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RACP: Risk-Aware Contingency Planning with
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Abstract—For an autonomous vehicle to operate reliably within
real-world traffic scenarios, it is imperative to assess the reper-
cussions of its prospective actions by anticipating the uncertain
intentions exhibited by other participants in the traffic environ-
ment. Driven by the pronounced multi-modal nature of human
driving behavior, this paper presents an approach that leverages
Bayesian beliefs over the distribution of potential policies of
other road users to construct a novel risk-aware probabilistic
motion planning framework. In particular, we propose a novel
contingency planner that outputs long-term contingent plans
conditioned on multiple possible intents for other actors in
the traffic scene. The Bayesian belief is incorporated into the
optimization cost function to influence the behavior of the short-
term plan based on the likelihood of other agents’ policies.
Furthermore, a probabilistic risk metric is employed to fine-
tune the balance between efficiency and robustness. Through
a series of closed-loop safety-critical simulated traffic scenarios
shared with human-driven vehicles, we demonstrate the practical
efficacy of our proposed approach that can handle multi-vehicle
scenarios.

Index Terms—Planning under uncertainty, risk-awareness,
autonomous vehicles, contingency planning, multi-modality.

I. INTRODUCTION

SAFE motion planning is a prominent feature in the self-
driving stack. In urban scenarios, the ego-agent needs to

understand and infer the intended motion of other road users in
the scene in order to move safely and efficiently. However, pre-
dicting the behavior of road users poses great challenges since
they exhibit non-deterministic and multi-modal behaviors.
Moreover, their intentions cannot be explicitly communicated
to the ego-agent. For instance, in a non-signalized intersection,
it is hard to anticipate whether a human driver will drive
straight or turn right, and it is crucial to encode this uncertainty
into the planning formulation. This gives rise to stochastic
prediction models that provide probabilistic information over
all possible intentions the human driver can exhibit [1]–[4].
By leveraging this probabilistic information, the ego-agent’s
motion planner needs to generate safe trajectories yet not
overly conservative in the presence of other road users.

An important aspect of planning under uncertainty is to
guarantee the existence of collision-free trajectories despite
the stochastic motion of the surrounding obstacles. One
class of methods that deals with the uncertain behavior of
dynamic agents is robust optimization [5] which provides
safety guarantees by rigorously accounting for bounded sets
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of uncertainties. That is, the probability density function of
the uncertainty is non-zero over a bounded domain of the
ego agent’s workspace and is zero elsewhere. However, since
robust optimization accounts for all possible realizations of
the uncertainty, its behavior is excessively conservative and
may result in infeasible solutions in crowded environments, a
well-studied issue in robot navigation literature known as the
“frozen robot” problem [6]. In contrast, stochastic optimization
[7] uses chance constraints [8]–[10] to loosen hard constraints
and bound the probability of violating safety constraints to
be within a desired confidence level δ. This, in turn, results
in less-conservative behavior compared to robust optimization
approaches. However, in multi-modal traffic scenarios, this can
still result in conservative behavior since a single trajectory
is sought to minimize the optimization’s cost function along
the entire planning horizon. This gives rise to contingency
planning frameworks [14], [17], [30], that explicitly plan a set
of conditional actions that depend on the stochastic outcome
of a prediction model.

As an illustrative example, to highlight the difference
between single policy planning and contingency planning,
consider the three-way intersection scenario depicted in Fig. 1.
In this scenario, we consider only two possible intents a human
driver can express. The one depicted in blue shows that the
human driver yields to the autonomous vehicle, whereas the
red one indicates that the autonomous vehicle brakes since
the human driver takes an aggressive left turn. A traditional
planner, in that situation, seeks a single plan that is safe
with respect to both intents resulting in a braking trajectory.
In contrast, since only one of the predicted intentions will
happen in the future, the contingency planner plans a short-
term trajectory that ensures safety for both potential outcomes.
Subsequently, it diverges into two specific plans, each tai-
lored to address a distinct future intention resulting in less-
conservative plans.

II. RELATED WORK AND CONTRIBUTION

A. Related Work

A primary objective of the motion planner is to generate
non-conservative, yet safe trajectories, for the ego vehicle to
execute. In some of the proposed methods in the literature,
the planner optimizes for the worst-case scenario, of how the
motion of other road users will propagate into the future,
regardless of its likelihood [50]. Despite being safe, this
causes the ego vehicle to behave defensively and overreact
to low-probability dangers far into the future, e.g., the ego
vehicle brakes prematurely to react to an unlikely future which
would be uncomfortable and socially confusing for other road
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Fig. 1: Two of the possible future intents of the human-driven vehicle are
shown in red and blue. On the left, the ego-vehicle seeks a single plan which
is safe with respect to both intents. On the right, a short-term trajectory is
planned that branches into two contingent plans for each human’s intents. The
illustrative example is inspired by [16].

users. Human behavior, in these situations, would not be
either overly conservative or completely ignorant of such rare
scenarios. An alternative way is to generate a single plan, that
safeguards against all possible intents along the entire planning
horizon which results in inefficient and conservative plans
with compromised performance [20], [21]. As a consequence,
uncertain scenarios require autonomous vehicles to find a
reasonable trade-off between safety and efficiency. This gives
rise to the problem of planning with multi-modal predictions.

1) Planning with multi-modal predictions: Fail-safe motion
planning was introduced in [11]–[13] where a single trajectory
is generated by considering the most probable trajectories of
the other agents. Then, the safety of the proposed method
is guaranteed by ensuring the existence of an emergency
maneuver at each time step that accounts for every possible
trajectory of the other agents. Although the fail-safe trajectory
may ensure safety on a finite horizon plan, recursive feasibility
is not guaranteed. Moreover, it is difficult to estimate whether
the ego-vehicle is close to a collision.

Legibility-based models are widely used in the literature
to alleviate the conservatism of planning under uncertainty
[22]–[24]. A motion is considered legible if it allows an
observer to confidently infer the correct agent’s intent after
observing a snippet of its trajectory [25], and the legibility
of the motion depends on the required time until an observer
can infer an agent’s intent. In these approaches, a probabilistic
model is used to infer the probability of a certain goal G ∈ G
from an incomplete initial trajectory ζS→Q, P (G|ζS→Q), and
the agent’s inferred goal is modeled as the most likely one
argmaxG∈G P (G|ζS→Q). This may, however, result in an
over-confident plan leading to a collision since the probability
that the agent moves towards a different goal is entirely
ignored.

Branch Model Predictive Control (B-MPC), on the other
hand, is utilized in [26], [27], [30], [31] to tackle the multi-
modality arising from human-driving decision-making, where
the behavior of the surrounding agents is simplified with
a finite set of policies derived from a prediction model. A
probabilistic scenario tree is then constructed from this finite

set where each branch in the tree has an associated policy. On
top of the scenario tree, a trajectory tree is built that shares
the same topology as the scenario tree where the objective is
to minimize the expected cost over all the branches. Yet, these
approaches suffer from the curse of dimensionality since the
tree structure grows exponentially with the prediction horizon
and the number of agents, making it only feasible for short
planning horizons [32].

Another line of work for planning under uncertainty is by
formulating the planning problem as a partially observable
Markov decision process (POMDP) by constructing a belief
tree based on a discrete set of obstacle vehicle’s intentions
[28], [29]. Solving such problems, however, becomes com-
putationally intractable when the problem size scales. To
address this problem, multi-policy decision-making [33]–[35]
decomposes the belief tree into a limited number of closed-
loop policies by leveraging semantic information. However,
these approaches solve for the best ego-policy over all possible
future realizations resulting in overly-conservative plans that
do not exploit the multi-modality in the obstacle-vehicle
behavior. To tackle this problem, inspired by branch-MPC,
TPP [36] proposes an approach that converts the continuous
space motion planning problem into a tractable problem by
converting both the trajectory tree and scenario tree into a
finite-horizon MDP. The optimal policy is then determined via
dynamic programming over the constructed MDP. Despite its
scalability to multiple vehicles, TPP outputs a single optimal
policy over all scenarios causing unavoidable loss of multi-
modality information.

