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Abstract—Using the language of dynamical systems, Imitation
learning (IL) provides an intuitive and effective way of teaching
stable task-space motions to robots with goal convergence. Yet,
these techniques are affected by serious limitations when it comes
to ensuring safety and fulfillment of physical constraints. With
this work, we propose to solve this challenge via TamedPUMA,
an IL algorithm augmented with a recent development in motion
planning called geometric fabrics. We explore two variations of
this approach, which we name the forcing policy method and
the compatible potential method. Making these combinations
possible requires two enabling factors: the possibility of learning
second-order dynamical systems by imitation and the availability
of a potential function that is compatible with the learned
dynamics. In this paper, we show how these conditions can be
met when using an IL strategy called PUMA. The result is a
stable imitation learning strategy within which we can seamlessly
blend geometrical constraints like collision avoidance and joint
limits. Beyond providing a theoretical analysis, we demonstrate
TamedPUMA with simulated and real-world tasks, including a
7-degree-of-freedom manipulator that is trained to pick a tomato
from a crate in the presence of obstacles.

−4 −2 0 2 4 6 8 10
x [m]

−10

−8

−6

−4

−2

0

2

4

6

y 
[m

]

PUMA (data-driven)
Fabrics (geometric)
FPM (ours)
CPM (ours)
Start
Target
Obstacles
Trajectories PUMA

Fig. 1: On the left, we show trajectories of the proposed Forcing
Policy Method (FPM) and Compatible Potential Method (CPM)
against the baselines (vanilla geometric fabrics and vanilla PUMA)
on a 2D point-mass example in the presence of obstacles.

I. INTRODUCTION

As robotic solutions rapidly enter unstructured sectors such
as agriculture, household operations, and the food industry,
there is a critical need for efficient methods to quickly train
robots for new tasks. These sectors demand that robots safely
interact with dynamic, fragile environments where humans are
present. Currently, experts manually program these tasks, a
method that is costly and not scalable for widespread use.

A possible solution to this societal challenge comes from
Imitation Learning (IL). Using this technique robots can learn
motion profiles from demonstrations provided by non-expert
users. Furthermore, by encoding the learned trajectories as
solutions of a dynamical system, established mathematical
tools from dynamical system theory can be used to guarantee

global convergence to the goal, as we discuss more in detail
in Sec. I-A. In a robotics context, these learned dynamical
systems encode the navigation policy towards a goal within a
task space - such as the evolution of the end-effector pose of
a manipulator while pouring water in a glass from all possible
initial locations. However, this focus on task space motions
renders IL fundamentally limited when it comes to considering
physical constraints involving the body of the robot impact-
ing with itself or interacting with the external environment.
Substantial recent research has looked into the problem but,
as we discuss in Sec. I-A, to the best of our knowledge there
exists no solution that can simultaneously ensure stability and
real-time fulfillment of physical constraints for systems with
many degrees of freedom.

This work introduces TamedPUMA, a safe and stable exten-
sion of the IL algorithm PUMA [17]. The key enabling idea
behind this new method is to look at the learned stable motion
primitives as the navigation policy within a recently introduced
geometrical framework for motion planning called geometric
fabrics [23]. To make this possible, the learned model has to
be formulated as a 2nd order (neural) dynamical system as
fabrics operate within the Finsler Geometry framework where
vector fields must be defined at the acceleration level [1]. Also,
the learned dynamics must admit an aligned potential, which
roughly means a scalar function whose gradient is aligned with
the acceleration field when the velocity is null. In the paper,
we show how we can ensure that both conditions are met. We
propose two variations on TamedPUMA: the forcing policy
method, treating the learned deep neural network (DNN)
as a forcing term within the geometric fabrics formulation,
and the compatible potential method, introducing an energy-
regulation term requiring the design of a so-called compatible
potential. For both, we analyze the end-to-end performance
both analytically and experimentally (Fig. 1).

