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Abstract—Mobile manipulators are susceptible to situations
in which the precomputed grasp pose is not reachable as the
result of conflicts between collision avoidance behaviour and
the manipulation task. In this work, we address this issue
by combining real-time grasp planning with geometric motion
planning for decentralized multi-agent systems, referred to as
Reactive Grasp Fabrics (RGF). We optimize the precomputed
grasp pose candidate to account for obstacles and the robot’s
kinematics. By leveraging a reactive geometric motion planner,
specifically geometric fabrics, the grasp optimization problem can
be simplified, resulting in a fast, adaptive framework that can
resolve deadlock situations in pick-and-place tasks. We demon-
strate the robustness of this approach by controlling a mobile
manipulator in both simulation and real-world experiments in
dynamic environments.

I. INTRODUCTION AND RELATED WORKS

One of the most common applications of robotic manip-
ulators is the pick-and-place task. A grasp pose is selected
based on a detected object’s pose, which is used for trajectory
planning and execution. A top-down grasp is usually sufficient
for a single manipulator in a highly controlled environment.
However, in the domain of mobile manipulation or multiple
manipulator workspaces, the presence of other agents and
dynamic obstacles can easily render the precomputed top-
down grasp invalid. Moreover, the manipulation task may
conflict with collision avoidance, resulting in deadlocks where
neither of the manipulators can continue its task, Fig. 1. As
a consequence of the dynamic nature of the environment,
computing trajectories and grasp poses must be done in real
time. In this paper, we aim for online grasp and motion
planning that is especially robust in scenarios where robots
operate in close proximity.

Multi-agent motion planning can be broadly divided into
two categories: centralized and decentralized. As centralized
approaches compute a collaborative plan for all agents to
achieve their goals while ensuring collision avoidance, an opti-
mal solution can be obtained. However, the high computational
time is inevitable, and the necessary communication between
agents is constraining [13]. On the other hand, decentralized
methods do not have these limitations, but the solution is
not jointly optimal since there is no global understanding of
the problem. Our approach can adapt the grasp poses in a
decentralized way by considering other robots as obstacles.

In the context of motion generation, repeated replanning
is commonly done using the Model Predictive Control (MPC)

(a) Vanilla geometric fabrics (b) RGF (ours)

Fig. 1: Mobile manipulators are grasping objects in close proximity.
Without adapting the grasp poses, Fig. 1a, the robots cannot resolve
the deadlock caused by the potential collision. Via the proposed RGF,
both robots grasp the object while avoiding collisions, Fig. 1b.

framework. However, the required computation is a major bot-
tleneck for high-dimensional systems [14]. Data-based meth-
ods represent an attractive alternative since they can drastically
reduce computational time. Nonetheless, these approaches
require a lengthy process of data collection and subsequent
training. Moreover, they lack guarantees to satisfy all physical
constraints [4]. Another class of methods is built on the
concept of geometry control, such as Riemannian Motion
Policies [11] and Geometric Fabrics [12, 15]. Fabrics can
encode the desired behaviour of the system, including joint
limits and collision avoidance, into geometries represented by
second-order differential equations. The resulting geometry,
obtained by combining all behaviours, shapes a manifold of the
configuration space in such a way that avoidances are achieved
in a smooth manner. The solution to the differential equation
can be symbolically precomputed offline, thereby achieving a
high replanning frequency.

The popular perception approach for pick-and-place tasks
involves data-driven models trained on generated synthetic
point clouds and using parallel-jaw grippers [3]. By processing
sensory inputs from RGB-D cameras, these models provide
top-down grasp candidates for the given objects, usually in the
form of a grasp axis [7, 9, 8]. The drawback of these methods
is that they do not consider the current state of obstacles,
often rendering the path from the robot’s initial state to the
grasp candidate unreachable. This issue is especially common
for mobile manipulators operating in dynamic environments.
Ichnowski et al. [5] demonstrated that the grasp axis can be
exploited by creating an additional degree of freedom around
it to compute a more feasible grasp pose and trajectory that



enables faster pick-and-place cycle time. However, simulta-
neous grasp and motion optimization introduces additional
nonlinear constraints resulting in higher computation times [6].
Our approach is related to the work in [6] but achieves run-
time performance via geometric fabrics.