This issue can be tackled by separating the planning prob-
lem into short-term and long-term responses [14]–[17]. This
is realized by generating a short-term trajectory, for t < tb,
where tb indicates a branching time, which guarantees safety
with respect to all possible future intents that the other agents
can exhibit. After tb duration, it is assumed that the ego vehicle
will be able to determine the intent of the human driver, and
thus it is sufficient to safeguard against the most likely intent.
Thus, the contingent plan can ensure safety only when the
ego vehicle acquires a clear understanding of the intentions
of other agents by the time of branching. However, in these
works, the probability associated with the uncertain intents of
the dynamic agents is assumed to be fixed, and the planning
is executed in an open-loop fashion. Thus, an exact estimation
of the branching time tb is required, otherwise a collision
may occur [17]. Learning-based approaches have been recently
introduced in the contingency planning context [37], [38],
however, they are not interpretable and hard to tune. [66]
proposes a contingency planning approach that uses a dynamic
branching point determined by a predefined heuristic. This
heuristic chooses the branching time as the maximum time
such that any two future scenarios starting at the current time
only diverge by a maximum distance. Despite being effective,
this heuristic entails at least double the computational time
since the divergence measure is invoked on the ego-vehicle
trajectories.

In this paper, we adopt the idea of splitting the planning
problem into short-term and long-term planning.
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2) Risk-aware motion planning: Another aspect to consider
when planning under uncertainty is to assess the risk asso-
ciated with the executed plan [55]–[59]. In [55], Gaussian
process regression is utilized to establish a probabilistic model
of the environment. This model is subsequently employed to
formulate a risk-aware cost function using the Conditional
Value at Risk (CVaR) measure, which is then incorporated into
an optimal motion planning algorithm to generate trajectories
that avoid high-risk areas. [57] constructs a probabilistic risk
map by assessing the anticipated harm considering predicted
spatio-temporal trajectories for both the ego-vehicle and other
participants in the traffic scene. These maps serve as indicators
of the risk associated with a planned trajectory, calculated
through a rapidly-exploring random tree algorithm. Despite
being effective, a drawback of this approach is that the driven
trajectories of the other traffic participants need to be pre-
defined and known by the ego-vehicle a priori. Along the
same line as our proposed approach, [58], [59] define risk
as a product of two components, the probability of collision
with other traffic subjects and the severity of that potential
collision. In that sense, an analytic approach is proposed to
calculate the probability of spatial overlap of the ego-vehicle
with dynamic obstacles at discrete times.

B. Statement of Contributions

In this work, we aim to address the state-of-the-art afore-
mentioned limitations. In particular, the contributions of this
paper can be summarized in the following points:

(i) In contrast to recent contingency planning schemes that
assume an open-loop information structure, we propose
a Bayesian update scheme that incorporates the observa-
tions of the human states into the motion planner cost
function, influencing the short-term plan based on the
belief the ego-vehicle maintains over human intentions.

(ii) We incorporate a probabilistic risk metric into the con-
tingency planner to balance safety and efficiency.

(iii) We analyze the effect of branching time and the belief
over the obstacles’ intents on the short-term plan, and
how they relate to the maximum risk the ego-agent
endures.

(iv) We show how the proposed approach can be extended
to multi-agent scenarios by leveraging the permutations
over all possible intentions the traffic agents can have.

III. PRELIMINARIES

In this section, we first introduce the principal tools that
constitute the proposed contingency planning framework.

A. Notation

Throughout this paper, vectors, and matrices are expressed
in bold, x, and capital bold, A, letters respectively. ||x|| is
the Euclidean norm of x, and the subscript (·)k indicates the
value at stage k, f(·) is the probability density function. The
planning problem is formulated in a receding horizon fashion
where only the first control input is executed, and then the
whole process is reiterated with the new initial conditions and
observations.

B. Ego-Motion Sampler

The general form of the planning problem can be formulated
as follows:

τ∗ =arg min
τ∈Tn

J(τ ; Γ), (1a)

s.t. gj(τ) ≤ bj , j = 1, ..., n (1b)

where the optimal trajectory τ∗ is defined as the one giving
the minimum total cost J(τ) from a set of sampled trajectories
Tn given the ego-state. τ ∈ Tn is a continuous path through
the state space and is characterized by a sequence of points
τ = {x0,x1, ...,xN} defined over a horizon of length N
with regular intervals ∆t, where xk = (xk, yk). The optimal
trajectory must adhere to a set of time-dependent constraints
gj(τ) imposed by the surrounding dynamic obstacles, vehicle
kinematics, and other user-defined constraints.
Instead of formulating the problem directly in the Cartesian
coordinate system, we switch to the Frenet Frame to exploit
the lane-geometric information. In that sense, the trajectory is
parameterized by the total arc-length s(t) traveled along the
reference path Γ parameterized by time t, and the orthogonal
lateral deviation d(s) parameterized by arc-length s as shown
in Fig. 2. In this paper, we adopt a sampling-based motion
planning approach that is widely used in the intelligent vehi-
cles community [39]–[44].

To generate a set of possible candidate trajectories, we first
need to sample a set of terminal states for both longitudinal and
lateral trajectories. To ensure the diversability of the candidate
trajectories, it is crucial to emphasize that the sampled terminal
states should cover various maneuvers which include main-
taining the current velocity, accelerating to a certain speed,
yielding velocity profiles for the longitudinal trajectories, and
lane-keeping, lane-change, and nudging for lateral trajectories.
Given the current ego-state, with respect to the reference
path, and the sampled terminal states, piecewise quartic and
quintic polynomials can be used to generate the longitudinal
and lateral trajectories respectively [39]. The Frenet state
defined as [s, ṡ, s̈, d, d′, d′′] can then be converted to the global
coordinates [x, y, θ, κ, v, a], where ˙(·) := d(·)

dt , and (·)′ := d(·)
ds

indicate the parameters derivatives with respect to time and
arc-length respectively.

After generating a set of trajectories, some of them are
then pruned based on some imposed constraints g(τ). These
constraints are affected by the kinodynamic feasibility of
the ego-vehicle, in addition to collision avoidance constraints
concerning the surrounding obstacles. Since the motion of the
dynamic obstacles is not known a priori, this necessitates the
need for a probabilistic prediction model that models their
behavior forward in time which is described in Subsection
III-C. After pruning the invalid trajectories, a user-defined cost
function J(τ) is assigned to each valid trajectory, and the
trajectory τ with the minimum cost is selected. The details
of g(τ) and J(τ) formulations are given in Section V.

C. Probabilistic Prediction Model

The planner is required to stochastically forecast other
agents’ behavior to make informed decisions. This necessitates
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Fig. 2: Illustration of the Frenet coordinate system.

the need for a prediction model that can effectively capture
the diverse and nuanced intentions exhibited by different
drivers. For instance, a neighboring vehicle may opt to either
remain in its lane or merge in front of us. To address the
inherent uncertainty and complexity associated with the multi-
modal behavior of road users, the application of Mixture-of-
Gaussians (MoG) distributions is widely used in literature,
see e.g., [46], [47]. It is important to highlight that other
multi-modal prediction methods could also be used in con-
junction with our proposed approach. In our settings, there
exists a set of dynamic obstacles o ∈ Io := {1, ..., no}, at
position δo ∈ R2. The probability measure associated with
the uncertainty of the perception of the dynamic obstacles is
denoted by P and defined over the probability space ∆. An
MoG model serves as a comprehensive method for articulating
uncertainty characterized by multiple modes, achieved through
the integration of multiple continuous probability distributions,

fok (x, y) =

n∑
i=1

ϕif
o
k,i(x, y), (2)

where n is the number of modes of the MoG, ϕi represents
the weight of each mode such that

∑n
i=1 ϕi = 1, and fok,i(·)

is the probability density function of each mode with mean
µi ∈ Rn and covariance Σi ∈ Rn×n,

fok,i(·) = N (µi(t),Σi(t)), (3)

The output of the prediction model is subsequently a sequence
of predicted state distributions along the prediction horizon
for a given mode. This will be later leveraged to calculate the
risk associated with the planned trajectories as detailed in the
following subsection.

D. Collision Chance Constraints

The ego-vehicle v and the obstacle o are mutually collision-
free if ||xv

k−δ
o
k|| ≤ r, where xv, δo ∈ R2 denote the positions

of the ego-vehicle and obstacle respectively, and r is the safety
distance. However, since the positions of the obstacles are de-
fined as random variables, the collision avoidance constraints
can only be satisfied in a probabilistic manner, and thus defined
as chance constraints at each timestep k,

P(||xv
k − δok|| ≤ r) ≤ 1− δ (4)

where P indicates the probability measure, and δ ∈ (0, 1] is
the collision probability threshold.