A. Related work

Learning stable dynamical systems from demonstrations
Multiple methodologies have been introduced for learning
stable dynamical systems [2, 6]. An influential methodology
in learning stable dynamical systems is Dynamical Movement
Primitives (DMPs) [7] ensuring convergence towards a simple
manually-designed dynamical system. This approach is ex-
tended to non-Euclidean state spaces [26], probabilistic envi-
ronments [15], and in the context of DNN [19, 24]. To ensure
stability, several approaches enforce a specific structure on the



function approximators, such as enforcing positive or negative
definiteness [10, 14, 5], or invertibility [18, 20, 27]. This
restricts the learned motion profile and limits the scalability of
these methods to large and complex function approximators. In
contrast, [16, 17] have showcased better scalability properties
by using tools from deep metric learning [9] to enforce
stability via a contrastive loss. Importantly, [17] extends the
ideas of [16] to more general scenarios, achieving better results
in non-Euclidean state spaces and second-order dynamical
systems, which are necessary for integrating such frameworks
with fabrics.

Geometric motion planning Geometric motion planning
techniques are based on the classical technique of Operation
Space Control [11], achieving stable and converging behavior
for kinematically redundant robots using differential geome-
try [3]. Recently, Riemannian Motion Policies and Geometric
Fabrics have been introduced, where the importance metric
and forcing term can be decoupled [22, 13, 21]. For geo-
metric fabrics, convergence is thereby guaranteed with simple
construction rules [23, 29], and the approach is extended
to dynamic environments [25]. These geometric policies are
shown to be beneficial in designing human-like motions [12]
and have a high planning frequency compared to optimization-
based methods [25].

Combining geometric fabrics and learning Geometric
fabrics have been considered in conjunction with reinforce-
ment learning [28] and Bayesian learning [8]. Most interest-
ingly for the present work, [30, 31] have looked into combin-
ing fabrics with IL. The method they propose is essentially
different from TamedPUMA, as they directly learn the fabric,
which results in limitations in terms of motion expressiveness.

II. PRELIMINARIES

In this section, we introduce fundamental concepts for
trajectory generation using artificial dynamical systems.

A. Geometric fabrics

A dynamical system describes the behavior of a system
using differential equations. In geometric fabrics [23, 21],
these dynamical systems describe an artificial system gener-
ating desired trajectories for a robotic system. The desired
motions are described using second-order nonlinear time-
invariant dynamical systems in multiple task spaces Xj , which
are mapped to and combined in C-space. A task variable
xj ∈ Xj denotes the value of the state representation for the
j-th task space, where j ∈ [M ], M denotes the number of
task spaces, and [M ] = {j ∈ N : j ≤ M}. The relation
between the joint state q in configuration space and a given
task space is stated via a twice-differential map ϕj : C → Xj .
The desired dynamical systems consist of two parts: one that is
energy-conserving h̃ and another that is energy-decreasing f :

q̈ = h̃(q, q̇) + f(q, q̇). (1)

The energy-conservative part takes care of all avoidance tasks,
e.g., joint limit avoidance and obstacle avoidance, while the
energy-decreasing part drives the system towards the goal.

Each avoidance task can be described by energy-
conservative fabrics, ẍj = h̃(xj , ẋj), also denoted as a
spec S = (M̃j , ξ̃j)Xj , within its own task space Xj which
conserves a Finsler energy. To construct a whole-body policy
for the robotic system, the task-space fabrics are mapped to the
configuration space using a pullback operation and summed.
The pullback operation pullϕj

: Xj → C is constructed
as a function of ϕj , and maps the energy-conserving fabric
to the configuration space, h̃j : Sj = (M̃j , ξ̃j)C . The
specs in configuration space are summed, e.g. (S1 + S2)C =
(M̃1 + M̃2, ξ̃1 + ξ̃2)C where the resulting dynamical system
q̈ = h̃(q, q̇) is a fabric as well, since the summation and
pullback operations are closed under algebra. This combined
fabric can be forced towards the minimum of a potential ψ
and damped with a positive definite damping matrix β (energy-
decreasing term).

