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Abstract—Although autonomous robots have great potential to
boost efficiency and throughput across the whole retail chain, they
are mostly being deployed in large warehouses and distribution
centers. Deploying robots in stores with customers, such as super-
markets, requires substantially more development efforts since
they need to safely operate around customers and reliably cope
with various uncertainties and disturbances, such as misplaced
products. We present our recent efforts in developing a mobile
manipulator platform for order picking in realistic supermarket
settings. Our robot platform uses state-of-the-art perception and
planning algorithms to robustly pick items in the presence of
disturbances. In particular, it successfully demonstrates adaptive
decision making and rapid replanning. Our robot allows adding
new products and teaching new picking maneuvers from demon-
strations. We validated our robot in a recreated supermarket in
our lab and in a test supermarket of a large Dutch retailer. Our
results show how our robot successfully recovers from various
disturbances, including misplaced products, errors in picking,
and from human interaction. We summarize our lessons learned
to bring autonomous robots into real retail environments with
customers.

I. INTRODUCTION

Ageing has started to impact the labour markets profoundly,

and robotic labour shortage relief is becoming a necessity in

all industries [1], [2]. Yet, there are still surprisingly few robots

operating outside of structured environments. To bring robots

successfully to human-occupied environments, the main chal-

lenge still is handling human-instilled disturbances [3], e.g.,

misplaced products in shelves, newly added products, blocked

aisles, or interactions from humans. Such disturbances should

be handled adaptively, with little development effort and short

response times for natural effective interaction. Focusing on

these challenges, this paper demonstrates a combination of

two novel methods, one for adaptive decision making and

one for rapid motion planning, embedded in a state-of-the-art

integrated robot system.

The demonstrator is a mobile manipulator for order picking

in realistic supermarkets, see Fig. 1. The increase in online

shopping induces an equal decrease in store visits. Especially

in dense urban areas, these costly but conveniently located

stores could have a dual use as distribution centres for flash

delivery of online orders [4]. This requires the order picking
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Fig. 1: We validated our mobile manipulator in our AIRLab lab environment
(shown here) and a realistic supermarket environment of a large Dutch retailer.

to occur during opening hours, amongst store customers. We

have taken this as our demonstrator scenario, but the methods

are generally applicable for any scenario involving human-

disturbed mobile manipulation tasks. In such scenarios, we

assume that humans can block the robot’s path, physically

push or hold the manipulator, and move the pick-able items,

before, during, or after a pick. Even if items are taken away

from the robot’s suction gripper, it should recover by picking

another item of the same product.

This work presents our mobile manipulation solution in

human-shared environments that aims at being adaptive and

fault-tolerant. We focus on three main questions that are most

relevant when deploying robots in supermarkets: How can we

1) generate safe and robust trajectories for manipulation?

2) ensure fault-tolerant task planning and execution?

3) easily adapt the robot to pick new products?

Our solution addresses these questions with specific decisions

on the robot’s capabilities for decision-making, trajectory

generation, and perception. Our contributions are thus an

integrated system with adaptive decision-making, fast motion

planning and easy-to-use teaching from demonstration.

II. RELATED WORK

Robotic mobile manipulation stands as a dynamic and ex-

pansive field of research, spurred by diverse potential ap-

plications and further fueled by prestigious international

competitions, such as DARPA’s Robotics Challenge [5],

RoboCup@Home [6], the Amazon Picking Challenge [7], and



RoboCup@Work [8]. These competitions are tailored to ad-

dress distinct challenges and performance criteria. Numerous

research projects have yielded a significant number of various

mobile manipulation platforms. For an exhaustive overview

of wheeled mobile manipulation systems and the associated

challenges, readers can refer to [9], [10]. In contrast to the

aforementioned platforms, we focus on combining commercial

off-the-shelf components with little to no modifications to

address the specific application.