We propose the Reactive Grasp and Motion Generation
framework, denoted as RGF, for adaptive mobile manipulators
operating in close proximity. The grasp planner is formulated
as a nonlinear programming (NLP) problem that exploits the
degrees of freedom around the grasp axis, determined by
vision-based grasp analysis methods. Additionally, the NLP
formulation allows us to integrate the robot’s mechanical limits
and collision avoidance constraints. By building on reactive
geometric fabrics, we simplify grasp planning to account for
the grasp pose and sparse waypoints with minimal constraints.
The framework is capable of real-time adaptive grasp selection
and motion planning in decentralized multi-agent settings. This
paper provides the following contributions:

1) A framework for reactive grasp selection based on
the current state of the environment guiding geometric
fabrics for efficient motion planning.

2) Efficient decentralized multi-agent task execution in
environments shared with humans and mobile manip-
ulators, avoiding deadlock scenarios.

3) Experimental evaluation in simulation and real-world
experiments.

II. PRELIMINARIES

A. Geometric fabrics

Geometric fabrics define the desired behaviour of a sys-
tem using second-order differential equations of the form
ẍ = h(x, ẋ) [12, 10]. The desired motions are described
using an artificial dynamical system for each task, such as
avoiding a collision between the end-effector of the robot and
an obstacle. Each system is defined in a task space Xj with
task variable xj given j ∈ [M ], where M denotes the number
of task spaces, and [M ] = {j ∈ N : j ≤ M}. To ensure that
trajectories generated by the dynamical systems are converging
when forced, the system is energized using a Finsler energy.
The resulting system ẍ = h̃(x, ẋ) then forms a geometric
fabric [10]. To ensure path consistency, e.g. energization only
changes the speed along the path but not the path itself, the
function h(x, ẋ) is designed to be homogenous of order 2,
h(x, αẋ) = α2h(x, ẋ), ∀α ≥ 0.

To combine all behaviours, all task-dependent dynamical
systems are pulled to the configuration space C and summed.
The pullback operation, pullϕj

: Xj → C, maps the energy-
conserving fabric to the configuration space using a twice-
differential map ϕj : C → Xj [12]. For example, if the task
variable is the end-effector position, the differential map is
given by the forward kinematics, FK(q). The pulled fabrics are
summed in configuration space, where the resulting dynamical
system q̈ = h̃(q, q̇) is a fabric as well since the pullback and
summation operations are closed under algebra. The result-
ing energy-conserving fabric can be forced by a navigation

policy f to the minimum of a potential function ψ(q) when
damped,

q̈ = h̃(q, q̇) + f(q, q̇). (1)

Eq. (1) is therefore a combination of all avoidance behaviours
defined as energy-conserving fabrics h̃ and a policy forcing the
system to a desired goal. As geometric fabrics remain a local
motion planning method, it is dependent on global guidance
to avoid deadlock scenarios and local minima. In the context
of grasp and motion planning, we ensure this global guidance
via a reactive grasp and motion generation framework.

III. REACTIVE GRASP AND MOTION GENERATION

Building on work by Ichnowski et al. [5], we assume that the
superior perception system produces a grasp pose candidate
denoted as p−. In the case of parallel-jaw grippers, the grasp
pose defines the axis that connects the two grasp points, around
which we can formulate an additional degree of freedom
(DoF). Moreover, this can be expressed as rotation matrix
RDoF(θ) providing a continuous interval P around the original
constant grasp pose,

P = {pi|pi = RDoF(θ)p
−}, (2)

which can be formulated as a constraint in a nonlinear mathe-
matical program. Here, θ specifies the angle of rotation, whose
range depends on a given task. The decision variables of the
optimization problem are formulated as waypoints qt ∈ Cn,
where n is the number of DoF. These waypoints are expressed
in the joint configuration space, where the final waypoint qT
represents the joint configuration for reaching the grasp pose.
The resulting NLP formulation also enables the incorporation
of mechanical limits, collision constraints, and task constraints
as follows,

min
q0:T

f(τ) (3a)

s.t. FK(qT ) ∈ P (3b)
g(q(t)) ≤ 0, ∀t ∈ [0, T ] (3c)
h(q(t)) = 0, ∀t ∈ [0, T ] (3d)

where the goal is to find a sequence of the robot’s joint
configurations τ = (q0, q1, ..., qT ), which minimizes the
control cost f(τ) while satisfying the constraints. Equation
(3b) imposes that the result of the forward kinematics FK(qT )
for the last waypoint qT needs to be in the grasp pose
interval defined in Eq. (2). The robot’s motion is obtained
under the inequality and equality constraints in Eq. (3c)-(3d)
respectively, satisfying joint limits and collision avoidance on
the discrete path τ .