IV. PROBLEM FORMULATION

In traditional motion planning frameworks, a single tra-
jectory is sought to minimize the expected cost over all
plausible predicted futures along the entire planning horizon
[50], which may result in sub-optimal and overly-conservative
trajectories. The contingency planning paradigm, on the other
hand, generates a distinct set of trajectories conditioned on the
different outcomes from the prediction model.

A. Contingency Planning
Due to the stochastic nature of the surrounding agents’

intentions, contingency planning outputs multiple policies Π
where each policy π ∈ Π is specified for a single agent’s
intent λ̃. Given the ego-vehicle’s incapacity to concurrently
traverse multiple contingency plans, the initial segment of each
plan τ0:tb is restricted to remain consistent. The contingency
planning problem can be formulated as,

argmin
τ
Jshared(τ0:tb) +

∑
λ∈Λ

p(λ)Jconting(τtb:T , λ) (5a)

s.t. gj(τ) ≤ bj , j = 1, ..., n (5b)

where Jshared is the cost of the shared part of the plan that
takes into consideration all possible modes of the prediction
model, tb is the branching time representing the time at which
the shared plan bridges into different contingent plans, Jconting
is the cost associated with each contingent plan, and p(λ)
indicates the probability of each possible intention given by
the prediction model introduced in Section III-C.
However, with this problem formulation, the following chal-
lenges arise:

(i) It is assumed that by tb, the uncertainty about the
other agents’ intentions is resolved, and the ego-vehicle
branches to the predicted true hypothesis. Thus, tb has to
be calculated accurately, otherwise, the ego-vehicle may
choose the wrong branch which can result in a collision.

(ii) The hypothesis probabilities estimated by the prediction
model, p(λ), are usually of a bad quality and entirely
relying on them could result in collisions [48].

In [17]–[19], an offline reachability analysis approach is
proposed to alleviate the first issue by estimating the branching
time tb. However, this approach requires a discretization of the
state space and takes into consideration the worst behavior of
the other agents which leads to the worst-case estimate of
tb, that is the latest time at which the ego-vehicle becomes
certain about the other obstacle’s intention. Moreover, due to
the curse of dimensionality, this approach can barely extend
to multi-agents.

Therefore, in our proposed approach, introduced in the
upcoming section, we tackle the first issue by introducing
a belief updater that updates the ego-vehicle’s prior belief
about obstacles’ intentions based on the online measurement it
perceives. Moreover, to address the inherent trade-off between
safety and efficiency, we introduce risk-aware contingency
planning by augmenting contingency planning with a prob-
abilistic risk measurement.
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V. PROPOSED APPROACH

A. Planning under Uncertain Intentions

To alleviate the conservatism of the planned trajectory, we
propose to have a probabilistic inference over the possible
intents that an obstacle can have by introducing a Bayesian
belief updater instead of solely relying on the prediction model
to make an informed estimate of the unknown intent.

1) Belief Updater: At each time step, we assume that the
ego-vehicle can observe the true state δ̂

o

t of the dynamic
obstacle, but not its internal state. This enables the ego-
vehicle to retrospectively assess the likelihood of the dynamic
obstacle’s observed states under the prediction model. Thus,
the ego-vehicle always maintains a belief, b(λ), over the
set of possible intents Λ of other agents, i.e., λ ∈ Λ. A
Bayesian filter is used to update the ego vehicle’s belief over
the obstacle’s intents based on the new observations the ego-
vehicle perceives. The update rule for the obstacle’s intent is
given by,

b(λ)t+ =
f(δ̂

o

t ;µt,Σt)b(λ)
t
−∑

λ̃ f(δ̂
o

t ;µt,Σt)b(λ̃)t−
(6)

where b(λ̃)t− represents the prior belief of the ego-vehicle on
the intent λ̃ at time t. b(λ̃)t+ indicates the same probability
a posteriori. f(δ̂

o

t ;µt,Σt) denotes the probability density
function of a single mode of the MoG, given by the prediction
model defined in Section III-C, with mean µt and covariance
Σt, and evaluated at the observed state δ̂

o

t .
Remark 1: Based on the provided prediction model and

what the ego-agent can observe, the probability density func-
tion f(·) can either be defined on the obstacle’s state or the
control input.

2) Multi-Agent Scenario: In a multi-agent setting, it is
not sufficient to only consider the belief that the ego-agent
maintains over a single agent’s intentions, but rather to con-
sider how the traffic scene would evolve as a whole into
the future. To address this issue, it is required to consider
all the permutations Θ = {θ1, ..., θns} where ns is the total
number of realizations the traffic scene can evolve to, and Θ is
determined by the Cartesian product of all obstacles policies,
Θ = Λ1 × ... × Λns

. The total number of realizations, ns, is
defined by the cardinality of Θ, ns = |Θ|. The probability of
each realization can, subsequently, be calculated by,

p(θj)+ =
p(θj)−

∏no

i=1 bi(λ)
t
+∑ns

j=1 p(θj)−
∏no

i=1 bi(λ)
t
+

(7)

where bi(λ)t+ is determined by (6), and λ is the corresponding
intention for obstacle i that belongs to θj . p(θj)+ is used as a
weight for the contingent plans in the cost function defined
in (13a). This mimics a scene-centric prediction model by
outputting modes of joint trajectories with respect to all agents
in the scene.

3) Probabilistic Risk Assessment: In our proposed ap-
proach, to achieve probabilistic collision avoidance, we rely
on an existing risk metric, motivated by our previous work
[54], that maps the distribution of a random variable, defined
in (4), to a real number.

Definition 1 (Risk Metric): Let Z denote the set of random
variables representing the uncertainty of the obstacles’ motion
in the x and y directions. The risk metric maps the distribution
of the random variables to a real number indicating the
induced risk, R: Z 7→ R.

There exist various definitions of risk in the literature.
Among them, safety standards, [51], [52] define risk as a
combination of the probability of occurrence of harm and the
severity of that harm. Inspired by this definition, different ap-
proaches in robotics and autonomous driving community [53],
[54], [58], [60] define risk as the product of two quantities,
namely the probability of collision that the planned trajectory
has with any of the surrounding obstacles and the level of
severity linked to that potential collision at every time-step, k,
along the planning horizon,

Ro
k(x

d
k) = Cok(xd

k)Sok(xd
k), ∀k, o, d (8)

Here, we approximate the ego-vehicle by two discs, where
each disc is referred to by d, and calculate the probability of
collision for each disc. Note that we model the ego-vehicle as
two discs such that we can consider all its shape in calculating
the induced risk. Given the probability density function of
the prediction model as indicated in (2), the probability of
collision, for each ego-vehicle’s disc ate each planning stage
k per obstacle o, can be calculated by estimating the spatio-
temporal overlap of the predicted modes with the ego-vehicle’s
plan τ ,

Cok(xd
k) =

∫∫
xd
k,y

d
k∈D

fok (x, y)dxdy, ∀k, o, d, (9)

which is an integral of the Mixture of Gaussians (MoG)
probability density function over a specified domain where
the integration domain D is defined as a circle whose center
is located at the predicted vehicle pose xd

k at stage k along the
prediction horizon, and its radius r is the sum of the vehicle
and obstacle radii since the PDF does not account for the
obstacle-vehicle’s shape.

Another aspect of the risk assessment is the determination of
the severity of a potential collision for each planned trajectory.
The expected collision severity is of high importance in case a
collision is inevitable and the best behavior has to be selected
to reduce upcoming damage. The collision severity definition
is motivated by the work proposed in [53], [58] which can be
determined, ∀k, o, d, by

So
k(x

d
k) =

mv

mv + mo
((vvk)

2 + (vok)
2 − 2vvkv

o
k cosα)

1
2 (10)

where mv and mo represent the masses of the ego-vehicle
and obstacle vehicle respectively whereas vv and vo are their
corresponding velocities, and α is the collision angle. Here,
it is important to emphasize that establishing an appropriate
severity measure is a challenging problem and constitutes
a dedicated area of research that is beyond the scope of
this paper. Notably, the severity metric outlined here does
not account for ethical considerations associated with the
resultant damage, including the vulnerability of road users.
This can, nevertheless, be embedded in (10), in case semantic
information of the road users is provided by a perception
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model. In this context, leveraging semantic categorization
allows for the scaling of the severity metric within a range of
0 to 1. A severity value of 0 corresponds to a collision causing
no harm, while a severity value of 1 signifies the highest
level of damage, particularly involving vulnerable road users.
This scaled metric can then be incorporated into the sampling-
based planner to discard trajectories that lead to collisions with
vulnerable road users.