A supermarket mobile manipulator has been presented in [11]

with a special focus on metrics in real-world settings and

quantitative field experiments. Similar long-term fetch and

carry experiments, yet in different environments, were carried

out by Domel et al. [12] in a factory environment and by

Stibinger et al. [13] in an outdoor competition to pick up

and place simulated construction materials. Instead of relying

on a Model Predictive Control formulation, such as [14] for

motion planning and control, we deploy a reactive trajectory

generation method [15], and a task planning and execution

approach that is adaptive in the presence of disturbances.

Additionally, we use learning from demonstration to easily

teach new products. This approach seems extendable to very

different tasks in the long run.

Object picking with manipulators is a well-studied problem.

Early approaches rely on engineered components and split

detection and grasping into separate tasks. An adapation of

STOMP [16] for mobile manipulation was presented in [17].

Here, motions of base and arm are sequenced. Manipulation

tasks, including item retrieval, can also be approached from

data-driven perspectives. Deep reinforcement learning was

used to achieve object picking with a mobile manipulator in

non-cluttered environments [18]. In contrast, learning from

teleoperation data showed impressive results for dexterous ma-

nipulation tasks [19]. The work was extended to mobile manip-

ulation in [20]. While the results are impressive, each task is

trained individually, and no safety statements can be made. In

contrast, our work relies on engineered components enhanced

with learning-from-demonstration techniques to achieve safe

and robust mobile manipulation in a supermarket environment.

III. SYSTEM OVERVIEW

We briefly introduce the considered supermarket setting and

detail our order-picking pipeline and system components.

A. Considered supermarket setting

Modern supermarkets are characterized by a large range of

products, around 100,000 different products per store. Oper-

ators usually have access to detailed information of all those

products, including mass, geometry, and shelf location in the

store. In our demonstration, we assume that the robot can

access this database to inform its decision. The large variety

of products usually requires specialized grasping strategies per

category, e.g., grasping tomatoes is different from grasping

a large soft-drink bottle. We focus on a subset of products

that can be picked with the suction gripper of our robot (see

Fig. 2: Examples of different products considered in this work.
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Fig. 3: Overview of our robot’s hardware.

hardware design in Sec. III-B), e.g., cans, milk boxes, bottles,

or bags of crisps (see Fig. 2). The masses of products range

from 100g (instant food mixes) to 1.5 kg (soft-drink bottle)

and the size are between 10 cm (cans) and 30 cm (soft-drink

bottle). We assume that products to pick are visible, accessible

from the shelf’s front and in the robot’s workspace.

For in-store picking, we focus on picking products during

opening-hours and favor reliability over execution speed.

B. Hardware

Our mobile manipulator platform is comprised of various

hardware components.

a) Robot: The mobile manipulator is composed of two robots,

see Fig. 3. The moving base is a Clearpath Boxer, differential

drive wheeled-robot that can achieve similar speeds to humans

while having a relatively small footprint. The robotic arm is a

Franka Emika Panda, a serial manipulator with seven degrees

of freedom, equipped with torque sensors in every joint that

can achieve high accuarcy while being safe to work around,

see Fig. 1. The attached gripper is a custom 3D-printed suction

gripper with two suction cups powered by a industrial vacuum

pump.

b) Perception: The base uses a 270 degree Lidar sensor to

localize itself and detect dynamic obstacles and humans in the

environment. We mounted a Realsense D435 RGBD camera

on the wrist link of the arm and use it to detect products and

perform visual servoing during picking.

c) Compute Units: We use a total of four compute units

to distribute the computational load of individual software



components. The first compute unit is the Franka Control

Interface controlling the arm. The base’s compute unit per-

forms self-localization and collision avoidance for the base.

The central compute unit is an Intel NUC with an Intel

i7 10th generation CPU, running all planning components

and the user interface for placing orders. A Dell Alienware

laptop mounted on the robot with an RTX 3070 TI GPU runs

the perception components. Our two computers are running

the Robot Operating System (ROS) and communicate via a

network switch.

