSPORTATION LETTERS 13

those vehicles are utilized continuously throughout the whole day.
For 25 vehicles, the maximal distance is 308 km, for 30 vehicles is
311 km, and for 35 vehicles is 309 km. On the other hand, the
minimal distance traveled by one vehicle varies strongly. For 25
vehicles, the minimal distance is 290 km, for 30 vehicles is 267 km,
and for 35 vehicles is just 228 km. When considering 35 vehicles
some vehicles are used sparsely, especially at the start of the opera-
tion, where the overall workload is still low compared to later in
the day.

Cost function weight β
The cost weight β, shaping the cost terms in Equations 1-4 is varied
in this section. It weighs service level costs and operational costs.
β ¼ 0 leads to neglecting operational costs, and the method fully
tries to minimize delay, whereas the opposite happens for β ¼ 1
(only optimizing on operational costs). We run simulation for
β 2 f0; 1

3 ; 1g, the baseline scenario as well as both extreme cases.
Figure 20 displays the obtained results. For β ¼ 0 time KPIs are the
lowest, as expected. For β ¼ 1, the total driven distance is mini-
mized, as expected. The service rate varies slightly between the
different runs. The highest service rate is achieved for β ¼ 1=3,
which suggests that fully optimizing to minimize driven distance
or delay leads the system into unfavourable states to serve future
demand if the goal is to serve as many orders as possible.

Conclusion

In this paper, we introduce and formalize the FDP. The FDP is
a variation of the SDDP, aiming to deliver orders in minutes. The
proposed approach considers to pick up goods at multiple depots
per order and allows vehicles to perform pre-empty depot returns,
if beneficial. This enables a reduced average distance to customers’
homes and more agile planning. In each step, orders are assigned to
potential pick-up locations, followed by checking how they could be
combined into potential trips. As many potential trips as possible
are calculated for each vehicle, limited by predefined constraints on
the total delivery times and vehicle capacity. Vehicles are assigned
to the potential trips via solving an integer linear program.

The proposed method can handle large problem sizes. Extensive
computational experiments simulating one day of service have been
carried out. Looking at one scenario in detail, in which 10,000 orders
are placed and 30 vehicles are available to serve those, a service rate of
95.19% was achieved, which represents an improvement of 20% over
a greedy approach. The average delay accounts for 5 min 43 s and
8,973.8 km needed to be driven. Further, simulations showed the value
of using and considering multiple depots and the value of performing
pre-empty depot returns. A sensitivity study analyzed the varying
influence of individual parameters on the obtained solution.

Future research could extend the proposed method to look
ahead or to actively anticipate, such that the risk that the system
gets into unfavorable states is reduced. Further, the possibility to
plan for heterogeneous fleets of vehicles could be added.
Additionally, the proposed approach is designed for on-demand
deliveries exclusively. How to integrate already known orders is
another future research question, such as the incorporation of
stochastic information about the presence of potential orders.
How many depots should be operated within a given area and
how many of them should be considered per order are two further
interesting questions for the future. Additionally, representing the
operational environment as realistically as possible can strongly
increase the expressiveness of found results. This includes but is
not limited to modeling realistic traffic conditions, considering
dynamic travel times and congestion, or accurately representing
parking options in cities.

Notes

1. The rapid development in the area of autonomous delivery robots and
autonomous driving increases the relevance of such routing algorithms.
For example, Starship Technologies already completed their
fourth million autonomous delivery using their developed robot solution
[(Technologies 2023)]. It might become feasible to operate large fleets
with moderate costs and without the inherent risks that the human riders
currently face [(Amiri, Ferguson, and Razavi 2022; Christie and Ward
2019; Fielbaum et al. 2023; Zheng et al. 2019)]. Nevertheless, this work
does not exclusively assume autonomous vehicles. It applies the same to
human-driven ones.

2. One exception is [(Kronmueller, Fielbaum, and Alonso-Mora 2022)],
which tackles routing for the FDP with heterogeneous vehicles. We
exclude this work here as it is an extension of the work presented here.