B. Learning stable motion primitives via PUMA

Policy via neUral Metric leArning (PUMA) represents the
dynamical system fT

θ in one of the task spaces Xj (commonly
the robot’s end effector’s space), denoted as T , as a DNN
with weights θ. The weights are optimized to imitate a set
of demonstrations while ensuring convergence to a goal state
xg ∈ T [17, 16]. In other words, xg must be a globally
asymptotically stable equilibrium in the region of interest.

To enforce stability, a specialized loss is introduced and
optimized alongside an imitation loss. To design this loss, it
is necessary first to define a latent space L as the output of a
hidden layer l of the DNN, such that

ẍ = fT
θ (x, ẋ) = φθ(ρθ(x, ẋ)), (2)

where ρθ : X → L encodes the first 1, ..., l layers and φθ :
L → X the last l + 1, ..., L layers. Then, a projected system
fT →L
θ (x, ẋ) can be defined in L as

ÿ = fT →L
θ (x, ẋ) =

∂ρθ(x, ẋ)

∂t
. (3)

These definitions enable the formulation of the stability
conditions introduced in [16], which are used to construct the
following stability loss in [17]:∑
y0∈B

∑
t∈H

max(0,m+ d(yg,y(y0, t+∆t))− d(yg,y(y0, t)))︸ ︷︷ ︸
ℓstable

,

(4)
where d(·, ·) is a distance function, m is a small margin
hyperparameter, y(y0, t) represents the value of y for an
initial condition y0 and time t. Here, B is a batch of initial
conditions obtained at every iteration by randomly sampling
the workspace, and H contains different values of t up to
some time horizon T . To imitate the set of demonstrations, this
method minimized the combined loss ℓPUMA = ℓIL + λℓstable,
where ℓIL is the behavioral cloning loss introduced in [16] and
λ is a weight factor.



III. TAMEDPUMA: COMBINING LEARNED STABLE
MOTION PRIMITIVES AND FABRICS

With learned stable motion primitives, complex tasks can
be learned from demonstrations, while converging to the goal.
By incorporating these learned dynamical systems into the
navigation policy of geometric fabrics, stable and safe motions
are generated respecting whole-body obstacle avoidance and
physical constraints of the robot. In the following subsection,
we introduce two variations of our method TamedPUMA.

A. The Forcing Policy Method (FPM)

First, we introduce the Forcing Policy Method (FPM). For
this purpose, we define the dynamical system fC

θ in configu-
ration space resulting from applying a pullback operation, a
map from task to configuration space, to the learned system,
via PUMA, in T :

q̈ = fC
θ (q, q̇) = pullϕT

(
fT
θ (x, ẋ)

)
. (5)

Then, leveraging the definition of a forced system from
Eq. (1), in the FPM we propose to use the pulled system
obtained via PUMA as the forcing policy,

q̈ = h̃(q, q̇) + fC
θ (q, q̇). (6)

Assuming ℓPUMA has already been minimized, the system fT
θ

comes to rest at xg, implying that fC
θ converges to qg where

multiple values of qg may exist in the case of a redundant
system. This collection of states qg corresponds to the zero
set of fC

θ . From Proposition II.17 in [21], we know that if
the system in Eq. (6) reaches the zero set of fC

θ , it will
stay there (which comes from the observation that fabrics
are conservative). However, although unlikely in practice,
this system can still come to rest in a local minimum. The
criteria that the system should converge to qg, is therefore not
always met. In Sec. III-B, we propose a method with stronger
convergence guarantees.

B. The Compatible Potential Method (CPM)

As a second approach, we propose the Compatible Potential
Method (CPM) that exploits the concept of compatible poten-
tials to obtain a stronger notion of convergence. A potential
compatible with a dynamical system generally points in the
same direction as the system’s vector field. More formally:

Definition 1 (Compatible potential [21]). A potential function
ψ is compatible with f if: (1) ∂ψ(q) = 0 if and only if
f(q,0) = 0, and (2) −∂ψ⊤f(q,0) > 0 wherever f(q,0) ̸=
0.