C. Order-picking overview

The high-level overview of our order-picking system is illus-

trated in Fig. 4. Customers first place an order via the order

placement website. The robot processes the order into a task

assignment. For each item, it navigates to the item’s shelf,

locates it, picks and places it in the basket. When the order is

completed, the customer can pick up the order from the robot.

D. System components

We used the order-picking sequence in Sec. III-C to guide

our system development, while focusing on adaptiveness to

recover from failure and inaccuracies in perception. In the

following, we outline the main system components that are

visualized in Fig. 5 and can be grouped in: (a) task planner, (b)

motion planners, (c) low-level controllers, and (d) perception.

After receiving the customer order, the task planner (see

Sec. IV) determines the order of picking products by mini-

mizing the robot’s travelled distance. The task planner uses a

combination of a behavior tree and symbolic state information,

such as the robot is holding a product or has arrived at

the desired position, with an adaptive inference method to

determine the best next symbolic action to execute. We define

a symbolic action as an elementary robot behavior. Symbolic

actions can be as simple as greeting the customer or as

complex as picking an item. We use a set of five robot

symbolic actions: picking items, placing items, looking for

items, localizing the robot, and navigating the robot. Each

symbolic action is realized by the motion planning and control

components (see Sec. V). Motion planning is decomposed

into path planning and online trajectory optimization for the

base and reactive trajectory generation for the arm, augmented

with a pseudo-prismatic joint on the base, see Sec. V. Lastly,

the perception component (see Sec. VI) takes care of item

detection and classification and provides item poses to the

planning components.

IV. TASK PLANNING AND EXECUTION

Once the customer submits an order, the task planner creates

a plan to collect the items in the order throughout the store

and return the shopping basket to the delivery location.

Our decision-making approach to creating these plans and

executing them is designed explicitly with failure recovery in

mind. It consists of 1) offline plans that leverage the known

task structure, and 2) online planning to adapt the action

sequence to unforeseen disturbances, following the Active

Inference approach in [21].

Active Inference, a neuroscientific paradigm [22], formulates

all perception and decision-making in the brain as Bayesian

inference, combining prior predictions with novel sensory data.

For decision-making, the ”prior predictions” are rather prior

preferences, i.e., desired states, and the probabilistic Bayesian

inference is used to determine which symbolic actions have

the highest probability of reaching that desired state. In our

solution, a sequence of desired states for a task is planned

offline and encoded in a Behavior Tree (BT). At runtime, the

current desired state (or symbolic goal) is sent to the online

active inference planner that computes a symbolic action

sequence to transition from the current state to the desired

one.

A. Offline planning

The structure of the task is modelled offline as a plan to be

executed using the template BT shown in Fig. 6 and expanded

by Fig. 7, making the robot try to pick every product up

to N times, and then deliver the groceries to the delivery

location. It specifies an initial welcome to the customer, a

“Product Subtree” slot, an active inference node that sets the

final task sub-goal of being at the delivery location for the

online active inference planner, and a closing message to the

customer. For each product, a sub-tree as in Fig. 7 is created

automatically. Following the order list, every sub-tree for each

product is inserted in the overall Behavior Tree (BT) structure

from Fig. 6, as part of the sequence.

B. Online planning with Active Inference

The active inference planner (AIP) takes the task sub-goals

isPlaced and isAt as desired item states being placed in

the robot’s basket and the robot being at the delivery location,

and computes a symbolic action plan based on the robot’s

symbolic actions to achieves those states. Our planner uses

discrete active inference, which relies on a generative model

that contains beliefs about future states and symbolic action

plans, where plans that lead to preferred states are more likely.

The preferred sequence of symbolic actions is the one with the

highest probability of achieving desired states.

Our active inference planner rests on the tuple (O,S,A). This

is composed of a finite set of observations O, a finite set of

symbolic states S , and a finite set of symbolic actions A that

correspond to the robot’s symbolic actions.