Furthermore, we adopt a discounted chance constraint for-
mulation, as proposed by [61], where violation probabilities
close to the early stages of the plan have higher penalization
compared to the ones in the far future. The discounted risk at
every stage k concerning an obstacle o is defined as

Ro
k(x

d
k) = (γ)kCok(xd

k)Sok(xd
k), ∀k, o, d (11)

where γ ∈ (0, 1] is the discounting factor.
After calculating the risk for each ego-vehicle’s disc at every

timestep k along the planning horizon per each obstacle o,
the predicted risk η at the current time step is defined by
maximizing risk for all obstacles, o ∈ Io, at all planning
horizon stages k and all discs d,

η = max
o∈Io,k,d

Ro
k(x

d
k), (12)

The max operator in (12) ensures that the worst-case risk
over the planned trajectory is below the threshold δ.

Remark 2: According to [62], the quantified risk metric
given in (11) is non-coherent since it does not fulfill all
coherence axioms. Nevertheless, it is efficient in capturing
the underlying uncertainty associated with the motion of the
dynamic obstacles and scales monotonically as the level of
risk increases. Here it should be emphasized that, since our
planner is sampling-based, it is agnostic to the risk metric
employed and a comparative study on different risk metrics
will be part of future research.

Thus, the optimization problem can be formulated as fol-
lows,

min
τ∈T

Jshared(τ0:tb) +

ns∑
j=1

p(θj)+Jconting(τtb:T (θj)) (13a)

s.t. gj(τ) ≤ bj , j = 1, ..., n (13b)

p(θj)+ =
p(θj)−

∏no

i=1 bi(λ)
t
+∑ns

j=1 p(θj)−
∏no

i=1 bi(λ)
t
+

, (13c)

max
o∈Io,k,d

Ro
k(x

d
k) ≤ δ (13d)

It is worth mentioning that the number of planned contingency
trajectories is determined by the number of modes of the
prediction model, |Λ|.

4) Cost Function: The cost function J(τ) consists of sub-
costs that focus on different aspects of the plan’s performance
such as safety, passenger comfort, progress, and tracking. It
is, thus, defined as,

J(τ) = wT c(τ ; Γ) (14)

where the weight vector w ∈ R+ captures the weights asso-
ciated with each cost term. These costs include, for instance,
how much the final point of the planned trajectory deviates

from the reference path cd = |d−dref|, cv = |ṡ−ṡref| is the de-
viation from the reference velocity, cp =

∑N−1
k=0 ||xv

k+1−xv
k||

is the cost representing progress, i.e., the total traveled distance
along the reference path Γ, and cj =

∑N
k=0

...
sk

2+d′′′2
k

N penalizes
the mean square sum of longitudinal and lateral jerks used as
a comfort indicator.

5) Kinematic Constraints: To guarantee a smooth and
comfortable transition between the short-term shared plan and
the contingency plans, when concatenated, we need to impose
some constraints on the curvature at the branching point. From
[43],

d′′ = − [κrd]
′
tan θ +

1− κrd
cos2 θ

[
κp

1− κrd
cos θ

− κr
]
, (15)

where κr and κ′r denote the curvature of the reference path
Γ and its derivative respectively. By rearranging terms, an ex-
plicit formulation of the trajectory’s curvature can be obtained,

κp = [d′′ − (κrd)
′ tan θ]

cos3 θ

(1− κrd)2
+
κr cos θ

1− κrd
(16)

After calculating the curvature and every point along the
trajectory, a box constraint is defined as

|κp| ≤ κmax (17)

where κmax at every timestep is parameterized by the planned
velocity of the ego-vehicle and the maximum allowable lateral
acceleration. Finally, to ensure that the planned trajectory is
kinematically feasible, the following box constraints must be
satisfied at every timestep,

vmin ≤ v(t) ≤ vmax (18a)
amin ≤ a(t) ≤ amax (18b)
jmin ≤ j(t) ≤ jmax (18c)

where vmin/vmax represent the minimum and maximum veloc-
ity, amin/amax represent the minimum and maximum accel-
eration, and jmin/jmax represent the minimum and maximum
jerk.

B. Planner Design

To better explain the proposed approach, we recall the
illustrative example in which the ego-vehicle is not fully aware
of the future trajectories of another agent or even its intended
goal, as illustrated in Fig. 4. In this example, we take into
consideration only two likely futures. The one depicted in blue
is where the other agent yields to the ego-agent, and the one
in red is where the ego-agent must brake before entering the
intersection since the oncoming vehicle is taking an aggressive
left turn.
The proposed approach is summarized in Algorithm 1:
(i) In lines (2-8), we sample a large set of shared plans T0:tb

using the ego-motion sampler explained in section III-B.
This is followed by pruning trajectories that violate the
risk upper limit or kinematic constraints. Here, the risk
analysis is done with respect to all prediction modes.

(ii) Line 9 iterates over the number of modes coming from
the prediction model.
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(a) Sampling short-term trajectories till tb. (b) Sampling long-term trajectories till T . (c) Select the optimal total plan.

Fig. 3: Snapshots from the CommonRoad simulation framework for an overtaking scenario where the ego-vehicle is depicted by the car icon and the obstacle-
vehicle is illustrated as a blue rectangle. The obstacle-vehicle has three policies that it can execute, Λ = {maintain speed,slow down,lane change},
where the obstacle-vehicle’s predicted trajectories are illustrated in distinct colors in 3a. We first sample a set of short-term plans, T0:tb visualized in black,
till the branching time tb shown in 3a. We then sample a set of long-term plans, Ttb:T depicted in purple, conditioned on the terminal states of the short-term
plans, shown in 3b. For the long-term plans, a cost is assigned to each plan per obstacle-vehicle policy λi. In Fig. 3c, the total cost of the entire plan is
computed by (13a), and the total optimal plan is the one given by τ∗ = τ∗0:tb ∪ {τ∗tb:T (λ1), τ∗tb:T

(λ2), τ∗tb:T
(λ3)}. In this example, the belief over the first

policy is dominant, b(λ1) = 0.63, compared to the rest causing the optimal short-term plan τ∗0:tb to be more biased towards τ∗tb:T (λ1).

Algorithm 1 Risk-aware contingency planning

Input: Prediction model per obstacle fok,i(·), horizon T ,
branching time tb, risk tolerance level δ, reference path
Γ, prior belief per intention λ, b(λ)− = 1

|Λ| , two priority
queues for sorting candidate trajectories Q,Qfinal.

Output: An optimal shared plan τ0:tb , concatenated with |Λ|
contingent plans Ttb:T .

1: for all t = 1, 2, ... do
2: T0:tb ← SampleSharedTrajectories(xinit).
3: for each τ0:tb ∈ T0:tb do
4: η ← EvaluateRisk(xd

k, δ
v
k),∀k, v, d (12).

5: if η ≥ δ then
6: continue
7: end if
8: Jshared(τ0:tb)← ComputeCost(w, τ0:tb ,Γ) (14).
9: for each λ ∈ Λ do

10: Ttb:T ← SampleContingentPlans(τ0:tb(end)).
11: Q = {}.
12: for each τtb:T ∈ Ttb:T do
13: η ← EvaluateRisk(xd

k, δ
v
k, λ),∀k, v, d.

14: if η ≥ δ then
15: continue
16: end if
17: Jcont(τtb:T )← ComputeCost(w, τtb:T ,Γ).
18: if τtb:T passed constraint check then
19: add τtb:T to Q.
20: end if
21: end for
22: τtb:T (λ)best ← pop the first candidate from Q.
23: b(λ)+ ← UpdateBelief(fok,i(.), b(λ)−) (6).
24: end for
25: τ = τ0:tb ∪ {τtb:T (λ1)best, . . . , τtb:T (λ|Λ|)best}.
26: p(θj)+ ← UpdatePermutations(bi(λ)+) (7).
27: Evaluate total cost using (13a).
28: add τ to Qfinal.
29: end for
30: τbest ← pop the first candidate from Qfinal.
31: end for

Fig. 4: Contingency planning paradigm. A large set of short-term plans are
sampled together with multiple long-term plans. The total plan with the
minimum cost for each possible future realization is selected (indicated in
blue and red).

(iii) In lines (10-21), for each shared plan, conditioned on its
end state, we sample a set of long-horizon trajectories
Ttb:T . A risk analysis is performed for each long-term
trajectory with respect to a single mode from the predic-
tion model, and trajectories that violate constraints are
pruned. A cost is assigned to each trajectory according
to (14).