From this, [21] introduces Theorem III.5, which states that
given a dynamical system with a compatible potential, then
the system

q̈ = energizeH[h+ f ] + γ(q, q̇) (7)

converges to the zero set of f provided that

γ(q, q̇) = −
(

q̇q̇⊤

q̇⊤MLe q̇

)
∂ψ − βq̇. (8)

Consequently, we aim to leverage this result by using fC
θ as

the system with the compatible potential. From the previous
section, we already concluded that the zero set of this system
maps to the equilibrium xg ∈ T , which is a property we
desire. Hence, it remains to find a compatible potential for
this function to employ the result from Theorem III.5 [21].

Notably, if (4) is successfully minimized, it is possible to
design a compatible potential for the system fT

θ in the latent
space L using the mapping ρθ by setting ẋ = 0. Specifically,

ψ(x) = ∥ρθ(xg,0)− ρθ(x,0)∥2. (9)

To observe that this is a compatible potential of fT
θ , first,

we highlight that since xg is asymptotically stable, we have
∂ψ(xg) = 0 if and only if f(xg,0) = 0. This satisfies the
first condition of Definition 1. Second, we note that for all
x ̸= xg, Eq. (4) enforces the value of ψ(x) to decrease
as fT

θ evolves over time, provided that ρθ has a Lipschitz
constant that is not large, which can be controlled through
regularization. Thus, this potential also satisfies the second
condition of Definition 1. Finally, it only remains to express
the gradient of this potential in configuration space, previously
denoted as ∂ψ. For clarity, we will henceforth write this as
∂ψ/∂q. To achieve this, we require the forward kinematics
from configuration space C to task space T , denoted ϕT . Then,
we obtain

∂ψ =
∂ψ

∂q
=
∂ψ

∂x
· JϕT (x), (10)

where JϕT is the Jacobian matrix of the forward kinematics.
The matrix JϕT is commonly available in robotic frameworks,
and the term ∂ψ/∂x can be approximated via automatic
differentiation tools for DNNs.

IV. EXPERIMENTAL RESULTS

A. Experimental setup and performance metrics

To showcase the performance of the two variations of
TamedPUMA, FPM and CPM, simulations using the Pybullet
physics simulation [4] and real-world experiments are per-
formed on a 7-DoF manipulator. A DNN is trained using 10
demonstrations where a tomato is picked within a crate. In
Figure 1, an illustrative example of our proposed approaches
compared against the baselines geometric fabrics and PUMA
is provided for a point-mass.

The proposed FPM and CPM, are compared against vanilla
geometric fabrics and vanilla PUMA. All are evaluated on
their success-rate and time-to-success indicating the ratio of
scenarios and required time respectively for the robot to reach
the goal pose with a collision-free motion, given a margin of
∥xee − xg∥2 < 0.02. The methodologies are also compared on
the average minimum clearance between the collision shapes
of the robot and obstacles over all scenarios and computation
time. In addition, the path difference to the desired path by
PUMA is denoted, ∥Xee −XPUMA∥2, where X indicates the
stacked list of end-effector poses along the path.



TABLE I: Statistics for 10 simulated scenarios of the two proposed variations of TamedPUMA, namely FPM and CPM, compared against
vanilla fabrics and vanilla PUMA. For completeness, the results of PUMA in an obstacle-free (PUMAfree) and obstacle-rich environment
(PUMAobst) are provided.

Success-Rate Time-to-Success [s] Min Clearance [m] Computation time [ms] Path difference to PUMA
PUMAfree 1 3.77 ± 0.40 - 3.89 ± 0.26 0
PUMAobst 0.2 3.81 ± 0.05 0.01 ± 0.03 4.77 ± 1.14 0

Fabrics 0.9 8.70 ± 5.43 0.05 ± 0.02 0.40 ± 0.061 0.18 ± 0.24
FPM 1 9.56 ± 7.62 0.04 ± 0.02 5.00 ± 0.74 0.13 ± 0.21
CPM 1 8.95 ± 4.13 0.05 ± 0.03 6.18 ± 0.74 0.11 ± 0.16

(a) Initial pose (b) Bowl approaches (c) Avoid the bowl (d) Avoid the hand (e) Goal reached

Fig. 2: Selected time frames of CPM during a tomato-picking task.