The continuous state of the world x ∈ X is discretized through

a symbolic observer into boolean variables about the relevant

states of the world, e.g., item held by the gripper. These

discrete observations o are used to build a probabilistic belief

about the symbolic current state, described in Table I.

The AIP computes the posterior distribution over p plans π

through free-energy minimization [21]. The symbolic action

to be executed by a robot in the next time step is the first



(a) Customer order (b) Navigate to shelf (c) Locate item (d) Pick item (e) Place item

Fig. 4: Overview of ideal flow of symbolic actions to complete an order.

Fig. 5: Overview of system components.

symbolic action of the most likely plan, denoted with πζ,0:

ζ = max([π1,π2, ...,πp]
︸ ︷︷ ︸

π⊤

), aτ=0 = πζ,0. (1)

The combination of offline plans modelled as BT’s and online

planning using active inference facilitates responsive symbolic

action selection for long-term tasks within partially observable

and dynamic environments, which is particularly crucial in

addressing disturbances in retail settings.
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Product
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(Thank you)
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(Delivery)

Fig. 6: Overall BT structure. The symbolic action Speak interfaces with the
voice module to produce a suitable message for the customers (see Sec. VII).

TABLE I: Notation for belief states. s is the probabilistic belief state and l is
the corresponding one-hot encoding

Belief State ∈ (0, 1) Description

s(at) Belief about being at the goal location

s(loc) Belief about being self-localized

s(reach) Belief about reachability of an object

s(hold) Belief about holding an object

s(vis) Belief about an object being in sight

s(place)
Belief about an object being placed at a

location

Boolean State ∈ [0, 1] Common Name

l(at) isAt(goal/obj)

l(loc) isLocalized

l(reach) isReachable(obj)

l(hold) isHolding(obj)

l(vis) isVisible(obj)

l(place) isPlaced(obj)

This approach offers the advantage of not having to account for

every conceivable contingency and recovery behavior within

a BT, and at the same time allows for continuous online plan-

ning. This effectively minimizes computational complexity,

enabling the development of a robot capable of adhering to

predefined routines while also adapting locally to unforeseen

events through real-time online planning with active inference.

Product
Subtree

isPlaced
(product)

Speak(product  
 not retrieved)

RetryUntil
Success(N times)

Fig. 7: Sub-tree structure for placing an item in the basket. The active inference
node sets a prior over the state isPlaced for a product, triggering the online
decision-making. The symbolic action Speak produces a voice message to
explain the failure in case one happens (see Sec. VII).



TABLE II: Notation for symbolic actions

Symbolic Actions Preconditions Postconditions

selfLoc() - isLocalized

moveTo(goal/

obj)

isLocalized isAt(goal)/

isReachable(obj)

pick(obj) isReachable(obj) isHolding(obj)

!isHolding

isVisible(obj)

place(obj) isHolding isPlaced(obj)

!isHolding(obj)

look(obj) - isVisible(obj)

V. TRAJECTORY GENERATION

This section outlines the various approaches we employ for

real time trajectory generation (Sec. V-A, Sec. V-B). Fur-

thermore, we explain how the symbolic actions introduced in

Fig. 5, looking for products (Sec. V-C), pick (Sec. V-D) and

place (Sec. V-E) are realized and we explain how they use the

trajectory generation approaches.

A. Navigation of the base

To navigate the mobile base in the store, we employ the ROS

MoveBase framework, configured with A* as the global and

Timed-Elastic-Bands as the local planner [23]. We record an

environment map including static obstacles prior to deploy-

ment. Additionally, we manually define keep-out areas to pre-

vent the robot from going into unsafe or crowded areas, such as

checkout zones. The local planner uses the environment map

and online lidar sensor information for avoiding collisions with

static and moving obstacles, such as humans.

