
TrajFlow: Learning Distributions over Trajectories
for Human Behavior Prediction

Anna Mészáros∗, Julian F. Schumann, Javier Alonso-Mora, Arkady Zgonnikov, and Jens Kober

Abstract— Predicting the future behavior of human road
users is an important aspect for the development of risk-
aware autonomous vehicles. While many models have been
developed towards this end, effectively capturing and predicting
the variability inherent to human behavior still remains an open
challenge. This paper proposes TrajFlow—a new approach for
probabilistic trajectory prediction based on Normalizing Flows.
We reformulate the problem of capturing distributions over
trajectories into capturing distributions over abstracted trajec-
tory features using an autoencoder, simplifying the learning
task of the Normalizing Flows. TrajFlow outperforms state-of-
the-art behavior prediction models in capturing full trajectory
distributions in two synthetic benchmarks with known true
distributions, and is competitive on the naturalistic datasets
ETH/UCY, rounD, and nuScenes. Our results demonstrate the
effectiveness of TrajFlow in probabilistic prediction of human
behavior.

I. INTRODUCTION

Autonomous vehicles (AVs) have become an important
field of research due to many promised benefits which
include, but are not limited to, improved safety, accessibility,
as well as reduced traffic congestion [1], [2], [3]. Yet they
are still not widespread, in big part due to their inability to
effectively resolve interactions with humans [4], [5]. Being
able to reliably and accurately predict human behavior would
allow for more efficient and safe AV path planning [6].

However, predicting human behavior in traffic is compli-
cated by the fact that such behavior is generally not de-
terministic, but instead stochastic, with potentially complex
and multi-modal distributions [7]. An example of such multi-
modality can be seen at roundabouts, where vehicles have
the option to enter the roundabout directly or to wait for an
oncoming car to pass. While these two options are the most
obvious high-level behaviors, there can also be other distinct
modes, such as deciding whether or not to slow down before
entering the roundabout (Fig. 1). Such modes are scenario-
dependent and may get overlooked by methods that rely on
a predefined number of modes [8], [9].

Several methodologies for providing probabilistic predic-
tions over traffic agents’ future trajectories have been pro-
posed, ranging from Gaussian Mixture Models (GMMs) [8],
[9] to generative networks. Generative networks such as Gen-
erative Adversarial Networks (GANs) [10], [11], Variational

*Corresponding author
This research was supported by NWO-NWA project “Acting under

uncertainty” (ACT), NWA.1292.19.298.
All authors are with the Cognitive Robotics Department,

TU Delft, 2628 CB Delft, The Netherlands {A.Meszaros,
J.F.Schumann, J.AlonsoMora, A.Zgonnikov,
J.Kober}@tudelft.nl

Fig. 1. An example of the predictions generated by TrajFlow on the rounD
dataset. Level of opacity indicates the likelihood of a given prediction.

Autoencoder (VAE) based networks [12], [13], [14], and
diffusion models [15], are particularly interesting due to their
potential to learn complex multi-modal distributions without
specifying the number of expected modes, unlike methods
that rely on GMMs. While these state-of-the-art approaches
already achieve good results in prediction accuracy, they have
the fundamental problem of being trained to reproduce the
only true future trajectory available for each past trajectory
in the dataset, thereby ignoring the underlying stochasticity
of human behavior. This training approach can result in
mode collapse, which is especially problematic for GAN-
based methods [10], [11]. Additionally, many state-of-the-
art models predict distributions at individual time steps [12],
[16], ignoring the correlation between different time steps.
These kinds of predictions can lead to more conservative
strategies within the subsequent motion planning [17].

To overcome these issues, one promising approach is
Normalizing Flows (NFs) [18], [19], which are specifically
designed to learn underlying distributions in data and have
been shown to have the capability of capturing multi-modal
distributions. While NFs can be used to learn distributions
of positions at individual time steps [20], [21], more recent
work has expanded to providing distributions over complete
trajectories [22], [23], [24]. Even though the above NF meth-
ods already demonstrate good qualitative results in predicting
multiple future trajectories, it remains unclear how well these
models capture the true underlying distribution of the data.
Furthermore, the previously mentioned NF models which
predict over the complete trajectories require one to set the

2024 IEEE Intelligent Vehicles Symposium (IV)
June 2-5, 2024. Jeju Island, Korea

979-8-3503-4881-1/24/$31.00 ©2024 IEEE 184

20
24

 IE
EE

 In
te

lli
ge

nt
 V

eh
ic

le
 S

ym
po

si
um

 (I
V

) |
 9

79
-8

-3
50

3-
48

81
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IV
55

15
6.

20
24

.1
05

88
38

6

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 12:40:22 UTC from IEEE Xplore. Restrictions apply.

Normalizing direction

Concatenate

y
ERNN

ŷ

E
ϕCNN

x
ψGNN

xtar ϕRNN

x̂

Normal.
Flow F

Past

Future

p0(z0)∣∣∣det J
F−1 (z0)

∣∣∣

p0(z0)

Generative direction

E
ϕCNN

x
ψGNN

xtar ϕRNN

x̂

Normal.
Flow F−1

ŷ

y
pr

ed

DRNN

Past

Future

p0(z0)∣∣∣det J
F−1 (z0)

∣∣∣

p0(z0)

Fig. 2. Architecture of TrajFlow. During training we use the normalizing direction in which we encode the future trajectories y with ERNN and transform
the abstracted features ŷ to a sample z0 = F (ŷ) assumed to follow a standard normal distribution with the probability density function p0. For inference
we then use the generative direction, in which a sample z0 ∼ p0 is inversely transformed by the Normalizing Flow to generate the abstracted future
trajectories ŷ = F−1(z0) that are decoded with DRNN into the actual trajectories ypred. The likelihood of the encoded trajectory is obtained with
p0(z0)| det JF−1 (z0)|−1. The encoding ϕCNN of map E, and the encoding ψGNN of social interactions are optional blocks, which can provide richer
context information.

number of predicted time steps during their design, which
might limit their applicability and usefulness in an online
setting.