(iv) Lines (22-23) sort the long-term trajectories based on
their associated costs and pick the trajectory with the
minimum cost. The belief over the prediction mode, we
iterate over, is updated using (6).

(v) In lines (25-27), the shared-trajectory is concatenated
with all contingent plans. The total cost of the entire
plan is computed by the expected cost of the contingent
plans in addition to the cost of the shared plan itself as
indicated in (13a).

(vi) We find the optimal response, for each shared plan,
associated with each scenario from the corresponding
long-horizon trajectories in line 30.

This process is then repeated at every time step in a receding
horizon manner.

Remark 3: In case no valid trajectory is obtained from the
set of candidate trajectories T , we apply the trajectory with
the least risk as long as it is dynamically feasible.

Here it is crucial to emphasize that an advantage of using a
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Fig. 5: The human-driven vehicle can have two different policies, lane-keeping
(LK) or lane-change (LC). On the left, the ego-vehicle has a higher belief that
the human-driven vehicle executes the LK policy. That’s why the short-term
trajectory tends to accelerate. On the right, the ego-vehicle has a higher belief
that the human-driven vehicle executes the LC policy causing the short-term
plan to decelerate and steer to the right.

sampling-based planner in the Frenet frame as a basis for our
contingency planning framework is that the sampled trajecto-
ries cover various maneuvers that the ego-vehicle can have.
Thus, in contrast to the approaches proposed in [30]–[32], our
approach eliminates the necessity for a pre-established trajec-
tory tree or branching topology to formulate contingent plans.
Subsequently, the ego-vehicle is not confined to a specific set
of predefined policies. This concept is further explained in Fig.
3 where we show how the optimal plan is selected from the
sampled short-term and long-term trajectories. Additionally,
it illustrates how the short-term plan is shaped based on
the belief the ego-vehicle maintains over the obstacle-vehicle
policies. Fig. 5 shows how the belief the ego-vehicle maintains
over the long-term plans affects the behavior of the short-term
plan. It is observed that when the ego-vehicle has a higher
belief in one of the human’s intents, the shared plan tends
to be biased towards the corresponding contingent plan. In
particular, as illustrated in Fig. 5-left, when the ego-agent has
a higher belief that the human-driven vehicle aims at executing
the lane-keeping policy, the shared-plan biases its motion to
accelerate along its lane. On the other hand, when the higher
belief is assigned to the lane-change maneuver, the shared-plan
tends towards steering a bit to the right while decelerating.
This is achieved by balancing the cost of the shared-plan
according to the likelihood of the beliefs.

Remark 4: It should be pointed out that, in the human-
driven vehicle’s lane-keeping policy, we still generate a con-
tingent plan for the other possible intent after the branching
point, allowing the ego-vehicle to smoothly steer to the right
while decelerating in case the human-driven decides to execute
the lane-change policy.

VI. RESULTS

A. Experimental Setup

We evaluate our approach in two safety-critical simulated
scenarios inspired by autonomous driving interactions. The
illustrated scenarios are included in the CommonRoad bench-
mark suite [63] for reproducibility. The first scenario highlights

the reactive behavior that the ego-vehicle’s plan induces on
an obstacle-vehicle in an overtaking scenario. Four different
baselines are introduced to compare our proposed contingency
planning with.
Baseline 1: Multi-policy planning [30], this baseline uses a
branch-MPC whose objective is to minimize the expected cost
across all branches within a trajectory tree.
Baseline 2: Robust baseline [45] that optimizes a single
trajectory along the planning horizon that is robust with respect
to all predicted modes regardless of their probabilities.
Baseline 3: Maximum-likelihood estimate [50], that only
considers the most probable mode given by the prediction
model while ignoring the rest.
Baseline 4: Similar to [15], we use the mode probabilities,
provided by the prediction model, directly in the contingency
planning cost function instead of the beliefs obtained from
the belief updater. This baseline is used to analyze the effect
of the Bayesian belief updater on the contingency planner’s
performance.

In contrast to the branch-MPC approach [30] which encoun-
ters scalability challenges when addressing multiple obstacle
vehicles, primarily due to its exponential complexity requiring
a pruning protocol, our proposed approach exhibits seamless
adaptability to multi-vehicle scenarios. This is illustrated in the
T-junction, and intersection scenarios, where the ego-vehicle
interacts with multiple vehicles whose intents are not known
to the ego-vehicle a priori1. The computer running the simu-
lations is equipped with an Intel® CoreTM i7 CPU@2.6GHz.

B. Scenario 1. Overtaking in Highway Driving:

In the first scenario, an autonomous vehicle seeks to initiate
a lane change maneuver, by overtaking the obstacle vehicle
in the designated lane, while grappling with its level of
uncertainty.

1) Obstacle-vehicle Model: As a benchmark, we com-
pare our approach to the branch-MPC introduced in [30].
For this purpose, the same prediction model is lever-
aged in which it is assumed that the obstacle vehicle
has three different policies that it can execute Λ =
{maintain speed,slow down,lane change} where
the direction of the lane change is towards the left lane. The
output of the prediction model is represented as a scenario tree,
as depicted in Fig. 6, in which it is assumed that the obstacle-
vehicle can change its policy the next time step or after 8
steps along the horizon. In the meantime, the obstacle vehicle
maintains its policy. The obstacle vehicle trajectories are
constructed by forward propagating its dynamics with respect
to the selected policy where the vehicle dynamics are modeled
using the kinematic bicycle model [64]. The probability of
executing each policy is calculated by introducing a collision
avoidance measure, ξ(τ, λi ∈ Λ), that determines the collision
probability that the obstacle vehicle has, under each policy,
with respect to the ego-vehicle’s planned trajectory. The policy
λi with the least collision probability will have a higher
probability of being executed by the obstacle vehicle where
each probability is defined by a softmax function as described

1A video of the simulated experiments accompanies this paper.
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(a) At t = 0.7 s (b) At t = 1.3 s (c) At t = 2.2 (d) At t = 3.5 s (e) At t = 4.3 s

Fig. 6: Snapshots from the overtake simulated environment in CommonRoad at different time instants. The obstacle vehicle is represented by a blue rectangle.
The driven trajectory by the ego-vehicle is depicted in green. The short-term planned trajectory is illustrated in blue, whereas contingent plans are depicted
in distinct colors. The predicted scenario tree of the obstacle vehicle is represented in gray.

TABLE I: Statistical results over 30 experiments. The results are reported as “average (standard deviation).”

Planning Approach Task Duration [s] Velocity [m/s] Min. Distance [m] CR [%] Max. Risk Jerk [m/s3]
Our method 3.84 (0.516) 17.14 (0.42) 0.61 (0.14) 0.00 % 0.0491 2.686 (4.28)
FISS+ [45] - 14.87 (0.51) 1.20 (0.00) 0.00 % 0.0393 2.417 (5.08)

Branch-MPC [30] 4.68 (0.098) 15.25 (0.45) 0.82 (0.04) 0.00 % 0.0475 4.494 (5.58)
Non-cont. MLE [50] 3.71 (0.324) 17.62 (0.51) 0.48 (0.12) 2.74 % 0.1081 5.278 (6.13)

Contingent w/o belief updater [15] 4.46 (0.308) 16.68 (0.78) 0.84 (0.08) 0.00 % 0.0462 2.693 (4.63)

in [30]. It is important to emphasize that although the policy
of the obstacle vehicle is influenced by the planned trajectory
of the ego-vehicle, the responsibility of preventing collisions
rests solely upon the ego-vehicle.

2) Environment Setup: To guarantee a fair comparison, for
all approaches, we set the maximum speed, and maximum
allowed acceleration to the same value which are 20 m/s,
4 m/s2 respectively. The upper bound of the induced risk
is assigned to δ = 5%, for the baselines and the proposed
approach, which was found to provide a good balance between
safety and efficiency. A horizon of N = 16 steps is defined,
with a discretization step of 0.2 s, resulting in a time horizon
of 3.2 s, and a branching time tb = 1.2 s is defined.