3. The travel times are assumed to be static. They are determined as the
real-world distance between the two locations divided by the constant
speed of the vehicles. This assumption can be replaced by a more
sophisticated approach, like live data from a tool like Google Maps or
similar. Unfortunately, this is beyond the scope of the here presented
work. Interested readers are pointed to works such as [(Musolino et al.
2013; Musolino, Polimeni, and Vitetta 2018; Polimeni and Vitetta 2013;
Vitetta 2023)], which tackle problems with changing travel times.

4. We take this assumption for the sake of simplicity. However, it is
straightforward how to extend our method if this isn’t the case.

5. Size is only used to see if the maximum capacity of a vehicle is violated.
Therefore this can be either the weight, the volume of the order or
a combination of both.

6. Customers do not mind where their goods are picked up from.

Acknowledgments

This research was supported by Ahold Delhaize. All content represents the
opinion of the author(s), which is not necessarily shared or endorsed by their
respective employers and/or sponsors.

Figure 20. Service rate, time KPIs, mean loaded orders and total driven distance of three runs, featuring different cost weights β.

14 M. KRONMÜLLER ET AL.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Maximilian Kronmüller http://orcid.org/0000-0002-5199-7942

References

Ackva, C., and M. Ulmer 2022. “Consistent Routing for Local Same-Day
Delivery via Micro-Hubs.” Working Paper Series.

Agatz, N., A. Erera, M. Savelsbergh, and X. Wang. 2012. “Optimization for
Dynamic Ride-Sharing: A Review.” European Journal of Operational
Research 223 (2): 295–303. https://doi.org/10.1016/j.ejor.2012.05.028.

Albert Heijn Nieuws. 2022. “Albert heijn breidt samenwerking met deliveroo en
thuisbezorgd.nl uit.”

Alonso-Mora, J., S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus. 2017. “On-
Demand High-Capacity Ride-Sharing via Dynamic Trip-Vehicle
Assignment.” Proceedings of the National Academy of Sciences 114 (3):
462–467. https://doi.org/10.1073/pnas.1611675114.

Amiri, A. M., M. R. Ferguson, and S. Razavi. 2022. “Adoption patterns of
autonomous technologies in logistics: evidence for niagara region.”
Transportation Letters 14 (7): 685–696. https://doi.org/10.1080/19427867.
2021.1923305.

Azi, N., M. Gendreau, and J.-Y. Potvin. 2012. “A Dynamic Vehicle Routing
Problem with Multiple Delivery Routes.” Annals of Operations Research
199 (1): 103–112. https://doi.org/10.1007/s10479-011-0991-3.

Bent, R., and P. Van Hentenryck. 2004. “Scenario-Based Planning for Partially
Dynamic Vehicle Routing with Stochastic Customers.” Operations Research
52 (6): 977–987. https://doi.org/10.1287/opre.1040.0124.

Bernardo, M., B. Du, and A. B. Matias. 2023. “Achieving Robustness in the
Capacitated Vehicle Routing Problem with Stochastic Demands.”
Transportation Letters 15 (3): 254–268. https://doi.org/10.1080/19427867.
2022.2049547.

Bernardo, M., B. Du, and J. Pannek. 2021. “A Simulation-Based Solution
Approach for the Robust Capacitated Vehicle Routing Problem with
Uncertain Demands.” Transportation Letters 13 (9): 664–673. https://doi.
org/10.1080/19427867.2020.1752448.

Cbinsights Research Briefs. 2021. “uber acquires cornershop”.
Christie, N., and H. Ward. 2019. “The Health and Safety Risks for People Who

Drive for Work in the Gig Economy.” Journal of Transport Health
13:115–127. https://doi.org/10.1016/j.jth.2019.02.007.

Cordeau, J.-F., and G. Laporte. 2007. “The Dial-A-Ride Problem: Models and
Algorithms.” Annals of Operations Research 153 (1): 29–46. https://doi.org/
10.1007/s10479-007-0170-8.

Côté, J.-F., T. A. de Queiroz, F. Gallesi, and M. Iori 2021. “Dynamic
Optimization Algorithms for Same-Day Delivery Problems.”