In response to these challenges, the main contribution of
this work is TrajFlow—a prediction model with an improved
capability for fitting distributions present in underlying train-
ing samples. The model builds on top of FloMo [24], which
we extend with a key component in the form of a Recur-
rent Neural Network Autoencoder (Fig. 2). This extension
generates an intermediate representation of the trajectories,
which captures the most relevant features of the trajectories
and in turn also simplifies the learning of the underlying
distribution. The decoder of the Autoencoder is built in an
auto-regressive manner, which additionally gives the model
the flexibility to predict trajectories beyond the length of the
seen training data. We validated our approach on a synthetic
dataset for which we know the underlying distribution, as
well as on an augmented version of the multi-modal Forking
Paths dataset [25], and several popular real-world datasets
(ETH/UCY [26], [27], rounD [28], and nuScenes [29]).

II. BACKGROUND: NORMALIZING FLOWS

Normalizing Flows constitute a family of generative meth-
ods which enable exact likelihood computation. They are
based on the concept of transforming distributions through
a series of differentiable bijective functions into a simple
known “base” distribution Z0 – most commonly a standard
normal distribution.

A number of ways for constructing flow models have been
proposed [30]. One possible way is by using auto-regressive
flows, consisting of a series of K normalizing layers. The
main components of these layers are the conditioner ck and
the transformer τk, which are often accompanied by an addi-
tional permutation layer ϵk. The latter two functions (τk and
ϵk) are bijective – and therefore invertible. In the generative
direction, these functions then enable the transformation of a
sample z0 from the base distribution Z0 towards the desired
distribution ZK :

zk+1 = ϵk (τk(zk;θk)) , with θk = ck (zk; x̂) ,

where zk+1 is the result of the k-th intermediate transfor-
mation. Meanwhile, x̂ is a conditioning input [31] that can
take the form of e.g. an encoding of observations like past
trajectories, static environment, and social interactions. In
the normalizing direction, F is then a composition of all K
layers, where it is possible to exploit the property of ck that
θk = ck

(
ϵ−1
k (zk+1); x̂

)
:

F (zK) =
(
τ−1
0 ◦ ϵ−1

0 · · · ◦ τ−1
K ◦ ϵ−1

K

)
(zK) = z0

In the generative direction, this then allows the drawing
of a sample zK = F−1(z0) from the desired non-normal
distribution over outputs ZK , using a sample z0 from Z0.
The Probability Density Function (PDF) pK of ZK can then
also be obtained in terms of the PDF p0:

pK(zK) = p0(F (zK)) |det JF (zK)|
= p0(z0) |det JF−1(z0)|−1,

The absolute determinant of the Jacobian |det JF (zK)|
quantifies the relative change of volume within a small
neighborhood of zK when transforming it to a sample z0
using F . This ensures that the probability mass remains the
same between the two distributions.

The parameters of F are learned by minimizing the KL-
divergence between the target distribution Z∗

K with PDF
p∗K(zK) and the learned distribution ZK with the PDF
pK(zK):

L =DKL[p
∗
K(zK)||pK(zK)]

=− EzK∼Z∗
K
[log p0(F (zK)) + log |det JF (zK)|
− log p∗K(zK)]

With only a finite number N of samples zK,n representing
the underlying distribution Z∗

K and ignoring the constant part
log p∗K(zK), this loss can be approximated with:

L ≈− 1

N

N∑
n=1

log p0(F (zK,n)) + log |det JF (zK,n)|.

185

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 12:40:22 UTC from IEEE Xplore. Restrictions apply.

III. METHOD: TRAJFLOW

We build up on the FloMo approach [24], in which
NFs are employed for learning distributions directly on
two-dimensional trajectories y ∈ RnO×2 defined at nO
future time steps (where y = zK). However, attempting
to learn a distribution over the trajectories directly makes
it susceptible to overfitting to the variability inherent in
human behavior [32] as well as noise in its measurements.
Additionally, as nO in this design is fixed, the model has a
limited prediction horizon, hindering its general applicability.
Furthermore, intuitively people do not observe trajectories
as a series of precise positions at each time step. Instead,
they perceive a trajectory more abstractly in terms of general
direction, length, and shape. Therefore, learning the distri-
bution over such abstracted characteristics might be better
suited to mimic human decision making, an approach that
has shown itself to be promising in improving prediction
models [33], [34].

To overcome these challenges and to facilitate the learning
of underlying distributions, we constructed our proposed
model TrajFlow to let the NFs reason over trajectory ab-
stractions rather than the raw trajectories.

A. Normalizing Flow

In our specific case, we chose to use a Coupling Layer for
ck, a Rational Quadratic Spline for τk, and a permutation
layer ϵk, similar to the FloMo model [24]. However, un-
like [24], we did not augment the trajectories in the training
data. Furthermore, we also did not inject added noise into
the Normalizing Flow as was done in FloMo using the β
and γ hyperparameters. Lastly, we incorporated a learning
rate decay lr for the training of the Normalizing Flow, as
this has proven beneficial for achieving a better distribution
fit.

B. Encoding Trajectories

To capture the abstracted characteristics of a trajectory,
we utilized a Recurrent Neural Network Autoencoder (RNN-
AE) with encoder ERNN and decoder DRNN. This allows us
to create an abstraction of a trajectory ŷ = ERNN(y) ∈ Rm.
This addition results in the novel TrajFlow model (Fig. 2)
that consequently learns the distribution of the encoded
future trajectories Ŷ (with ŷ = zK) rather than the raw
future trajectories Y .

