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Abstract—Robot autonomy often involves planning high-level
discrete decisions and continuous motion planning to realize
each decision. Task and Motion Planning (TAMP) algorithms
solve these hybrid problems jointly while considering constraints
between the discrete symbolic actions, i.e., the task plan, and their
continuous geometric realization. Previous TAMP algorithms
have mostly focused on computational performance, complete-
ness, or optimality. However, due to the required simplifications
and abstractions, the resulting plans often do not account for
robot dynamics, nor complex contacts. They also often ignore
the effect of the low-level controllers on the optimality and/or
feasibility of the plan’s realizations. This work investigates the
use of a parallelized physics simulator to compute realizations
of the plan with a motion controller, realistic dynamics, and
considering contacts with the environment. Using cross-entropy
optimization, we sample the parameters used by the controllers,
or actions, to obtain low-cost solutions. The resulting realized
plan is straightforward to implement in the real system, as the
robot uses the same controllers. We test our approach for a pick
and place task, where our method is capable of finding low-cost
feasible solutions in 1-2 min.

I. INTRODUCTION & RELATED WORK

Solving task planning problems that accomplish high-level
symbolic specifications in real robot settings requires au-
tonomously deciding both what to do, i.e., the sequence
of high-level actions, and how to do it, i.e., the associated
motions. This problem is often complex as early actions and
the way they are applied may significantly impact later actions’
performance or even feasibility. TAMP is an approach to solve
simultaneously the symbolic (i.e., actions) and the geometric
(i.e., motion) constraints on the solution [1].

Solving TAMP problems is computationally expensive.
Evaluating a symbolic plan candidate (i.e., a sequence of
symbolic actions) requires finding the appropriate action pa-
rameters that make the generated motions optimal or at least
feasible. TAMP problems then need to consider the combinato-
rially large set of possible symbolic plans that accomplish the
high-level specification, as well as the sets of possible action
parameters. As a consequence, most real-world scenarios
require TAMP algorithms to be computationally efficient and
to often use simplifications and heuristics.

Existing TAMP solvers divide the problem into hierarchical
feasibility (and optimality) stages with progressively more
detail to filter the space of symbolic plans. Optimization-based
approaches [2, 3] use tree search over sequences of symbolic
actions, and evaluate the feasibility and optimality of each
node with increasing detail as heuristic. The computation of

Fig. 1: Parallel instances for different realizations of the same
plan, where the robot is performing a grasping motion in the
Isaac Gym physics simulator.

the detailed motion relies on carefully crafted mathematical
constraints and kinematics models that can be efficiently used
in specialized optimizers [4, 5], which, depending on the
problem formulation, may not find a solution.

In [6, 7], sampling based approaches are used in combi-
nation with Planning Domain Definition Language (PDDL)
[8] symbolic planners to incrementally generate PDDL sub-
problems from discretized action parameters. Thomason et al.
[9] introduces an optimal sampling-based approach using
asymmetric bidirectional sampling, which significantly im-
proves the efficiency of finding action parameters for plans
without the need for discretization. These methods require
the creation of samplers that generate constraint-satisfying
configurations of the robot and objects, for the predicates
in preconditions and effects of the actions operators. The
samplers need to be efficient, and therefore, encoding complex
dynamics and contacts in the predicates is often not feasible.

This work investigates the use of GPU-based physics
simulators to efficiently find high-quality realizations of a
plan. The realization of the actions accounts for the effects
of the motion controllers that the real robot will use, as
well as complex contacts due to the robot and environment
geometry, Figure 1. As the complexity of modeling contacts
and dynamics is offloaded to the simulator, the complexity
and number of predicates, preconditions, and effects of the
actions are significantly reduced. Moreover, we use efficient
and parallelizable low-level controllers to perform the actions,
which allows us to only sample the parameters that define
the resulting motion instead of sampling the motion itself.



This has the additional benefit of generating plans that are
straightforward to implement in the real system and will use
the same controllers. The parameters are sampled following a
probability distribution, which is iteratively brought closer to
the optimal distribution using cross-entropy optimization.

II. PROBLEM FORMULATION

We consider robotic task planning problems, where a se-
quence of actions needs to be completed successfully to
achieve a final symbolic specification ψg while minimizing
a cost. In addition, we consider dynamical properties of the
system and complex contacts. Previous actions may affect
subsequent actions’ feasibility and cost.

The configuration space of the system is X = Q×SE(3)m,
where Q denotes the configuration space of the robot, and
there are m objects in the environment. Let xt ∈ X be the
state of the whole system at time t. The final specification is
accomplished if ψg(xT ) = True for the final time T

We define symbolic parameters Z = {z1, . . . , zk} repre-
senting variables of interest of the problem. As an example,
consider a SE(3) grasp pose required to grasp a block; we
call this symbolic parameter graspCube. The values that a
parameter can take are constrained by h(zj) ≤ 0, which will
be referred to as the region of the parameter. For graspCube,
this could mean that we consider all grasp poses whose
locations are on a spherical surface around the cube.