B. Motion of the arm

To generate the arm motions (and base during picking),

we employ Optimization Fabrics (fabrics). Fabrics is based

on behavior composition, defined as differential equations

in manifolds, which enables safe real-time planning at high

frequencies [15], [24], [25]. Since fabrics is a local, reactive

trajectory generation method, we require global guidance to

perform complex symbolic actions, such as product picking or

placing. The global guidance for fabrics consists of a sequence

of local goals, where we only continue to the next goal if

the previous goal has been reached. In Sec. VII-C we show

how this sequence of goals, i.e., reference trajectory, can be

obtained by human teaching. In the following, we briefly

explain how fabrics works and how to use it.

1) Method: Requirements such as collision avoidance, joint-

limit avoidance or self-collision avoidance are referred to in

fabrics as behavioral components. Each component is repre-

sented as a differential equation of the form M(x, ẋ)ẍ +
f(x, ẋ) = 0 on an appropriate manifold X of the configu-

ration space Q, where M and f are the importance metric

and the forcing term respectively, and x, ẋ and ẍ are the

state, e.g., full configuration of the robot or end effector pose,

and its derivatives in the manifold X . By respecting simple

construction rules, each behavioral component can be ensured

to be an optimization fabric, i.e., a dynamic system that is

stable by construction. All components can then be combined

in the robot’s configuration space by applying the operations

of pull-back and summation. In the configuration space, we

obtain one optimization fabrics of the form Mq̈ + f = 0,

where q̈ is the second derivative of the configuration and

M and f the resulting importance metric and forcing term,

respectively. We define goal states of the robotic arm as a set

of constraints Sc = {C1, Ci, Cn} where each constraint C is

defined by the tuple C = (fkp, fkc,x). Here, fkp is the forward

kinematics to the parent link, fkc the forward kinematics to

the child link, and x is the desired position vector. These

constraints are implemented in fabrics as a forcing term with

the differential map φgoal = (fkc − fkp)− x. On the manifold

defined by this differential map, we define the forcing potential

ψ that can be pulled at forcing our optimization fabric as

Mq̈ + f + ∂qψ = 0. The final policy is then defined as the

solution to the damped differential equation as

q̈ = −M−1(f ++Bq̇ + ∂qψ), (2)

where B is a positive definite damping matrix. For further

details, we refer readers to [25].

The key advantages of fabrics are their fast computation and

flexibility to compose behaviours and define the desired goal

in a manifold, rather than being fixed to defining a target

configuration or end-effector pose. For example, some tasks

may require aligning the end-effector to face a specific point,

while the actual position along the line is of little importance,

see Fig. 9. Similarly, some products, like a can, can be grasped

from many directions and one may only need to specify a

subset of desired grasping poses, e.g., the grasp height and

that the grasp should be perpendicular to the vertical axis, but

not the specific approach direction.

2) Safety: An important aspect of applications of robotics

solutions to human-shared environments is safety and failure-

free operation during an extended amount of time. For the

latter, the most important aspect is that joint-limits and self-

collision is avoided at all times, because these can lead to

hardware shutdowns. In fabrics, these constraints are achieved

by defining a joint-limit avoidance and self-collision avoidance

components as described above, making these failures virtually

impossible. Safety, however, is more complex to achieve,

as it requires an accurate environment model and a reliable

prediction of humans and their individual joints. In this work,

fkp,1

fkc,1

x1

(a)

fkp,1

fkp,2

fkc,{1,2}

x1

x2

(b)

Fig. 8: Goal constraints for fabrics. In (a), the only constraint is defined
by C1 = (fkp,1, fkc,1,x1). In (b), a second constraint is added as C2 =
(fkp,2, fkc,2,x2) to align the end-effector horizontally.



Fig. 9: Illustration of the orientation constraints for trajectory generation for
look-for-product.

we instead opted for safety through compliance during arm

motion, i.e., the robot is compliant to external forces. This

is achieved by tracking the desired acceleration output from

Eq. (2) with a low-level controller that outputs the torques for

the individual joints. Specifically, we use a PI controller that

tracks the velocity that is obtained by integrating the desired

acceleration. This approach allows ensuring that collisions are

non-harming to the robot and its environments.