1) Gated Recurrent Unit: The RNN-AE uses as its main
component a so-called Gated Recurrent Unit (GRU) [35],
one of the main RNNs used for encoding time series events.
In its most basic single-layered form with embedding dimen-
sionality M and hidden dimensionality d, it can be depicted
as a function ϕGRU : RM × Rd → Rd, which takes at time
step t an input at ∈ RM and uses it to change its internal
hidden state h ∈ Rd:

ht = ϕGRU (at,ht−1)

If no hidden layer is provided at the beginning of a sequence,
those can be assumed to be zero. However, TrajFlow employs

a multi-layered version using multiple recurrent units ϕ(l)GRU,
with l ∈ {1, . . . , L}:

h
(l)
t = ϕ

(l)
GRU

(
h
(l−1)
t ,h

(l)
t−1

)
with h

(0)
t = at

This can then be combined in a multilayer function ϕL-GRU :

RM × RL×d → RL×d with Ht = {h(1)
t , . . . ,h

(L)
t }:

Ht = ϕL-GRU (at,Ht−1) (1)

2) The RNN-Encoder: In the first step of the en-
coder ERNN, we created a transformed trajectory ỹ =
⟨ỹ1, . . . , ỹnO

⟩ with

ỹt = yt − yt−1 (2)

This is based on previous results showing that displace-
ment information is more useful for trajectory prediction
tasks [36]. We then used a linear layer ϕem : R2 → RM
that embeds a displacement ỹt. The embedded time steps
are then run in sequence through a multi-layered GRU
ϕE-L-GRU (1), setting at = ϕem(ỹt). Using a second linear
layer ϕE : Rd → Rm, we get our final encoded trajectory
ŷ = ϕE

(
h
(L)
E,nO

)
.

3) The RNN-Decoder: Our decoder DRNN, uses as its first
step a liner layer ϕD : Rm → Rd to pre-process an encoded
trajectory ŷ. We then again used a multilayer GRU ϕD-L-GRU
(Equation (1)) to construct a new trajectory. Here, the initial
hidden states are set to h

(l)
D,0 = ŷ. Meanwhile, our input is

auto-regressive, i.e. a1 = ϕD(ŷ) and at = ϕD

(
h
(L)
D,t−1

)
for

t > 1. We constructed the final displacements using a linear
layer ϕout : Rd → R2:

ỹt,pred = ϕout

(
h
(L)
D,t

)
As a last step, we used the cumulative sum over ỹpred to

construct the predicted trajectory ypred (inverting (2)). While
we used the same hidden dimension d and embedding size
M for both ϕE-L-GRU and ϕD-L-GRU, we did not use any weight
sharing between them.

4) Training: The RNN-AE is trained separately before
the rest of the network with a root mean square error
reconstruction loss on the reconstructed trajectories:

LAE =
1

N

N∑
n=1

∥yn − ypred,n∥.

The choice to calculate the loss on the reconstructed tra-
jectories instead of the decoded displacements was made to
penalize cumulative errors that can arise from summing over
the displacements. During the later training of the remaining
parts of the model, the weights of the RNN-AE were frozen.

C. Encoding Context Information

For the observations x̂, which are used for conditioning
the distributions learned by the NF, we used the target
agent’s past trajectory xtar, the past trajectories of all agents
x, and optionally images of the static environment E. In
order to encode these pieces of information, we used the

186

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 12:40:22 UTC from IEEE Xplore. Restrictions apply.

neural networks ϕRNN, ψGNN, and ϕCNN respectively and
concatenated their outputs:

x̂ = ϕRNN(xtar)⊕ ψGNN(x)⊕ ϕCNN(E)

The exact implementation of these components can be found
in the Appendix.

IV. EXPERIMENTAL SETUP

We performed a number of tests, two on synthetic datasets
with known ground truth distributions (Sec. V) and three on
real-world datasets (Sec. VI). To facilitate those tests, we
utilized an existing benchmarking framework [6].

A. Models

We used four state-of-the-art behavior prediction models
as baselines:
• Trajectron++ (T++) [12]—selected as it continues to act

as a strong baseline in trajectory prediction tasks. At the
same time, it provides a good illustration of the potential
drawbacks of fitting distributions per time step.

• PECNet [14]—a state-of-the-art model which captures
multi-modality by predicting distributions over goal points
and then regressing the trajectories to them.

• Motion Indeterminacy Diffusion (MID) [15]—a recent
diffusion-based method for probabilistic trajectory predic-
tion. As of late, diffusion based models have been showing
promise in generating probabilistic predictions [37].

• FloMo [24] (FM)—since we build on this model, it is most
directly comparable to our approach.

• TrajFlow without the RNN-AE (TF w/o AE)—to showcase
the importance of the RNN-AE we tested against an
ablation of TrajFlow.

For the RNN-AE in TrajFlow we used a L = 3 layered
GRU with a hidden dimensionality d = 20, embedding
dimensionality M = 20, and latent space dimensionality
m = 20 (Sec. III-B.2).

For the past trajectory encoding ϕRNN, we set the pa-
rameters in accordance to those described in the Appendix.
Meanwhile, where applicable we employed the same ψGNN
and ϕCNN structures for TrajFlow, TF w/o AE and FloMo.

The learning rate decay was set to lr = 0.98. These same
parameters were used for TF w/o AE.

B. Metrics

To evaluate the distance of the predicted trajectories w.r.t.
the ground truth trajectory we use:
• minADE/minFDE: Average/Final L2 distance (measured

in meters) between the best-predicted trajectory and the
ground truth, based on 20 predicted samples. We chose
this metric primarily to obtain an interpretable measure
of how closely the predictions of the models capture the
single ground truth sample available in real-world test
cases, since the usefulness of distribution specific metrics
such as Negative Log-Likelihood (NLL) is limited when
evaluating on singular ground truth samples.