Solving the full grasp and trajectory optimization problem
from Eq. (3) in a receding horizon fashion is costly, especially
for systems with high DoF. However, by leveraging fabrics as a
local motion planner, we can embed the majority of constraints
within the designed geometry. Consequently, the NLP can
be simplified in terms of constraints and sparse waypoints,
allowing it to be used effectively as a sparse global planner
that considers a full manipulation horizon, while still achieving
real-time performance.



A. Objective function

The objective function in Eq. (3a) is the quadratic control
cost function that penalizes the sum of squared accelerations
along the trajectory expressed by joints’ positions.

f(τ) =
1

2
q̄TQq̄, (4)

where q̄ is a one-dimensional stacked vector of waypoints
within τ . Q is a positive semidefinite matrix expressed as
Q = ATA, with A being a finite differencing matrix used to
compute joint accelerations q̈ = Aq. This objective function
enforces smooth motions to achieve feasible trajectories, with
the joint limits for the first waypoint q0 set to the current state
of the robot.

B. Collision avoidance

In order to estimate the feasibility of the grasp pose and
avoid deadlocks caused by the multi-agent environment, col-
lision avoidance is embedded into the optimization problem.
Since fabrics facilitate whole-body collision avoidance, it is
sufficient only to consider the mobile base link and the wrist
link of the manipulator for the NLP. Collision avoidance is
expressed as inequality constraints, where these links and
obstacles are approximated by spheres in the form,

||slink − sobst||2 ≥ rlink + robst, (5)

where slink and sobst are the center position of spheres of the
links of the robot and obstacles respectively and rlink and robst
are their radii [2].

C. Grasp constraint

The grasp constraint in Eq. (3b) is expressed as enforcing
the angle θ between two normalized vectors aunit and bunit to
be within a given interval. Let’s assume that vector a and b
are expressed in the same frame, then the constraint has the
form:

cos(θupper) ≤ aT
unitbunit ≤ cos(θlower). (6)

To leverage the interval specified by P in Eq. (2), we constrain
two pairs of normalized rotational axes. Firstly, one of the
end-effector axes has to align with the axis of rotation defined
by a grasp candidate. Secondly, the angle between the other
end-effector axis and the grasp candidate must be within
the interval specified by θ. The selection of specific vectors
depends on the given task. For cylindrical objects, such as
cups, or when using suction grippers, we can formulate the
problem to only require alignment of the axis in the first step.

D. The RGF framework

The solution to the grasp planning problem, formulated
by the aforementioned objective and constraint functions and
expressed in the end-effector frame, is shown in Fig. 2. Even
though the grasp planner computes the sequence τ , currently
only the final configuration qT is used for fabrics, as reference
tracking will be addressed in future work. Nevertheless, since
the objective function binds these waypoints together, con-
sidering collision avoidance for these sparse waypoints helps

Fig. 2: Grasp planning optimizes the grasp candidate (green), which
is initially unreachable, by leveraging the DoF around the grasp
candidate. This results in an optimized grasp pose (red) and a sparse
trajectory (red squares).

to compute a better grasp pose. The final waypoint qT of
the sequence τ is mapped to its corresponding end-effector
pose xref

ee via the forward kinematics and integrated into the
potential function ψ(x) where x ∈ X is the distance between
the current end-effector pose xee and the subgoal xref

ee , within
its respective task space X .

IV. EXPERIMENTS

A. Experimental setup

The presented RGF framework is applied both in simu-
lation and with real hardware. In both settings, we used a
9-DoF mobile manipulator consisting of a Clearpath Dingo
holonomic mobile base and a Kinova Gen3 Lite 6-DoF ma-
nipulator. The grasp planning optimization problem was solved
using the nonlinear optimizer IPOPT [16] within the symbolic
framework CasADi [1]. In all experiments, the grasp planner
operates at a frequency of 10 Hz, whereas geometric fabrics
operate at 25 Hz. To detect the poses of obstacles, objects, and
the mobile base, we employ the Vicon motion capture system.
However, this can be replaced by any grasp analysis method,
such as Mahler et al. [7]. A laptop with an Intel Core i7
processor and 16 GB of RAM is used to run the grasp planner
and simulations, while in real-world experiments, fabrics and
low-level controllers are executed on the NVIDIA AGX Orin
controller within the Dingo.