The robot can execute a finite set of action templates A =
{α1, . . . , αw}. which can be considered an abstraction of a
specific high-level robot skill (e.g., grasping, placing, moving,
etc.). We use the connotation ”template” as several actions
can be generated from the same template by instantiating
them with different symbolic parameters. Action templates are
defined by the tuple

αi = (Zαi , controllerαi , cαi(xt), successαi), (1)

where Zαi
is a set of parameters compatible with the action

template. A parameter is compatible if it is consistent with the
controller’s type of input. For example, if the action template
uses a PID point ∈ R2 tracking controller, the type of symbolic
parameter must be a R2 point (within a region).

The controllerαi
uses the parameters to calculate the action

motion and control the robot. The action template has a cost
cαi

(xt), which can be continuously evaluated or only once
when the action is finished (terminal cost). The success of the
action can be determined by evaluating the boolean predicate
successαi

∈ {True, False}, which depends on the generated
motion during the action execution.

When a compatible assignment of symbolic parame-
ters Zai ⊆ Z is made to instantiate an action tem-
plate, we obtain a symbolic action ai. As an example,
consider the following symbolic actions resulting from a
different choice of parameters for the template move to:
move to(Exit, . . .), move to(Table, . . .). We say that the
action is ”realized” when a value is given to its symbolic
parameters Zai

. A realized action may not necessarily be
successful.

A symbolic plan is defined as a sequence of symbolic
actions π = {a1, . . . , an} and its symbolic parameters are
the parameters of its actions, Zπ = [Za1 , . . . , Zan ]. A plan is
realized when all its actions are realized, and it is feasible if all
actions can be executed and the goal specification is achieved.
The total cost of a realized plan is the sum of all realized
action costs plus a final cost.

c(π) = cend(x0:T ) +

n∑
i=1

Ti∑
t=t0,i

cai(xt), (2)

where t0,i and Ti represent the start and end time of ai.

Problem 1 (Symbolic Plan Realization). Given a sequence of
symbolic actions π = {a1, . . . , an}, find a realization Zπ that
solves

min
Zπ

c(π)

s.t. successai = True, ∀ ai ∈ π
ψg(xT ) = True

(3)

In Problem 1 we assume that for a given action sequence,
there exists a realization of the parameters of each action Z∗

π

that makes the plan feasible.

III. METHOD

In this section, we outline the methods used to evaluate plan
realizations with the required level of detail in a reasonable
time. To accomplish this, we use parallelized implementations
of the physics simulator and low-level controllers to evaluate
plan realizations. Finally, we use a sampling based optimiza-
tion approach to find the parameters of the pan.

A. Simulation of the Dynamics
To accurately model the dynamics and complex contacts

of the robot interacting with the objects in the environment,
we use the GPU-based physics simulator IsaacGym [10].
The simulator allows for computationally efficient parallelized
execution of plans, which makes sampling-based methods
feasible, see Figure 1.

B. Low Level Controllers
1) Optimization Fabrics: Used for fast computation of

full body motions (mobile base + manipulator) when end
effector pose control is required. The controller is based on
Riemannian Motion Policies (RMPs) [11] with convergence
and safety guarantees. The system is forced by the potential
ψ to the desired minimum with attractor weight γ and damping
B.

M̃(q, q̇)q̈ + f̃(q, q̇) + γ∂qψ +Bq̇ = 0 (4)

Solving (4) yields the trajectory generation policy in acceler-
ation form q̈ = π̃(q, q̇), which is known as static fabrics [12].
The equation can be modified to account for dynamic obstacles
such as moving obstacles and reference path tracking [13].

2) Path Finding: A* [14] is used to compute collision-free
paths for the mobile base. The generated waypoints are tracked
with a PID controller. A* is computationally efficient for low-
dimensional problems with appropriate discretization, making
it suitable for our use case.



Algorithm 1 Plan Parameter Cross-Entropy Optimization

Initialization:
1: Zπ ← Symbolic parameters used by the actions
2: ϕ(θ0π)← Parameterized initial distribution
3: nenv ← Number of parallel plans
4: Ne ← Number of important samples
5: j = 0 ▷ CE iteration counter
6: while θjπ not converged do
7: S ← Sample nenv times Zπ from distribution ϕ(θjπ)
8: C ← Evaluate successful plan costs of samples in S
9: θj+1

π ← Update distribution based on top Ne samples
10: j = j + 1
11: end while
12: return Best sample Zπ ∈ S, and final θj+1

π

C. Cross-Entropy Optimization of Parameters

In order to optimize the parameters Zπ of a given plan π,
we use Cross-Entropy optimization (CE) [15]. The method
iteratively refines the estimation of the optimal parameters
by using a form of importance sampling and updating the
parameters based on the samples that yield better results.