In order to obtain insight into the learned distribution over
trajectories, we make use of:

• DJS: Average Jensen-Shannon divergence [38] between
the ground truth distribution and the learned distribution.
A perfect fit of the distribution is characterized by a
divergence value of 0 whereas two dissimilar distributions
would result in a divergence value of 1. As this metric
requires a known ground truth distribution, it is only
applicable for the synthetic cases.

• (indep.) NLL: The average NLL of the ground truth
according to the learned distribution of each individual
agent. This gives us insight into the fit over the marginal
distributions of the trajectories within the scene. This
metric is commonly used in cases with any number of
ground truth trajectories for a given scenario [12].

• joint NLL: The average NLL of the ground truth, based on
the joint distribution of predicted trajectories for all agents
in the scene. This metric gives additional information
about how well the model learned the interactions between
the agents in the scene.

To obtain the density estimates needed for the above metrics,
we used a non-parametric density estimation approach pro-
posed in [39] so as to ensure a more reliable comparison
between models. For estimating the predicted trajectory
distribution, 100 sampled trajectories were used.

V. EXPERIMENTS: SYNTHETIC DATASETS

A. Datasets

We tested our approach on two synthetically generated
datasets, one of which was generated using a single bimodal
distribution, while the other is an augmented version of the
Forking Paths dataset [25].

The synthetic bimodal dataset was used to test the
models’ ability to capture the underlying distribution of the
observed data. We constructed this dataset based on two
recorded pedestrian trajectories with distinct directions to
obtain a set of future trajectories over which we know the
underlying distribution. This synthetic dataset has only a
single agent and no static environment information for the
observations. The trajectories were split into a past sequence
x∗
k with nI = 10 and future sequence y∗

k with nO = 14
recorded time steps of 0.25 s each. However, for both future
trajectories, we used the same past trajectory x∗

1 so that the
true output distribution is guaranteed to be bimodal. With
this, we avoid the learned likelihoods becoming skewed due
to slight differences in the past trajectories which could in
turn make it more difficult to evaluate the predicted distribu-
tions. The set of future trajectories Y with 3000 samples
was then created by multiplying the original two future
trajectories with a random scaling factor s ∼ N (1, 0.15):

Y = {s1,iy∗
1 , s2,iy

∗
2 | i ∈ {1, . . . , 1500}}

The augmented Forking Paths dataset was used to
test the methods on a more complex, multi-modal dataset.
The Forking Paths dataset [25] originally included multiple
human-predicted pedestrian trajectories. Within this dataset,
for each past trajectory x∗ with nI = 8, there are K
annotated future trajectories y∗

k with nO = 12, recorded

187

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 12:40:22 UTC from IEEE Xplore. Restrictions apply.

Ground Truth

y [m]

−2 0 2

x
[m

]

−
2

0
2

4
6

T++
(DJS=0.996)

y [m]

−2 0 2

PECNet
(DJS=1.000)

y [m]

−2 0 2

MID
(DJS= 1.000)

y [m]

−2 0 2

FM
(DJS=0.879)

y [m]

−2 0 2

TF w/o AE
(DJS=0.638)

y [m]

−2 0 2

Ours: TF
(DJS=0.450)

y [m]

−2 0 2 ln p
25

30

35

40

45

50

Fig. 3. Results of the experiments on the synthetic bimodal dataset. The left-most plot depicts the ground truth distribution; the other panels are the
best out of the ten distributions learned by Trajectron++ (T++), PECNet, Motion Indeterminacy Diffusion (MID), FloMo (FM), an ablation of TrajFlow
without the RNN-AE (TF w/o AE), and TrajFlow (TF), along with the DJS values for the specific distributions that are depicted. The colors provided in
the distributions are determined based on the density values obtained through density estimation on 3000 samples obtained from the respective models.

TABLE I
SYNTHETIC BIMODAL DATASET: AVERAGE RESULTS ACROSS 10 SEEDS

Models minADE minFDE NLL DJS

T++ 0.43±0.03 0.66±0.09 -19.08±3.92 0.998±0.001

PECNet 0.90±0.01 1.29±4e−3 0.8e3 ±10.77 1.000±1e−16

MID 0.72±0.03 0.81±0.20 -3.79±1.88 1.000±5e−7

FM 0.19±0.03 0.32±0.05 -35.83±0.72 0.916±0.016

TF w/o AE 0.13±0.02 0.22±0.03 -38.34±1.05 0.811±0.081

TF (Ours) 0.12±0.01 0.20±0.02 -39.22±0.68 0.683±0.132

with a sampling frequency of 2.5Hz. We then generated 100
augmented trajectories for each k:

yk,i = sk,iy
∗
kR

T
θk,i

, with k ∈ {1, . . . ,K}, i ∈ {1, . . . , 100} .

Here, Rθ ∈ R2×2 is a rotation matrix rotating y∗
k by θ ∼

N (0, π
180), while s ∼ N (1, 0.03) is a scaling factor.

B. Training and evaluation

Considering that the synthetic bimodal dataset contains
a single scenario, we trained 10 instances of each model,
using different random seeds, to decrease the effect of the
random initialization of the models’ trainable parameters.

Meanwhile, for the augmented Forking Paths dataset
training and evaluation were performed using five-fold cross-
validation, which was each repeated for 5 random seeds.

C. Results

On the synthetic bimodal dataset, we found that out
of the tested models, the methods which did not employ
Normalizing Flows exhibited the poorest performance. This
can be attributed to different factors, from the lack of corre-
lation between time steps (T++) to complete mode collapse
(PECNet). The NF-based methods, meanwhile, were all able
to capture the general shape of the underlying distribution.
Out of these, our approach TrajFlow (TF) was able to provide
the best fit. A key factor to this is the use of the RNN-
AE, which becomes clear when comparing the distributions
learned by TF with its ablation (Fig. 3). These qualitative

TABLE II
FORKING PATHS: AVERAGE RESULTS ACROSS ALL SPLITS & SEEDS.