3) Qualitative Results: Fig. 8 shows the evolution of the
ego-vehicle’s belief over the obstacle-vehicle policies over
time. At the beginning, the ego-vehicle reveals its lane-change
intention by swerving into the obstacle’s vehicle lane. Due to
the reactive behavior of the obstacle-vehicle, the probability
of it executing a lane-change in the ego-vehicle’s lane drops.
However, the ego-vehicle could not complete the lane change
since no valid trajectory is obtained that does not violate the
safety constraints, and thus returns to its original lane. Since
the lane-change policy of the obstacle-vehicle, b3, becomes
relatively low, the ego-vehicle then initiates another attempt
to overtake the obstacle vehicle which probes it to decelerate
allowing the ego-vehicle to complete the lane change. To
visualize how the obstacle-vehicle’s policy changes with the
timesteps, Fig. 7 shows the evolution of the obstacle-vehicle’s
velocity with the timesteps. As depicted, the ego-vehicle
exhibits maintain speed policy till 2.7s. It then switches

to slow down policy from 2.7s to 3.2s. This corresponds to
the moment at which the ego-vehicle initiates its lane-change
maneuver. It then switches back to the maintain speed
policy.

Fig. 7: The evolution of the obstacle-vehicle’s velocity with time

On the other hand, it was observed that the branch-MPC
[30] brakes strangely while executing the lane-change maneu-
ver relying on the obstacle-vehicle to yield to the ego-vehicle
2. However, such a maneuver is risky since it may result in
collisions if the obstacle-vehicle does not react on time.

4) Quantitative Results: In each scenario, the initial state of
the ego-vehicle remains fixed, while the obstacle vehicle’s ini-
tial state is systematically altered across 30 distinct positions.
These positions are selected from a uniform grid surrounding
the nominal starting conditions. As efficiency metrics, average
speed, and duration to complete the overtaking maneuver are
calculated. Moreover, the average minimum distance between
the ego-vehicle and the obstacle vehicle is recorded as a

2The reader can refer to the video supplement, at 02:01, to observe such
behavior.
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Fig. 8: Belief evolution over obstacle vehicle’s policies along the timesteps.
b1, b2, b3 represent maintain fixed speed, slow down, and lane-change policies
respectively. The gray vertical lines denote the time instants at which the
snapshots in Fig. 6 are taken.

measure of conservatism. The quantitative results are sum-
marized in Tab. I where the non-contingent robust baseline
[44] refers to the case in which a single plan is optimized
along the entire horizon that accounts for all obstacle-vehicle
policies. As shown in Tab. I, our approach can complete
the overtake maneuver in less duration and with a higher
average speed, while providing the same safety guarantees
as the branch-MPC. This could be attributed to the fact that
although the branch-MPC plans a distinct trajectory for each
branch in the scenario, the optimization problem minimizes the
expectation over all branches. This causes the ego-vehicle to
overreact to branches with low probabilities resulting in a more
conservative plan. The non-contingent robust baseline, on the
other hand, fails to complete the maneuver. Since a single
trajectory is optimized that avoids all obstacle predictions, it
could not find a safe trajectory to execute the lane change. As
expected, the MLE baseline is the least-conservative approach,
among the ones in comparison, since it only considers the
most probable mode. This, however, results in collisions in
some of the scenarios due to its over-confidence in relying
solely on the highest probable mode of the prediction model.
Our approach mitigates the limitation of the MLE method by
inferring a posterior distribution over the obstacle-vehicle’s
intent allowing the ego-vehicle to account for uncertainty
and generate safer yet efficient plans. Finally, the baseline
that uses the same contingency planner as ours but lacks
a belief updater, can complete the lane change maneuver
safely in all experiments. Nonetheless, the absence of a belief
updater prolongs the time it takes for the predictive model
to assign a diminished probability to the obstacle vehicle’s
lane change maneuver. Consequently, this leads to a more
conservative planning approach compared to the contingency
planner equipped with a belief updater. It can also be seen that
all approaches respect the maximum risk threshold, δ = 0.05,
except the non-contingent MLE approach.

Remark 5: It is worth mentioning that, for the robust
baseline, the belief updater is also utilized to weigh the
evaluated collision probability of the planned trajectory with
each possible mode, which, in turn, affects the calculated risk.
Thus, the baseline re-plans every cycle with the newly observed
obstacles’ states as well.

C. Scenario 2. Urban T-junction:

In this scenario, the ego vehicle is approaching a T-
junction, with no traffic rules, in which its mission is to

follow its designated lane while being uncertain about the
intentions of the other vehicles as shown in Fig. 9. Here,
we consider the case of a multi-vehicle traffic scenario
in which two obstacle vehicles approach the T-junction
where Λ1 = {lane keep,left turn}, and Λ2 =
{left turn,yield}. In this case, it is not sufficient to
consider the belief of a single agent’s intention as we did
in the previous scenario, however, instead, we need to get a
belief about how the traffic scene will evolve by considering
all permutations the traffic participants can have as stated in
(7).

1) Environment Setup: The states of both obstacles are
randomly initialized and their corresponding policies are ran-
domly assigned from the set of potential policies. The initial
velocities of the obstacles are selected in such a way that they
arrive at the intersection before the ego-vehicle, forcing the
ego-vehicle to react and avoid collisions actively.
In this scenario, a horizon of N = 25 steps is defined, with a
discretization step of 0.2 s, resulting in a time horizon of 5.0
s, and a branching time tb = 2.4 s is defined. As a benchmark
comparison, we evaluated the same task using a robust planner
that optimizes a single plan that considers all the modes that
the other agents could have, and a greedy baseline that only
considers the most probable predicted mode of each obstacle.
All optimization parameters for both methods are set to be
identical to guarantee a fair comparison. At the start of the
simulation, all permutations, θi ∈ Θ, are initialized with equal
likelihoods, θi = 0.25. The evolution of the belief over both
obstacle modes is illustrated in Fig. 10. In Fig. 10, we present
the dynamic evolution of the ego-vehicle’s belief regarding
various intentions of surrounding obstacles over time. Specif-
ically, Fig. 10a illustrates this evolution for a leftward-bound
vehicle encountering a T-junction, where the obstacle vehicle
faces the choice between continuing straight or executing a left
turn. Similarly, Fig. 10b portrays the belief dynamics for an
upward-bound vehicle confronted with the options of turning
left or yielding to the ego-vehicle. In Fig. 10a, we observe
the ego-vehicle’s initial struggle with uncertainty regarding
the leftward vehicle’s intentions, reflected in an equal belief
distribution (b(λ1) = b(λ2) = 0.5) as its state aligns with the
mean of both distributions. However, as the obstacle vehicle’s
state gradually deviates from this equilibrium, the belief over
the left-turn maneuver diminishes, leading to a corresponding
increase in belief regarding the alternative mode (b(λ1)).
This nuanced adjustment allows the ego-vehicle to attenuate
its emphasis on the left-turn possibility, thereby facilitating
an accelerated trajectory within the T-junction. Analogous
dynamics are observed for the second obstacle vehicle, as
depicted in Fig. 10b. Subsequently, the updated beliefs per
mode, λ ∈ Λ, are utilized to update the probabilities over the
different permutations, θ ∈ Θ, the traffic scene can evolve to
as shown in Fig. 11. As illustrated in Fig. 11, the evolution of
permutations depicts a gradual decrease in the belief regarding
θ2 and θ3 over successive iterations, ultimately diminishing
after approximately 58 time steps where their influence on the
ego-vehicle’s plan is disregarded. Furthermore, by the 76th
time-step, the ego-vehicle attains a high level of certainty that
θ1 is the accurate hypothesis adopted by the obstacles. As
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(a) At t = 5.0 s (b) At t = 8.0 s (c) At t = 10.0 s

Fig. 9: Snapshots from the T-junction simulated environment in CommonRoad at different time instants. The ego-vehicle’s plan is to drive from right to left
while avoiding collisions with the other two obstacle vehicles. In Fig 9(a), the prediction of both modes of both obstacles is represented by colored ellipsoids
where the blue ellipsoids depict the left turn and yield policies for the leftward and upward vehicles respectively whereas the yellow ellipsoids illustrate
the lane keep and left turn policies. The driven trajectory by the ego-vehicle is depicted in green. The short-term planned trajectory is illustrated in
purple.

(a)

(b)

Fig. 10: The evolution of the belief of both obstacles based on their observed
orientations according to (6). Top: the belief evolution for obstacle 1 where
λ1 represents the lane keep policy and λ2 represents the left turn policy.
Bottom: the belief evolution for obstacle 2 where λ1 represents the yield
policy whereas λ2 represents the left turn policy. Note that this represents
one of the four permutations that the traffic scene can evolve to.