Farahani, R. Z., and M. Hekmatfar. 2009. Facility Location: Concepts, Models,
Algorithms and Case Studies. Springer Science & Business Media. https://link.
springer.com/book/10.1007/978-3-7908-2151-2 .

Fielbaum, A., X. Bai, and J. Alonso-Mora. 2021. “On-Demand Ridesharing with
Optimized Pick-Up and Drop-Off Walking Locations.” Transportation
Research Part C: Emerging Technologies 126:103061. https://doi.org/10.
1016/j.trc.2021.103061.

Fielbaum, A., M. Kronmüller, and J. Alonso-Mora. 2021. “Anticipatory Routing
Methods for an On-Demand Ridepooling Mobility System.” Transportation
49 (6): 1921–1962. https://doi.org/10.1007/s11116-021-10232-1.

Fielbaum, A., F. Ruiz, G. Boccardo, D. Rubio, A. Tirachini, and J. Rosales-Salas.
2023. “The Job of Public Transport, Ride-Hailing and Delivery Drivers:
Conditions During the COVID-19 Pandemic and Implications for a
Post-Pandemic Future.” Travel Behaviour and Society 31:63–77. https://doi.
org/10.1016/j.tbs.2022.11.004.

Ghiani, G., E. Manni, A. Quaranta, and C. Triki. 2009. “Anticipatory Algorithms for
Same-Day Courier Dispatching.” Transportation Research Part E: Logistics &
Transportation Review 45 (1): 96–106. https://doi.org/10.1016/j.tre.2008.08.003.

Hyland, M., F. Dandl, K. Bogenberger, and H. Mahmassani. 2020. “Integrating
Demand Forecasts into the Operational Strategies of Shared Automated
Vehicle Mobility Services: Spatial Resolution Impacts.” Transportation
Letters 12 (10): 671–676. https://doi.org/10.1080/19427867.2019.1691297.

Kantar. 2022. “Markt van flitsbezorging groeit onstuimig in nederland.”
Khamis, A., A. Hussein, and A. Elmogy. (2015). Multi-robot Task Allocation: A

Review of the State-of-the-Art. In A. Koubâa and J. Martínez-de Dios (edited
by) Cooperative Robots and Sensor Networks 2015. Studies in Computational
Intelligence, Vol. 604. Cham: Springer. https://doi.org/10.1007/978-3-319-
18299-5_2 .

Klapp, M. A., A. L. Erera, and A. Toriello. 2016. “The One-Dimensional
Dynamic Dispatch Waves Problem.” Transportation Science 52 (2):
402–415. https://doi.org/10.1287/trsc.2016.0682.

Klapp, M. A., A. L. Erera, and A. Toriello. 2018. “The Dynamic Dispatch Waves
Problem for Same-Day Delivery.” European Journal of Operational Research
271 (2): 519–534. https://doi.org/10.1016/j.ejor.2018.05.032.

Klapp, M. A., A. L. Erera, and A. Toriello. 2020. “Request acceptance in
same-day delivery.” Transportation Research Part E: Logistics &
Transportation Review 143:102083. https://doi.org/10.1016/j.tre.2020.102083.

Kronmueller, M., A. Fielbaum, and J. Alonso-Mora 2021. “On-Demand Grocery
Delivery from Multiple Local Stores with Autonomous Robots.” Proceedings
of the International Symposium on Multi-Robot and Multi-Agent Systems,
MRS 2021, Cambridge, 29–37.

Kronmueller, M., A. Fielbaum, and J. Alonso-Mora 2022. “Routing of hetero-
geneous fleets for flash deliveries via vehicle group assignment.” In 2022 IEEE
25th International Conference on Intelligent Transportation Systems (ITSC),
Macau, 2286–2291.

Montoya-Torres, J. R., J. López Franco, S. Nieto Isaza, H. Felizzola Jiménez, and
N. Herazo-Padilla. 2015. “A Literature Review on the Vehicle Routing
Problem with Multiple Depots.” Computers Industrial Engineering
79:115–129. https://doi.org/10.1016/j.cie.2014.10.029.

Mourad, A., J. Puchinger, and C. Chu. 2019. “A Survey of Models and
Algorithms for Optimizing Shared Mobility.” Transportation Research Part
B: Methodological 123:323–346. https://doi.org/10.1016/j.trb.2019.02.003.