Models minADE minFDE NLL DJS

T++ 0.56±0.06 1.02±0.13 -5.73±4.21 0.985±0.005

PECNet 1.05±0.09 1.89±0.28 1.3e3 ±0.5e3 1.000±1.3e−7

MID 0.89±0.09 2.06±0.38 -7.41±2.17 1.000±5.7e−5

FM 0.41±0.04 0.70±0.10 -21.86±0.44 0.986±0.003

TF w/o AE 0.40±0.05 0.69±0.11 -22.65±0.69 0.982±0.004

TF (Ours) 0.42±0.06 0.71±0.11 -23.69±0.99 0.984±0.004

results are further supported by the low NLL and DJS values
(Tab. I) attained by TrajFlow.

On the augmented Forking Paths dataset, we observed
that none of the models could obtain distributions identical
to the ones in the evaluation set – as indicated by DJS
values which are close to the maximum divergence value
of 1 (Tab. II). This is likely due to the fact that even
though each of the past inputs has a ground truth distribution
over the future trajectories, similar inputs may have different
output distributions which could be merged by the models
and thus result in dissimilar distributions from the actual
ground truth distribution. Nevertheless, NLL values show
clear differences in the models’ capability to capture the
ground truth distributions; the Normalizing Flow methods are
able to achieve better performance, with TrajFlow achieving
the best performance.

VI. EXPERIMENTS: REAL-WORLD DATASETS

A. Datasets

We tested our approach on three real-world datasets,
ETH/UCY [26], [27], rounD [28], and nuScenes [29], all
of which are widely used for trajectory prediction.

For testing the models on ETH/UCY (mostly including
pedestrian crowds), we used nI = 8 and nO = 12 with a
sampling frequency of 2.5Hz, resulting in 3.2 s and 4.8 s
of past and future data respectively. Like in the majority
of prior works, we did not make use of static environment
information for the sake of comparability.

188

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 12:40:22 UTC from IEEE Xplore. Restrictions apply.

TABLE III
ETH/UCY: AVERAGE RESULTS ACROSS THE FIVE LOCATIONS.

Models minADE minFDE indep. NLL joint NLL
T++ 0.41±0.17 0.66±0.26 -6.77±7.93 0.2e3 ±0.5e3

PecNet 2.39±3.00 3.34±3.99 1.2e4 ±2.2e4 2.7e4 ±4.3e4

MID 0.59±0.16 1.08±0.30 -0.27±10.21 0.1e3 ±0.2e3

FM 0.32±0.13 0.55±0.22 -19.65±4.82 -50.05±20.84

TF w/o AE 0.33±0.12 0.54±0.21 -18.02±4.11 -42.24±16.50

TF (Ours) 0.33±0.15 0.55±0.24 -21.05±5.35 -75.79±47.42

TABLE IV
ROUND: AVERAGE RESULTS ACROSS THE FIVE CROSS SPLITS.

Models minADE minFDE indep. NLL joint NLL
T++ 0.69±0.02 1.66±0.07 -42.04±1.10 -79.67±1.98

PECNet 1.56±0.11 4.49±0.20 3.4e3 ±0.3e3 6.1e3 ±0.7e3

MID 4.57±0.01 7.93±0.07 0.3e3 ±0.1e3 0.5e3 ±0.2e3

FM 0.85±0.03 1.80±0.06 -34.98±3.65 -69.35±4.98

TF w/o AE 0.80±0.01 1.72±0.03 -36.86±1.32 -71.62±2.43

TF (Ours) 0.67±0.03 1.38±0.09 -42.06±2.67 -81.23±4.69

For testing the models on rounD (drone-captured round-
abouts), we set nI = 15 and nO = 25 with a sampling
frequency of 5Hz, which amounts to 3 s and 5 s of past
and future data respectively. For our evaluation, we used the
scenarios extracted from the original dataset as done in [40],
which focused on the gap acceptance scenario of a vehicle
entering the roundabout. There, both the trajectories of the
vehicle entering the roundabout and the trajectory of the
vehicle already inside the roundabout, which might be cut off
by the former vehicle, have to be predicted. As it is important
to predict if the other vehicle might yield when trying to plan
for such scenarios, it can be necessary to predict more than
nO = 25 time steps. This is the case in 5.9% of the scenes in
rounD, with the longest predictions requiring 35 time steps.

Lastly, on nuScenes (general street traffic), we used nI =
4 and nO = 12 with a sampling frequency of 2Hz. For both
nuScenes and rounD, full context information is available.

B. Training and Evaluation

For ETH/UCY, training and evaluation were performed
using a leave-one-out strategy [12], using the five recording
locations (ETH-univ, ETH-hotel, UCY-univ, UCY-zara01,
UCY-zara02).

For rounD, training and evaluation were performed using
five-fold cross-validation. While we evaluated the normal
minADE metric based on the first 25 time steps, we also
checked the models’ capability to predict beyond that to
test its ability of extending predictions until the point by
which a yielding decision had to be reached. If a model was
unable to predict beyond the 25 future time steps that it had
been trained on, the values for the remaining time steps were
obtained through a simple constant velocity extrapolation.

Lastly, training and evaluation for nuScenes were per-
formed using nuScenes’ predefined training and validation
splits. To decrease the effect of random parameter initializa-
tion, we trained 5 different versions of each model, using
different random seeds.

TABLE V
NUSCENES: VALIDATION SPLIT RESULTS ACROSS THE FIVE SEEDS.