B. Simulation experiments on a 7-DOF manipulator

In simulation, 10 realistic scenarios are explored of the
tomato-picking task varying the initial configuration and the
location of the obstacles. For each scenario, at least one
obstacle is situated between the initial configuration and goal
pose. The start and goal pose of the end-effector are ensured to
be collision-free and the goal pose is reachable with PUMA in
an obstacle-free environment. The last five links on the robotic
chain are considered for collision avoidance, given that the first
three links have restricted movement due to the base being
mounted to the table.

As depicted in Table I, the two variations of TamedPUMA
improve the success rate with respect to PUMAobst as it allows
for whole-body obstacle avoidance. In contrast to geometric
fabrics, FPM and CPM can track the desired motion profile
leading to a marginally smaller path difference with PUMA
compared to geometric fabrics. In Fig. I, this path difference
can be misleading as the path is desired to deviate from the
path by PUMA if obstacles are avoided. However, if obstacles
are not obstructing the path, FPM and CPM converge to the
path provided by PUMA with a path difference of 0.04 ±
0.05 and 0.05 ± 0.05 respectively, while geometric fabrics
is unable to follow the desired motion profile with a path
difference to PUMA of 0.15 ± 0.19. Geometric fabrics also
result in a deadlock in 1 of the 10 scenarios where the
robot does not reach the goal as it is unable to move around
the edge of the crate. In contrast, PUMA already encoded
the intuitive trajectory of first moving the end-effector above
the box, before performing a grasp. Although the CPM has
stronger theoretical guarantees compared to FPM, performance
is similar when comparing the two proposed approaches in
Table I. Computation times are within the order of 4-7 ms
making the methodologies well suitable for real-time reactive
motion planning.

C. Real-world experiments on a 7-DOF manipulator
During experiments with the real 7-DOF manipulator, two

dynamic obstacles blocked the way: a bowl with grapes and
a person’s hand. Both these obstacles are moving through the
robot’s workspace and are tracked in real-time via an optitrack
system. In addition to the collision spheres considered during
simulation, an additional collision sphere is added to the
collision geometry on the center of the robotic hand. Snapshots
of a real-world experiment of the CPM are illustrated in Fig. 2.
If the obstacles are not blocking the trajectory of the robot,
the observed behavior of the proposed methods, FPM and
CPM, are similar to PUMA and showcases clearly the learned
behavior as demonstrated by the human. The user can push the
robot away from the goal and recover from this disturbance.
In the presence of obstacles, FPM and CPM achieve collision
avoidance between the considered links on the robot and the
obstacles while reaching the goal pose as illustrated in Fig. 2.

A low-level joint impedance controller tracks the desired
velocities and positions, outputting torque commands. This
allows users to physically interact with the robot.

V. CONCLUSION

Imitation learning via stable motion primitives is a well-
suitable approach for learning motion profiles from demon-
strations while providing convergence to the goal. We intro-
duced TamedPUMA, a safe and stable extension of learned
stable motion primitives augmented with geometric fabrics
for safe and stable operations in the presence of obstacles.
We proposed two variations, the Forcing Policy Method and
Compatible Potential Method, ensuring respectively that the
goal is stable, or the stronger notion that the system converges
towards the reachable goal. Experiments were carried out both
in simulation and in the real world. When trained on a tomato-
picking task, the proposed TamedPUMA generates a desired
motion profile using a DNN while taking whole-body collision
avoidance and joint limits into account.
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[16] Rodrigo Pérez-Dattari and Jens Kober. Stable motion
primitives via imitation and contrastive learning. IEEE
Transactions on Robotics, 39(5):3909–3928, 2023.
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