Musolino, G., A. Polimeni, C. Rindone, and A. Vitetta. 2013. “Travel Time
Forecasting and Dynamic Routes Design for Emergency Vehicles.” Procedia
- Social & Behavioral Sciences.87:193–202. SIDT Scientific Seminar 2012.
https://doi.org/10.1016/j.sbspro.2013.10.603.

Musolino, G., A. Polimeni, and A. Vitetta. 2018. “Freight Vehicle Routing with
Reliable Link Travel Times: A Method Based on Network Fundamental
Diagram.” Transportation Letters 10 (3): 159–171. https://doi.org/10.1080/
19427867.2016.1241040.

Narayanan, S., E. Chaniotakis, and C. Antoniou. 2020. “Shared Autonomous
Vehicle Services: A Comprehensive Review.” Transportation Research Part C:
Emerging Technologies 111:255–293. https://doi.org/10.1016/j.trc.2019.12.008.

Polimeni, A., and A. Vitetta. 2013. “Optimising Waiting at Nodes in
Time-Dependent Networks: Cost Functions and Applications.” Journal of
Optimization Theory and Applications 156 (3): 805–818. https://doi.org/10.
1007/s10957-012-0121-7.

Ralphs, T. K., L. Kopman, W. R. Pulleyblank, and L. E. T. Trotter. 2003. “On the
Capacitated Vehicle Routing Problem.” Mathematical Programming 94 (2–
3): 343–359. https://doi.org/10.1007/s10107-002-0323-0.

Reyes, D., A. Erera, M. Savelsbergh, S. Sahasrabudhe, and R. O’Neil. 2018. “The
Meal Delivery Routing Problem.” Optimization Online. https://optimization-
online.org/2018/04/6571/ .

Technologies, S. 2023. “Comapny Website of Starship Technologies.”
Uber. 2022. “Uber Marketplace Matching.” https://www.uber.com/us/en/market

place/matching/ .
Ulmer, M. W., J. C. Goodson, D. C. Mattfeld, and M. Hennig. 2019. “Offline–

Online Approximate Dynamic Programming for Dynamic Vehicle Routing
with Stochastic Requests.” Transportation Science 53 (1): 185–202. https://
doi.org/10.1287/trsc.2017.0767.

Ulmer, M. W., J. C. Goodson, D. C. Mattfeld, and B. W. Thomas. 2020. “On
Modeling Stochastic Dynamic Vehicle Routing Problems.” EURO Journal on
Transportation and Logistics 9 (2): 100008. https://doi.org/10.1016/j.ejtl.2020.
100008.

Ulmer, M. W., and S. Streng. 2019. “Same-Day Delivery with Pickup Stations
and Autonomous Vehicles.” Computers Operations Research 108:1–19.
https://doi.org/10.1016/j.cor.2019.03.017.

Ulmer, M. W., B. W. Thomas, A. M. Campbell, and N. Woyak. 2021. “The
Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with
Deadlines and Random Ready Times.” Transportation Science 55 (1):
75–100. https://doi.org/10.1287/trsc.2020.1000.

Ulmer, M. W., B. W. Thomas, and D. C. Mattfeld. 2019. “Preemptive Depot
Returns for Dynamic Same-Day Delivery.” EURO Journal on Transportation
and Logistics 8 (4): 327–361. https://doi.org/10.1007/s13676-018-0124-0.

Vitetta, A. 2023. “The Importance of Modeling Path Choice Behavior in the Vehicle
Routing Problem.” Algorithms 16 (1): 47. https://doi.org/10.3390/a16010047.

Voccia, S. A., A. M. Campbell, and B. W. Thomas. 2017. “The Same-Day
Delivery Problem for Online Purchases.” Transportation Science 53 (1):
167–184. https://doi.org/10.1287/trsc.2016.0732.

Xue, G., and Z. Wang. 2023. “Order Acceptance and Scheduling in the Instant
Delivery System.” Computers Industrial Engineering 182:109395. https://doi.
org/10.1016/j.cie.2023.109395.