Models minADE minFDE indep. NLL joint NLL
T++ 1.96±0.02 4.05±0.07 10.28±0.29 43.18±1.01

PECNet 26.73±2.30 40.04±2.36 6.7e5 ±1.0e5 1.8e6 ±2.9e5

MID 6.47±0.29 13.48±0.82 71.04±7.97 0.3e3 ±23.27

FM 12.61±1.07 23.55±2.02 0.3e3 ±0.2e3 0.9e3 ±0.7e3

TF w/o AE 13.15±0.18 24.71±0.29 0.9e3 ±0.6e3 1.9e3 ±1.3e3

TF (Ours) 1.86±0.06 3.72±0.19 16.54±1.04 45.55±2.72

C. Results

On ETH/UCY, we observed the same trend as in the
synthetic datasets. The three NF-based methods were able
to better fit the underlying data distribution compared to
the methods which do not employ NFs. Out of these,
TrajFlow clearly outperformed existing methods as well as
its ablation in terms of distribution fit as captured by both
NLL metrics. (Tab. III) This is especially clear in the joint
NLL, indicating that the learned distributions were also better
able to capture the interactions among agents in a scene. We
found that the state-of-the-art methods also performed worse
even compared to the originally reported values, such as in
the case of T++ [12]. It is, however, important to note that
this is not the first time the original T++ results could not be
replicated (see e.g. [41]), and compared to common practice,
we used a stricter method for extracting testing samples,
necessitating the existence of all 12 future positions.

On rounD (Tab. IV), TrajFlow was able to achieve the best
results. When compared to its ablation case, there is a clear
performance boost both in terms of the learned distribution
but also in terms of the distance metrics. This is especially
notable since in rounD the agents being predicted are ve-
hicles, not pedestrians. As a result, the distance crossed is
generally larger and thus prediction errors tend to accumulate
faster. In terms of the extrapolation performance, out of all
the tested models, TrajFlow achieved the best minADE value
with 2.27m±0.30. This was closely followed by TF w/o
AE and T++ with values of 2.53m±0.52 and 2.58m±0.55

respectively. FloMo achieved an error of 2.62m±0.59, while
MID and PECNet achieved an error of 10.10m±1.26 and
19.09m±1.10 respectively. It is worth noting that out of
these methods, only TrajFlow and T++ have auto-regressive
capability while the remaining models require a separate
extrapolation method.

Finally, on nuScenes (Tab. V), TrajFlow outperformed all
of the models in terms of the distance metrics minADE and
minFDE. It was, however, outperformed on the distribution
metrics by T++. What is notable, however, is that although
TrajFlow had poorer performance than T++ on the indepen-
dent NLL, the performance of the two models on the joint
NLL was comparable. This indicates that while TrajFlow
does not capture the individual distributions as precisely as
T++ on nuScenes, the distributions learned manage to reflect
the overall behavior in a scene to a similar extent as T++.

VII. CONCLUSION

In this work, we proposed TrajFlow, a novel model for
predicting the trajectories of human agents in traffic by

189

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 12:40:22 UTC from IEEE Xplore. Restrictions apply.

applying Normalizing Flows to the latent abstraction of the
future trajectories to be predicted.

Tests carried out on synthetic examples, which contained
sets of grounds truths for a single input, showed that Nor-
malizing Flow-based methods outperformed several state-of-
the-art methods in terms of the distribution fits. Furthermore,
among these NF-based models, TrajFlow had the best perfor-
mance thanks to incorporating a Recurrent Neural Network-
based Autoencoder.

Through evaluations on the ETH/UCY, rounD, and
nuScenes datasets, we found that our model can success-
fully learn distributions within real-world datasets. TrajFlow
achieved competitive results compared to state-of-the-art
methods on all three datasets, and was able to clearly
outperform existing methods in terms of the distribution
fit on the pedestrian dataset ETH/UCY. This is particularly
noteworthy since pedestrian behavior is less structured than
that of vehicles and one can in turn expect a higher amount
of variability.

We further observed that the introduction of an RNN-
AE does not lead to a severe degradation of our predicted
trajectories despite the loss of information inherent to data
compression, and in fact, for rounD and nuScenes, learning
over abstracted trajectory features proved to be beneficial.
Tests on rounD also showed that the auto-regressive na-
ture of our decoder provides further flexibility in terms of
the possible length of the predictions and is even able to
outperform state-of-the-art models in terms of prediction
accuracy. This is particularly useful for cases that need a
longer planning horizon to ensure safety and comfort such
as when approaching a roundabout or when interacting with
pedestrians close to a crosswalk.

Future work will explore ways to improve prediction
quality for more structured environments such as in the case
of vehicle trajectory prediction. Another point of focus will
be to expand the model towards being able to provide joint
predictions of all agents in a given scene. Finally, TrajFlow’s
capacity to capture multi-modal distributions can be utilized
in contingency planners which account for multiple possible
outcomes [42]. The extent to which better distribution fitting
is beneficial to such planners was outside of the scope of
this work and should be investigated in future work.

Overall, our results indicate that TrajFlow compares favor-
ably to state-of-the-art behavior prediction models in learning
trajectory distributions both from highly variable data (e.g.,
pedestrian trajectories) as well as more constrained scenarios
(such as in the case of vehicle trajectories). This model thus
has potential for application in settings where AVs have
to navigate in settings with human road users in order to
generate more natural and safer plans.

APPENDIX

THE ENCODING OF PAST BEHAVIOR

A. Past Trajectories

The encoder of the past behavior ϕRNN encodes the past
trajectory xtar of the single target agent whose future is to be

predicted. This function was taken from the implementation
of [24] and is identical to the encoder ERNN (see Sec. III-
B.2), except that instead of d = M = m = 20, we used
d = M = m = 64 for the TrajFlow variants and d = M =
m = 16 in FloMo, as per the original implementation.