B. Avoiding deadlocks in multi-agent settings

In the simulation experiments, we focus on a task where
multiple robots work in close proximity to pick objects from
a table as illustrated in Fig. 3. We compare the performance
of vanilla fabrics to our method RGF where fabrics are
enhanced with a reactive grasp planner. Both algorithms are
implemented in a decentralized manner, meaning each robot
operates without knowledge of the intentions of the others.
Consequently, each robot treats the others as obstacles.

For collision avoidance, fabrics are responsible for man-
aging collisions for all links on the robots, while the grasp
planner only considers collision spheres on the chassis links
of the mobile bases and the end-effector links, using larger
radii than fabrics. At the beginning of the manoeuvre, the
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Fig. 3: Selected time frames for resolving deadlocks in a multi-robot scenario. As the robots approach each other, the grasp planners of
both robots independently adapt their respective grasp poses, in contrast to vanilla multi-agent fabrics as in Fig. 1.

grasp pose for both robots is set identical to the initial constant
grasp pose. As the robots approach each other, the considered
collision avoidance within the reactive grasp planner modifies
the grasp pose, leveraging the additional DoF expressed by the
grasp constraint. Without the reactive grasp planner, the robots
approach the objects but are not capable of grasping the objects
because of the deadlock as shown in Fig. 1a. The proposed
RGF is able to resolve this deadlock, Fig. 1b, and allows for
efficient navigation in decentralized multi-agent scenarios.

C. Real world experiments

In the experiments with real hardware, we use RGF in a
single-robot setup for two distinct scenarios: an environment
with static obstacles and an environment with a dynamic
obstacle, specifically a human. In the first experiment, Fig. 4,
the task is to pick the object from the table without colliding
with the table. The grasp planner is capable of adapting the
desired end-effector pose based on the location of the object
relative to the table, since collision avoidance is included
(Section III-C). If the object is placed on the opposite side
of the table, the grasp planner guides the fabrics to grasp the
object from that side. If the environment includes more static
obstacles, such as a standing human, additional waypoints
within the optimization formulation help modify the optimized
grasp pose (Section III-D). Obstacle avoidance along the path
is ensured by fabrics.

(a) Reachable grasp candidate (b) Optimized grasp pose

Fig. 4: Adapting the grasp pose in the presence of static obstacles:
Whole-body optimization considers potential collisions with the table,
depending on the object’s pose. In Fig. 4a, the solver prefers a grasp
pose that is closer to the robot’s current state, whereas in Fig. 4b,
the grasp pose is modified to avoid a collision with the table.

The aim of the second experiment is to test the adaptability
of the proposed RGF framework in the presence of a human
moving around the table. Using only vanilla geometric fabrics,
the robot adjusts its current joint configuration to avoid the hu-
man while attempting to reach the stationary grasp candidate.

However, this adjustment results in collisions with pickable
objects, thereby violating the manipulation objective. RGF
resolves this issue by adapting the desired xref

ee for fabrics,
as shown in Fig. 5.

(a) (b) (c)

Fig. 5: Selected time frames of adapting the grasp pose in the
presence of a dynamic obstacle. In the first frame (5a), the solver
detects a human and immediately modifies its grasp pose. Throughout
the human’s movement (5b), the robot continues to adjust its grasp
pose. Finally, when the human stops (5c), the robot stabilizes its
grasp.

V. CONCLUSION AND FUTURE WORK

This work presents a framework for reactive grasp and mo-
tion generation that adapts the grasp pose in real time to avoid
potential collisions and deadlocks caused by the presence of
other agents and obstacles. By leveraging geometric fabrics,
the grasp planner is capable of optimizing the grasp candidate
in real-time. This capability was demonstrated on a 9-DoF
mobile manipulator. The fast reactivity of the RGF framework
allows it to execute the grasping task efficiently and resolve
deadlock situations for multi-agent systems in a decentralized
manner. The adaptivity of RGF was tested in both simulation
and real-world experiments. However, the success rate of the
grasp planner heavily depends on a correct initial guess, which
could be improved by data-driven methods in the future. In
subsequent work, we will consider more diverse objects in
terms of shape, replace the motion capture system with grasp
analysis models, and test multi-agent scenarios using real
hardware.
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