Xu, H., P. Pu, and F. Duan. 2018. “A hybrid ant colony optimization for dynamic
multidepot vehicle routing problem.” Discrete Dynamics in Nature & Society
2018:1–10. https://doi.org/10.1155/2018/3624728.

TRANSPORTATION LETTERS 15

https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1080/19427867.2021.1923305
https://doi.org/10.1080/19427867.2021.1923305
https://doi.org/10.1007/s10479-011-0991-3
https://doi.org/10.1287/opre.1040.0124
https://doi.org/10.1080/19427867.2022.2049547
https://doi.org/10.1080/19427867.2022.2049547
https://doi.org/10.1080/19427867.2020.1752448
https://doi.org/10.1080/19427867.2020.1752448
https://doi.org/10.1016/j.jth.2019.02.007
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/s10479-007-0170-8
https://link.springer.com/book/10.1007/978-3-7908-2151-2
https://link.springer.com/book/10.1007/978-3-7908-2151-2
https://doi.org/10.1016/j.trc.2021.103061
https://doi.org/10.1016/j.trc.2021.103061
https://doi.org/10.1007/s11116-021-10232-1
https://doi.org/10.1016/j.tbs.2022.11.004
https://doi.org/10.1016/j.tbs.2022.11.004
https://doi.org/10.1016/j.tre.2008.08.003
https://doi.org/10.1080/19427867.2019.1691297
https://doi.org/10.1007/978-3-319-18299-5_2
https://doi.org/10.1007/978-3-319-18299-5_2
https://doi.org/10.1287/trsc.2016.0682
https://doi.org/10.1016/j.ejor.2018.05.032
https://doi.org/10.1016/j.tre.2020.102083
https://doi.org/10.1016/j.cie.2014.10.029
https://doi.org/10.1016/j.trb.2019.02.003
https://doi.org/10.1016/j.sbspro.2013.10.603
https://doi.org/10.1016/j.sbspro.2013.10.603
https://doi.org/10.1080/19427867.2016.1241040
https://doi.org/10.1080/19427867.2016.1241040
https://doi.org/10.1016/j.trc.2019.12.008
https://doi.org/10.1007/s10957-012-0121-7
https://doi.org/10.1007/s10957-012-0121-7
https://doi.org/10.1007/s10107-002-0323-0
https://optimization-online.org/2018/04/6571/
https://optimization-online.org/2018/04/6571/
https://www.uber.com/us/en/marketplace/matching/
https://www.uber.com/us/en/marketplace/matching/
https://doi.org/10.1287/trsc.2017.0767
https://doi.org/10.1287/trsc.2017.0767
https://doi.org/10.1016/j.ejtl.2020.100008
https://doi.org/10.1016/j.ejtl.2020.100008
https://doi.org/10.1016/j.cor.2019.03.017
https://doi.org/10.1016/j.cor.2019.03.017
https://doi.org/10.1287/trsc.2020.1000
https://doi.org/10.1007/s13676-018-0124-0
https://doi.org/10.3390/a16010047
https://doi.org/10.1287/trsc.2016.0732
https://doi.org/10.1016/j.cie.2023.109395
https://doi.org/10.1016/j.cie.2023.109395
https://doi.org/10.1155/2018/3624728

Yildiz, B., and M. Savelsbergh. 2019. “Provably High-Quality Solutions for the
Meal Delivery Routing Problem.” Transportation Science 53 (5): 1372–1388.
https://doi.org/10.1287/trsc.2018.0887.

Yu, B., N. Ma, W. Cai, T. Li, X. Yuan, and B. Yao. 2013. “Improved Ant Colony
Optimisation for the Dynamic Multi-Depot Vehicle Routing Problem.”
International Journal of Logistics: Research & Applications 16 (2): 144–157.
https://doi.org/10.1080/13675567.2013.810712.

Zheng, Y., Y. Ma, L. Guo, J. Cheng, and Y. Zhang. 2019. “Crash
Involvement and Risky Riding Behaviors Among Delivery Riders in
China: The Role of Working Conditions.” Transportation Research
Record 2673 (4): 1011–1022. https://doi.org/10.1177/0361198119841028.