B. Static Environment
For encoding a gray-scale image of the static environment

E, which has been rotated to align with the target agent’s
heading, we used a CNN function ϕCNN. For this, LCNN = 3

convolutional layers ϕ(l)CNN are used within this network with
a kernel of size 5 and a stride of 4. The first two layers
additionally have a zero-padding of size 1 around the image.
With this, an initial input of size h(0)×w(0) = 156×257 and
c(0) = 1 channel is transformed first into a representation
with c(1) = 8 and h(1) × w(1) = 39 × 64, then into a
representation with c(2) = 16 and h(2) × w(2) = 10 × 16
and lastly into an output representation with c(3) = 32 and
h(3) ×w(3) = 2× 3. This output ϕ(3)CNN is then flattened and
passed through a two-layer dense network. The first linear
layer transforms the input into a hidden state of length 128,
while the second linear layer produces the final encoding of
the image of size MCNN = 64.

C. Social Interactions
To encode interactions, we use a GNN function ψGNN

that processes all past trajectories x = {xtar,x1, . . .xn−1}.
There, in the first step, the past trajectory xa of each agent
a of the n agents is encoded using a GRU-based function
ψRNN,c (structure is identical to ϕRNN; Sec. VII-A). This
network is shared between all agents of each class c ∈
C = {veh., ped., . . .}, i.e. there is for instance one network
ψRNN, veh. to encode the past of vehicles. A linear embedding
layer ψem : Rm → RMGNN is then applied to each encoded
past trajectory, with x̃

(0)
a = ψem (ψRNN,ca (xa)).

In the GNN, each of the n agents is seen as a node, with
n2 unidirectional edges being established between all nodes.
Based on this, LGNN layers ψ(l)

GNN are applied to this network
to update the node states x̃(l) =

{
x̃
(l)
tar , x̃

(l)
1 , . . . , x̃

(l)
n−1

}
:

x̃(l) = ψ
(l)
GNN

(
x̃(l−1)

)
The update starts with calculating the message m

(l)
b,a from

agent b to agent a for every possible connection, using the
message network ψM : R2MGNN+2 |C|+1 → RMGNN :

m
(l)
b,a = ψM

(
x̃
(l−1)
b ⊕ x̃(l−1)

a ⊕ Cb ⊕ Ca ⊕ ∥xa − xb∥
)
,

where the last three terms are the graph’s edge features
between agents a and b, with Ca, Cb ∈ R|C| being the one-
hot encoding of class ca and cb respectively. Those incoming
messages are then aggregated at each node:

m(l)
a =

∑
b

m
(l)
b,a

Lastly, the state of each node is updated, using an update
network ψU : R2MGNN → RMGNN

x̃(l)
a = ψ

(l)
U

(
x̃(l−1)
a ⊕m(l)

a

)
+ x̃(l−1)

a

190

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 12:40:22 UTC from IEEE Xplore. Restrictions apply.

After being propagated through all LGNN layers ψ(l)
GNN, the

final output of ψGNN is

1

n

∑
i

x̃(LGNN)
a

For our work, we chose to set LGNN = 4 and MGNN = 32.

REFERENCES

[1] J. S. Brar and B. Caulfield, “Impact of autonomous vehicles on
pedestrians’ safety,” in IEEE 20th Int. Conf. on Intell. Transp.
Syst. (ITSC), 2017.

[2] J. Meyer, H. Becker, P. M. Bösch, and K. W. Axhausen, “Autonomous
vehicles: The next jump in accessibilities?,” Research Transp. Econ.,
vol. 62, pp. 80–91, 2017.

[3] J. Pisarov and G. Mester, “The future of autonomous vehicles,” FME
Trans., vol. 49, no. 1, pp. 29–35, 2021.

[4] M. Milford, S. Anthony, and W. Scheirer, “Self-driving vehicles: Key
technical challenges and progress off the road,” IEEE Potentials,
vol. 39, no. 1, pp. 37–45, 2019.

[5] B. Brown, M. Broth, and E. Vinkhuyzen, “The halting problem: Video
analysis of self-driving cars in traffic,” in Proc. 2023 CHI Conf.
on Hum. Factors Comput. Syst., pp. 1–14, 2023.

[6] J. F. Schumann, J. Kober, and A. Zgonnikov, “Benchmarking behavior
prediction models in gap acceptance scenarios,” IEEE Trans. on
Intell. Veh., 2023.

[7] G. M. Ferro and D. Sornette, “Stochastic representation decision
theory: How probabilities and values are entangled dual characteristics
in cognitive processes,” Plos one, vol. 15, no. 12, p. e0243661, 2020.

[8] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti,
A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov, et al.,
“MultiPath++: Efficient information fusion and trajectory aggregation
for behavior prediction,” in Int. Conf. on Robotics Autom., 2022.

[9] K. Messaoud, N. Deo, M. M. Trivedi, and F. Nashashibi, “Trajectory
prediction for autonomous driving based on multi-head attention with
joint agent-map representation,” in IEEE Intell. Veh. Symp., 2021.

[10] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
GAN: Socially acceptable trajectories with generative adversarial
networks,” in Conf. on Comput. Vis. Pattern Recognit., 2018.

[11] J. Amirian, J.-B. Hayet, and J. Pettré, “Social ways: Learning multi-
modal distributions of pedestrian trajectories with GANs,” in Proc.
IEEE/CVF Conf. on Comput. Vis. Pattern Recognit. Work., 2019.

[12] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Dynamically-feasible trajectory forecasting with heteroge-
neous data,” in Eur. Conf. on Comput. Vis., 2020.

[13] Y. Yuan, X. Weng, Y. Ou, and K. M. Kitani, “AgentFormer: Agent-
aware transformers for socio-temporal multi-agent forecasting,” in
Proc. IEEE/CVF Int. Conf. on Comput. Vis., 2021.

[14] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik,
and A. Gaidon, “It is not the journey but the destination: Endpoint
conditioned trajectory prediction,” in Eur. Conf. on Comput. Vis.,
2020.

[15] T. Gu, G. Chen, J. Li, C. Lin, Y. Rao, J. Zhou, and J. Lu, “Stochastic
trajectory prediction via motion indeterminacy diffusion,” in Proc.
IEEE/CVF Conf. on Comput. Vis. Pattern Recognit., 2022.