We assign a parametrized probability distribution of ap-
propriate dimension to each parameter of an action zk ∼
ϕ(θk) ∀ zk ∈ Zai

. Let ϕ(θπ) be the resulting probability
distribution of all the parameters of a plan π. For convenience,
we refer to sampling all the parameters of the plan as sampling
the vector Zπ ∼ ϕ(θπ). The outline of the CE optimization
used can be seen in Algorithm 1

IV. PRELIMINARY RESULTS

We test the method for a pick and place task with a mobile
manipulator, see Dingo-O with Kinova 6DoF arm and gripper
in Figure 1. The robot needs to grasp a block from a table,
place it on another table, and move to the exit. We define the
following action templates:

move to({loc},A*, cm(xt), in(loc)) (5)
grasp({gp},Fabrics, cg(xt), ee in(gp)) (6)
place({gp},Fabrics, cp(xt), ee in(gp)) (7)

The A* implementation in (5) uses a 2D discretized version
of the environment, avoiding obstacles (the tables). The way-
points are then tracked by a PID controller, which controls the
velocity of the mobile base. During move to The arm remains
static. The cost cm is 1 every time step the action is not fin-
ished. The success condition is true if the mobile base is at the
goal location within a tolerance in(loc) : ∥xbase − xloc∥ ≤ ϵ

For (6) and (7), we use as input parameters a grasp pose
gp and a full body (mobile base + arm) parallelized fabrics
controller. As before, The cost is simply 1 every time step the
action is not finished. The success condition is true if the end
effector has reached the grasp/place pose within a tolerance
ee in(gp) : ∥gp − pee∥ ≤ ϵ
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Fig. 3: Evolution of the distribution of the parameters with
each CE iteration. For 3D parameters, only the first two
dimensions are shown.
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Fig. 4: Evolution of the cost of the best-sampled plan (left
axis). Change in percentage of sampled plans that are evalu-
ated as successful (right axis). Averaged over 10 runs, filled
area represents ±σ.

We define the following symbolic parameters: Table1 and
Table2, annular regions of R2 points around the table with
the block and around the table where the block can be placed,
respectively. Cubeg and Cubep are hemisphere surface regions
around the block and around the center of the second table,
respectively. Finally, Exit is a rectangular region of R2 points
centered around the robot’s resting area.

We create a candidate symbolic plan by extending the
current action templates with appropriate preconditions and
effects, and using an off-the-shelf PDDL solver [16]. The
resulting plan accomplishes, at least at the symbolic level, the
goal of moving the block to the second table, and ends with
the robot in the designated exit area.

π = move to(Table1), grasp(Cubeg),

move to(Table2), place(Cubep),move to(Exit) (8)

We evaluate a realized plan as successful if the grasp
and place actions were successful, and if the robot’s mobile
base final position is inside the region Exit. Notice how the
requirement of a successful plan does not enforce the robot
to be in the annular regions Table1, Table2. Sampling over
these regions serves as an initial guess of the distribution.

We run the CE Algorithm 1, by initially sampling values
uniformly over the whole region of the parameters. For subse-
quent iterations, we model the distribution of the parameters

https://clearpathrobotics.com/dingo-indoor-mobile-robot/
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Fig. 2: Plans simulated from the sampled parameters for different iterations of the CE optimization. The trajectories displayed
in orange tones show the trajectory of the mobile base. The cross markers show the value of the parameter. The best-sampled
plan is shown in cyan, both base and end effector trajectory (EE), in continuous and dashed lines, respectively. The parameter
areas are displayed in clear grey. The tables are in black, with 20cm of additional padding, as used by the A* algorithm.

as an independent normal distribution. The resulting µ and σ
of the elite parameter samples are used for the next iteration.

We use nenvs = 200 and Ne = 10, and perform 10 CE
iterations. The resulting sampled plans at different stages can
be seen in Figure 2, with the sampled parameters and resulting
trajectories projected into the ground plane. The end effector
trajectory is shown only for the best sample of the CE iteration.

Figure 3 shows the parameters’ normal distributions as they
evolve with each iteration. The 2D distribution is shown as an
ellipse with the corresponding semi-axis being 2σ. For the 3D
pose parameters, only x, y is shown.

Only ≈ 10% of the sampled plans are successful during the
initial iteration with uniform distribution. This is mostly due to
the unlikeliness of sampling a grasp pose reachable from the
random position around the table. As the iterations progress,
the successful plan samples significantly increase, and the cost
of the best sampled plans decreases Figure 4.

V. CONCLUSION AND NEXT STEPS

The preliminary results showcase that our method is capable
of finding low-cost realizations of a given plan within few

CE iterations. The solution takes into account the geometrical
constraints of the robot, such as the inability to reach objects
from certain positions. Our formulation does not require one
to explicitly model these constraints in the problem definition,
and instead, they appear as a consequence of the simulation.
The effects of the specific controller can be seen when the
mobile base is repositioned while pushing against the table
during grasping and placing. This behavior resulting from
contacts and controllers could not be accounted for in previous
sampling-based methods [7, 9]

The results also show that our method requires further speed
up in order to be used in a real setting (≈ 30s per CE iteration),
where replanning is needed to react to unexpected changes in
the environment within a reasonable time, especially when
different plans need to be compared. Our next step is to
introduce the search over different sequences of actions in
the optimization problem [17]. By taking advantage of the
low computational cost of adding parallel plan evaluation, we
expect a significant speed-up . Moreover, we will explore
breaking plans into smaller action sequences that can be
simulated in parallel and stitched together.
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