Zhen, L., J. Wu, G. Laporte, and Z. Tan. 2023. “Heterogeneous instant
delivery orders scheduling and routing problem.” Computers Operations
Research 157:106246. https://doi.org/10.1016/j.cor.2023.106246.

16 M. KRONMÜLLER ET AL.

https://doi.org/10.1287/trsc.2018.0887
https://doi.org/10.1287/trsc.2018.0887
https://doi.org/10.1080/13675567.2013.810712
https://doi.org/10.1080/13675567.2013.810712
https://doi.org/10.1177/0361198119841028
https://doi.org/10.1016/j.cor.2023.106246

Appendix

A. Results

The precise numbers of all performance indices of all executed runs are shown in Table A1.

Table A1. Precise results of all performance indices of all experiments.

Service rate [%] Delivery time [s] Delay [s] Time on vehicle [s] Waiting time [s] Mean loaded orders Total distance [km]

Base scenario
Comparison

95.19 467.07 342.61 192.53 229.54 1.49 8973.8

Greedy 74.18 533.93 406.30 184.81 304.12 1.13 10693.17
1 depot per ord. 92.68 456.74 332.82 177.23 234.51 1.36 9094.94
No pre-empty
Considered depots

94.81 470.89 346.43 191.73 234.16 1.48 8975.48

5 depots per ord. 94.95 472.08 347.54 198.28 228.80 1.53 9077.29
7 depots per ord. 95.25 467.12 342.66 195.60 226.52 1.52 9051.34
Total depots
1 depot 75.22 569.656 332.055 337.055 187.602 1.95 9555.17
15 depots 92.59 495.94 357.07 214.50 236.44 1.59 9714.92
25 depots 95.67 459.92 341.06 184.55 230.37 1.45 8844.39
Reinserts
3 reinserts 99.0 542.99 418.26 202.44 295.55 1.63 8803.1
Demand patterns
9500 orders 97.56 458.64 333.60 187.37 226.27 1.42 9067.55
10500 orders 93.97 481.85 357.19 198.39 238.46 1.59 9050.93
Number of used vehicles
25 vehicles 84.98 491.69 367.70 213.30 233.39 1.75 7469.91
35 vehicles 99.67 396.95 272.14 164.58 187.37 1.16 10121.33
Cost weight
β ¼ 0 94.96 464.15 339.74 191.38 227.76 1.48 9140.61
β ¼ 1 94.13 510.35 385.76 217.56 247.79 1.65 8793.51

TRANSPORTATION LETTERS 17

	Abstract
	Introduction
	Related work
	Same-day delivery problem
	Other related problems

	Problem formulation
	Method
	Method overview
	Finding pick-up locations
	Trip generation
	Assignment of trips to vehicles
	Time-propagation
	Complexity and Optimality Analysis
	Complexity
	Optimality

	Experiments
	Base scenario
	Comparison
	Greedy assignment strategy
	Considering the closest depot only
	No pre-empty depot returns

	Sensitivity analysis
	Number of considered depots per order, <inline-formula id="ilm0283"><alternatives><inline-graphic xlink:href="YTRL_A_2278859_ILM0283.gif"/><tex-math>$\bi x$</tex-math></alternatives></inline-formula>
	Total number of depots <inline-formula id="ilm0289"><alternatives><inline-graphic xlink:href="YTRL_A_2278859_ILM0289.gif"/><tex-math>$\bi H$</tex-math></alternatives></inline-formula>
	Allowing for reinsertion of orders
	Number of orders <inline-formula id="ilm0301"><alternatives><inline-graphic xlink:href="YTRL_A_2278859_ILM0301.gif"/><tex-math>$\bi U$</tex-math></alternatives></inline-formula>
	Number of used vehicles
	Cost function weight <inline-formula id="ilm0304"><alternatives><inline-graphic xlink:href="YTRL_A_2278859_ILM0304.gif"/><tex-math>$\beta $</tex-math></alternatives></inline-formula>

	Conclusion
	Notes
	Acknowledgments
	Disclosure statement
	ORCID
	References
	Appendix
	A. Results