[16] B. F. de Brito, H. Zhu, W. Pan, and J. Alonso-Mora, “Social-
VRNN: One-shot multi-modal trajectory prediction for interacting
pedestrians,” in Conf. on Robot Learn., 2021.

[17] L. Janson, E. Schmerling, and M. Pavone, “Monte Carlo motion plan-
ning for robot trajectory optimization under uncertainty,” in Robotics
Research, pp. 343–361, Springer, 2018.

[18] E. G. Tabak and E. Vanden-Eijnden, “Density estimation by dual
ascent of the log-likelihood,” Commun. Math. Sci., vol. 8, no. 1,
pp. 217–233, 2010.

[19] E. G. Tabak and C. V. Turner, “A family of nonparametric density
estimation algorithms,” Commun. on Pure Appl. Math., vol. 66,
no. 2, pp. 145–164, 2013.

[20] N. Rhinehart, K. M. Kitani, and P. Vernaza, “R2p2: A reparameterized
pushforward policy for diverse, precise generative path forecasting,”
in Proc. Eur. Conf. on Comput. Vis. (ECCV), 2018.

[21] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog:
Prediction conditioned on goals in visual multi-agent settings,” in
Proc. IEEE/CVF Int. Conf. on Comput. Vis., 2019.

[22] A. Bhattacharyya, C.-N. Straehle, M. Fritz, and B. Schiele, “Haar
wavelet based block autoregressive flows for trajectories,” in DAGM
German Conf. on Pattern Recognit., 2020.

[23] J. Sun, Z. Wang, J. Li, and C. Lu, “Unified and fast human trajectory
prediction via conditionally parameterized normalizing flow,” IEEE
Robotics Autom. Lett., vol. 7, no. 2, pp. 842–849, 2021.

[24] C. Schöller and A. Knoll, “FloMo: Tractable motion prediction with
normalizing flows,” in Int. Conf. Intell. Robot. Syst., 2021.

[25] J. Liang, L. Jiang, K. Murphy, T. Yu, and A. Hauptmann, “The garden
of forking paths: Towards multi-future trajectory prediction,” in Proc.
IEEE/CVF Conf. on Comput. Vis. Pattern Recognit., 2020.

[26] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never
walk alone: Modeling social behavior for multi-target tracking,” in
2009 IEEE 12th Int. Conf. on Comput. Vis., 2009.

[27] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,”
in Comput. Graph. Forum, vol. 26, 2007.

[28] R. Krajewski, T. Moers, J. Bock, L. Vater, and L. Eckstein, “The rounD
dataset: A drone dataset of road user trajectories at roundabouts in
Germany,” in IEEE 23rd Int. Conf. on Intell. Transp. Syst., 2020.

[29] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A
multimodal dataset for autonomous driving,” in Proc. IEEE/CVF
Conf. on Comput. Vis. Pattern Recognit., 2020.

[30] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan, “Normalizing flows for probabilistic modeling
and inference.,” J. Mach. Learn. Res., vol. 22, no. 57, pp. 1–64,
2021.

[31] Y. Lu and B. Huang, “Structured output learning with conditional
generative flows,” in Proc. AAAI Conf. on Artif. Intell., 2020.

[32] O. Siebinga, A. Zgonnikov, and D. Abbink, “Uncovering variability in
human driving behavior through automatic extraction of similar traffic
scenes from large naturalistic datasets,” in 2023 IEEE Int. Conf.
on Syst. Man, Cybern. (SMC), pp. 4790–4796, 2023.

[33] Z. Cao, E. Biyik, G. Rosman, and D. Sadigh, “Leveraging smooth
attention prior for multi-agent trajectory prediction,” in 2022 Int.
Conf. on Robotics Autom. (ICRA), 2022.

[34] Q. Song, W. Wang, W. Fu, Y. Sun, D. Wang, and Z. Gao, “Research
on quantum cognition in autonomous driving,” Sci. reports, vol. 12,
no. 1, p. 300, 2022.

[35] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder–decoder for statistical machine translation,” in Conf.
on Empir. Methods Natural Language Process., 2014.

[36] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction
using recurrent neural networks,” in Proc. IEEE Conf. on Comput.
Vis. Pattern Recognit., 2017.

[37] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang,
B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey
of methods and applications,” ACM Comput. Surv., vol. 56, no. 4,
pp. 1–39, 2023.

[38] J. Lin, “Divergence measures based on the Shannon entropy,” IEEE
Trans. on Inf. Theory, vol. 37, no. 1, pp. 145–151, 1991.

[39] A. Mészáros, J. F. Schumann, J. Alonso-Mora, A. Zgonnikov, and
J. Kober, “Rome: Robust multi-modal density estimator,” Proc. 33rd
Int. Jt. Conf. on Artif. Intell., 2024, in press.

[40] J. F. Schumann, A. R. Srinivasan, J. Kober, G. Markkula, and
A. Zgonnikov, “Using models based on cognitive theory to predict
human behavior in traffic: A case study,” in 2023 IEEE 20th Int.
Conf. on Intell. Transp. Syst. (ITSC), 2023.

[41] F. S. Westerhout, J. F. Schumann, and A. Zgonnikov, “Smooth-
Trajectron++: Augmenting the Trajectron++ behaviour prediction
model with smooth attention,” in 2023 IEEE 20th Int. Conf.
on Intell. Transp. Syst. (ITSC), 2023.

[42] N. Rhinehart, J. He, C. Packer, M. A. Wright, R. McAllister, J. E.
Gonzalez, and S. Levine, “Contingencies from observations: Tractable
contingency planning with learned behavior models,” in 2021 IEEE
Int. Conf. on Robotics Autom. (ICRA), pp. 13663–13669, IEEE,
2021.

191

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 12:40:22 UTC from IEEE Xplore. Restrictions apply.