Fig. 11: The evolution of the belief over permutations in the T-junction
scenario where θ1 corresponds to lane keep and left turn for the
leftward and upward vehicles respectively. The gray vertical lines denote the
time instants at which the snapshots in Fig. 9 are taken.

a result, only this prediction mode significantly impacts the
planner’s decision-making process.

2) Prediction model: In this scenario, we use a synthe-
sized prediction model that incorporates the multi-modality in
the obstacle-vehicle’s intentions. Specifically, our multi-modal
prediction model works as follows:

(i) By identifying target lanes in the T-junction, we extrap-

olate the intended trajectories of surrounding vehicles.
(ii) By employing a motion planner for each vehicle, we

generate ground truth trajectories towards these lanes,
resulting in multi-modal trajectories per vehicle.

(iii) Our multi-modal prediction strategy involves:
• Utilizing a uni-modal prediction model trained on

extensive CommonRoad datasets [67] to generate
Gaussian trajectory distributions for each potential
mode, corresponding to the trajectories from Step
(ii).

• Amalgamating these distributions into a Gaussian
Mixture Model (GMM), weighted by their likeli-
hoods, inspired by prior works such as [18], [19].

(iv) Mode weights, determining the likelihood of each trajec-
tory mode, are computed based on collision avoidance
metrics. These metrics, quantifying collision probabili-
ties between obstacle vehicle trajectories and the ego-
vehicle’s planned trajectory, dynamically adjust mode
weights using a softmax function inspired by works such
as [30].

Remark 6: We emphasize that our approach is agnostic to
the prediction model employed. Any prediction model capable
of providing Gaussian distributions over the predicted modes
can be utilized.

3) Quantitative Results: The quantitative results are re-
ported in Tab. II. The significant enhancement in the ego-
vehicle’s performance is attributed to its ability to delay
the braking decision, thanks to multiple contingent plans, as
long as it is capable of safely braking later when it gets
more certainty about other obstacles’ intents to react to any
possible outcome. This, as expected, comes at the expense of
stopping closer to the obstacle, and braking more aggressively
in situations in which the ego-vehicle has to yield to the obsta-
cles. Despite this delayed decision-making, the maximum risk
encountered by the ego-vehicle, in the contingency planning
case, is still significantly below the defined upper-bound in
the chance constraints, as depicted in Fig. 12, showing that
performance improvement is attained without compromising
safety. As in the previous scenario, the MLE approach has the
best performance in terms of average velocity and progress
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TABLE II: Statistical results over 100 experiments for a T-junction scenario. The comparison is done with respect to the traveled distance by the ego-vehicle,
ego-vehicle velocity, minimum distance to the obstacles, and the maximum deployed acceleration. The results are reported as “average (standard deviation)”.
The branching time is set to tb = 2.4 s.

Approach Progress [m] Velocity [m/s] Min. Distance. [m] Max. Acc. [m/s2] CR[%] Jerk [m/s3]
Our method 91.324 (0.169) 7.017 (0.133) 1.58 (0.06) 2.931 (0.436) 0.00 % 0.841 (0.71)
FISS+ [45] 83.216 (0.413) 6.126 (0.264) 2.08 (0.08) 1.243 (0.617) 0.00 % 0.716 (0.42)

Non-cont. MLE [50] 96.581 (0.648) 7.443 (0.338) 1.06 (0.18) 1.424 (0.556) 3.94 % 0.688 (0.29)
Contingent w/o belief updater [15] 85.649 (0.372) 6.581 (0.162) 1.94 (0.11) 2.983 (0.632) 0.00 % 1.438 (0.96)

along the driving route. This is, however, achieved at the
expense of resulting in collisions making it not safe to be
deployed. Similar to the overtaking scenario, the contingency
planning without a belief updater has a less efficient per-
formance compared to our proposed approach showing that
the belief updater improves the planner’s performance without
compromising safety.

Here it is worth pointing out that the proposed algorithm is
implemented in Python to interface with CommonRoad. The
average computational time over the experiments is 174.98
ms. Tab. III shows how the computational time tc scales with
the number of agents. We emphasize that since the sampling-
based approach is parallelizable, the computational time can be
further improved by evaluating the constraints of the sampled
trajectories through parallelizable computations.

Number of agents 1 2 3
tc (ms) 134.53 186.12 204.31
σtc (ms) 4.7 6.9 11.8

TABLE III: Average computational time tc and standard deviation σtc for
increasing number of agents.

So far, we considered a certain value that we assign to the
branching time tb. In the case of open-loop planning, as in
[14], [17], the branching time is not an independent design
parameter, and it has to be estimated correctly, otherwise, the
ego-vehicle will branch to an over-confident contingent plan by
tb which can result in a collision. In our proposed approach,
however, thanks to planning in a closed-loop with a belief
updater, the branching time does not need to be estimated
exactly. However, low branching times may lead the ego-
vehicle to inevitable states from which it could not recover
in case of certain obstacles’ permutations, due to the limited
dynamics capabilities. Thus, restrictions still apply when it
comes to assigning a branching time which we discuss in the
following section.

Fig. 12: Left: the performance gap regarding the relative velocity for different
branching times, right: the maximum risk, η, recorded in all simulations for
different branching times.

4) Effect of branching time on the plan: In this section,
an analysis of how the branching time affects contingency

planning is conducted. For this purpose, we run experiments
for all values of branching time tb ∈ [∆t, T ], where ∆t is
the discretization step that we set to 0.2 s. For each branching
time, we run 100 simulated experiments in which the obsta-
cles’ intents and their initial states are randomly initialized. We
analyze the effect of the branching time on the relative average
velocity the ego-vehicle exhibits with respect to the baseline,
tb = T . Moreover, the maximum risk among all experiments
for each branching time is recorded. The results are reported in
Fig. 12. As shown, for larger values of the branching time, the
performance gap between both methods is small since most of
the plan is constituted by the shared plan and thus the effect
of the belief updater in the cost function is not pronounced.
Indeed, when tb = T , the disparity in performance disappears,
as our proposed approach aligns with the baseline method
under such conditions. For earlier branching times, however,
the performance gap becomes more pronounced since the
future information gain beyond the branching time is well
exploited in the cost function because of the additional degrees
of freedom introduced by the contingent plans. By inspecting
the maximum risk plot depicted in Fig. 12, it can be observed
that the maximum risk, η, increases as the branching time
becomes shorter. This can be attributed to the over-confidence
in the planned trajectory after the branching time causing the
ego-vehicle to take more risky maneuvers. For sufficiently
short branching times, tb ≤ 2.0 s in this example, the ego-
vehicle could not find a feasible trajectory that does not violate
the maximum risk, δ = 0.05, in the chance constraint, and
subsequently, we execute the planned with the least risk that is
dynamically feasible as we indicated earlier in Remark 3. This
concludes that the branching time in contingency planning is
related to the maximum risk the ego-vehicle perceives. More
analysis regarding the estimation of the branching time tb
based on the ego-vehicle’s dynamics capabilities is left for
future work.

5) Branching time estimation: In this section, we examine
the effect of updating the branching time online, based on
the updated belief the ego-vehicle maintains over different
prediction modes, compared to fixing the branching time tb
to a certain value. To do so, three different baselines are
considered.
Baseline 5: “Oracle” branching time. This estimator re-
constructs the actual branching time by initially simulation
the planning problem using a nominal branching time. Sub-
sequently, it extracts the moment of certainty from the retro-
spective evolution of beliefs. It is important to note that the
oracle relies on access to the true human intent and, as such,
is not implementable in real-world scenarios. Nevertheless, we
incorporate this variant to illustrate the potential performance
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(a) At t = 2.8 s (b) At t = 3.6 s (c) At t = 5.2 s

Fig. 13: Snapshots from the intersection simulated environment in CommonRoad at different time instants. The ego-vehicle’s plan is to take a left turn while
avoiding collisions with the other two obstacle vehicles. The ego-vehicle is depicted as a car icon whereas the obstacle vehicles are represented by blue
rectangles. The prediction of the most probable mode of the obstacle vehicles is represented by colored ellipsoids. The driven trajectory by the ego-vehicle
is depicted in green. The short-term planned trajectory is illustrated in purple.

attainable with the true branching time.
Baseline 6: Branching time heuristics adopted from [65].
This heuristic considers the entropy of the belief that the
ego-vehicle maintains over each hypothesis, θ ∈ Θ, as an
indication of how the observed obstacles’ states are distinct,

H(p(θi)) = −
∑
θi∈Θ

p(θi) log|Θ|(p(θi)) (19)

To estimate the branching time, the predicted trajectories
of each obstacle along each hypothesis from the previous
time-step, δoθ,t−1 are considered as hypothetical observations
that can be inferred from their prediction model to esti-
mate the associate belief according to (6). Another operator,
B(δoθ,t−1, θ, k), is introduced that takes as input the first k
steps from the hypothetical observation, δoθ,t−1, and returns the
updated belief. Accordingly, the branching time is estimated
as

tb = max
θ∈Θ

min
k∈{2,...,T}

ω.k

s.t. H[B(δoθ,t−1, θ, k)] ≤ ϵ
(20)

where ω indicates the discretization step. This heuristic esti-
mates the branching time as the first time at which all predicted
beliefs reach a certain threshold ϵ, assuming that the obstacles
behave rationally with respect to their prediction models.
Baseline 7: Branching time heuristic adopted from [66].
This heuristic chooses the branching time as the maximum
time such that any two future scenarios starting at the current
time only diverge by a maximum distance,

tb = max
k∈2,...,T

ω.k

s.t. M(θ, k) ≤ ϵ, ∀θ ∈ Θ
(21)

where M represents the divergence measure. This heuristic,
however, entails at least double the computational time since
the divergence measure is invoked on the ego-vehicle trajec-
tories.
For all baselines, the branching time is updated at every time
step and a Monte Carlo study is conducted to analyze the
performance of updating the branching time at every time
step compared to fixing the branching time to a certain value,
tb = 2.4, that we used in the evaluations in Sections VI-B and
VI-C.

Approach Progress [m] Velocity [m/s] Max. Risk
Oracle 91.688 (0.178) 7.045 (0.132) 0.0464

tb = 2.4 (Ours) 91.324 (0.169) 7.017 (0.133) 0.0461
Heuristics in [65] 89.948 (0.148) 6.912 (0.192) 0.0426
Heuristics in [66] 88.836 (0.163) 6.825 (0.151) 0.0418

TABLE IV: Statistical results over 100 experiments for a T-junction scenario
with different branching time estimates.

As shown in Tab. IV, the performance gap between fixing
the branching time to a certain value, and using an oracle
estimate is very small. This can be attributed to the fact that
since the short-term plan cost is weighted by the belief the
ego vehicle maintains over the long plans, the short-term plan
tends to be biased toward the long-term plan with the highest
belief.

D. Scenario 3. Intersection

In this scenario, the ego-vehicle is tasked with executing
a left turn within an urban intersection, all while navigating
interactions with multiple obstacle vehicles simultaneously.
Each of these obstacle vehicles within the intersection has
the option to either yield to the ego-vehicle, thereby allowing
it to complete its left turn unimpeded, or to challenge the
ego-vehicle and take priority, thereby compelling the ego-
vehicle to yield. Similar to the T-junction scenario, we evaluate
the efficacy of our proposed approach against established
baselines. Quantitative results are presented in Tab V. For
consistency, we utilize a horizon of N = 25 steps, with a
discretization step of 0.2 s, resulting in a time horizon of 5.0
s. Additionally, a branching-time of tb = 2.4 s is defined. Here
it should be noted that the prediction model in this scenario
is similar to the one employed in the T-junction scenario.

Approach Progress [m] Velocity [m/s] CR
Our method 40.696 (0.582) 8.139 (0.147) 0.00 %
FISS+ [45] 29.225 (0.473) 5.851 (0.168) 0.00 %

Non-cont. MLE [50] 42.261 (0.327) 8.452 (0.263) 3.47 %
Cont. w/o belief updater 37.693 (0.372) 7.531 (0.126) 0.00 %

TABLE V: Statistical results over 100 experiments for the intersection scenario
where CR refers to the collision rate.

The outcomes of this scenario mirror those of previous ones,
demonstrating that our proposed approach enables the ego-
vehicle to successfully execute the left-turn maneuver with
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enhanced efficiency compared to the robust baseline, where
the ego-vehicle is required to yield while waiting for other
vehicles to execute their maneuvers inside the intersection3.
However, it’s noteworthy that the MLE approach outperforms
our method in terms of performance, albeit at the cost of a
higher collision rate, as it only considers the most probable
mode without accounting for potential deviations.

VII. CONCLUSION

This paper introduced a novel contingency planning frame-
work that integrates the ego-agent’s beliefs regarding the po-
tential multi-modal behaviors exhibited by surrounding agents.
This belief is continuously updated based on inferred states of
observed obstacles from a predictive model. The methodology
involves decomposing the planning task into short-term and
long-term plans, with each long-term plan being tailored to
a specific obstacle policy. The resultant contingency plans
contribute to the overall plan’s cost by factoring in their costs
along with the associated belief values derived from the belief
updating process. The effectiveness of the proposed approach
was evaluated in the context of two safety-critical driving
scenarios. Through comprehensive closed-loop simulations,
we compared our proposed planner against different baselines.
We demonstrated that our approach achieves less conservative
driving behavior compared to a state-of-the-art multi-policy
algorithm while maintaining equivalent safety assurance. Our
approach has also outperformed the traditional planner that
optimizes over all possible modes provided by a prediction
model. To analyze the effect of the Bayesian belief updater
on contingency planning, we showed that the belief updater
improves the planner’s performance without compromising
safety. The influence of branching time on the planner’s
performance was investigated, and the adaptability of the
proposed approach to scenarios involving multiple vehicles
was explored.

APPENDIX
BASELINES COMPARISON

To ensure a fair comparison between our proposed contin-
gency planning approach and the branching-MPC approach
proposed in [30], the following measures are considered.
Except for the branch-MPC [30], all planners employ the
ego-motion sampler detailed in Section III-B in the Frenet
frame with the same cost function and constraints to rank the
generated samples. Nevertheless, although the branch-MPC
utilizes a different planner, we modified the cost function such
that it is aligned closely to the one used with the Frenet
planner. The utilized cost function for the Frenet planner is
given as,

J(τ) = wvcv + wdcd + waca + wδ̇cδ̇

where cv, cd are the costs for velocity and reference tracking,
whereas ca, cδ̇ penalize the acceleration and steering angle rate
respectively. On the other hand, for the branch-MPC, similar
to the original paper, a unicycle model is adopted where the

3The reader can refer to the video supplement to observe the yielding
behavior of the ego-vehicle using the robust baseline.

states are given by x = [X,Y, v, ψ]T , and the inputs u = [a, δ̇].
The cost function for the branch-MPC is, accordingly, defined
as

J(τ) = (x− xref)
TQ(x− xref) + uTRu

where Q = diag(0, wd, wv, 0), and R = diag(wa, wδ̇). In
this way, we ensure that the cost functions used by the Frenet
and branch-MPC planners are similar. Additionally, the same
kinematic constraints are applied to all planners including
the curvature constraints and the box constraints imposed on
the velocity, acceleration, and jerk. Tab. VI summarizes the
parameters utilized by the planners in the evaluations.

Description Notation Value Unit
Maximum velocity vmax 20 m/s
Minimum velocity vmin 0 m/s

Maximum acceleration amax 4 m/s2
Lane width lw 3 m

Receding horizon N 16 -
Discretization step ω 0.2 -

Branching time tb 1.2 s
Risk threshold δ 5 %
Vehicle width W 2.5 m
Vehicle length L 4 m

Speed cost weight wv 1 -
Lat. deviation cost weight wd 1 -
Acceleration cost weight wa 2 -
Steering rate cost weight wδ̇ 1 -

TABLE VI: List of parameters utilized by the planners for the overtaking
scenario evaluations.

BRANCHING TIME SELECTION

As mentioned in Section VI-C4, the branching time is a crit-
ical parameter that affects the contingency planning efficiency.
To justify our branching time selection for the simulated
scenarios in Section VI, we conducted an ablation study that
measures the performance gap between different branching
times and an oracle that has access to the true human intent.
Fig. 14 illustrates the performance gap regarding the relative
velocity for different branching times for both the overtake
and T-junction scenarios. As shown, for both scenarios, for
the branching times in the middle of the planning horizon,
the performance gap compared to the oracle gets smaller. As
the branching time gets smaller, a less conservative approach
compared to the oracle can be achieved. This comes, however,
at the expense of having higher risk as we discussed earlier
in Section VI-C4. In contrast, with large branching times, the
contingency planning becomes more conservative compared
to the oracle. Based on the obtained empirical results, we can
conclude that fixing the branching time to a certain value in the
middle of the planning horizon can achieve close performance
to the updating it based on an oracle in hindsight.
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