3) Usage: As an example, a reaching problem, where the

end-effector should be at a certain position is defined by

Cee = (fk0, fkee,xee), where fk0 is the forward kinematics to

the base link of the robot and xee the desired position of the

end-effector in the base link frame.Fig. 8 shows two examples

of composing goal states by constraints.

A problem we encountered when picking products with only

the arm, is that the arm’s workspaceis limited w.r.t. the shelf’s

size. This in combination with variability in base position or

product location, often resulted in the product being out of

reach or requiring difficult arm configurations close to joint

limits. Therefore, during picking, we augment arm motion

by integrating the forward motion of the base as a pseudo-

prismatic joint to the kinematic chain. This can be easily done

in fabrics by appending the base motion to the state vectors

q, q̇, and q̈, see Fig. 13.

C. Look for a product

Looking for the product is triggered as soon as the robot

base is in front of the shelf that is expected to have the

desired product. The camera frame is then located at a position

xcamera. The camera must be pointed towards the expected

product location, defined as xitem. We can model this goal

as two constraints. First, the camera link should not move

from its current location, thus C1 = (fk0, fkcamera,xcamera).
Secondly, the camera should face the product location. We

compute the ray connecting the camera and product location

xray = xitem −xcamera to define C2 = (fkflange, fkend-effector,xray)
that aligns the end-effector with the defined ray xray, see Fig. 9.

D. Picking of a product

To define a goal for picking products we use a combination

of three constraints. First, the position of the vacuum cup

is determined by the position of the product, thus C1 =
(fk0, fksuction-cup,xsuction, wsuction). Secondly, we limit ourselves

to picking products from the shelf, thus constraining the end-

effector to be perpendicular to the shelf by defining C2 =
(fkflange, fkend-effector,xflange,end-effector). Lastly, our gripper is

composed of two suction cups, which, depending on the prod-

uct should align with a specific angle for executing the most

reliable grasp. The desired alignment defines our third con-

straint for the picking as C3 = (fksuction1, fksuction2,xalignment).
Although it is possible to program picking, including approach

and retreat, as a sequence of this set of constraints, it is difficult

to capture all the nuances of picking in the code. Therefore, we

make use of a human operator to teach the robot the best trajec-

tory to reliably pick specific products, following the learning-

from-demonstration paradigm [26]. Teaching has proven an

effective way to generate sequences of the previously men-

tioned constraints thus encoding the human understanding of

the picking problem into recorded trajectories. We explain the

process of recording and playing back trajectories in detail in

Sec. VII-C.

E. Placing of a product

Placing the product consists of four phases. The robot navi-

gates to a configuration to its right or to its left depending on

whether it was a right-sided pick or a left-sided pick. Then, it

moves above the crate facing downwards. This is defined by

two constraints, C1 = (fk0, fkend-effector,x0,end−effector, 1) and

C2 = (fkflange, fkend-effector,xflange,end−effector). The product

is placed by moving the arm downwards until an external

force, from touching the crate’s bottom or an already placed

product, is detected. This triggers the gripper release and goal

change to the homing position ready for the next product.

VI. PERCEPTION

The three perception components are shown in Fig. 5.

• Object detection and classification: Generates 2D ob-

ject proposals and classifies them in a binary way based

on a provided target class, resulting in the proposals being

classified as either target class or not. Object detection

and classification are realized using two different models.

Both models are fine-tuned on a supermarket dataset, but

do not require retraining to add new products, as we will

explain in the following.

• Object pose estimation: Uses 2D object proposals in

combination with a depth image to convert them to 3D.

To estimate the orientation around the z-axis, we use

a plane-fit of the pointcloud frustum. That first order

approximation of the surface of the products front has

proven to be a reliable approach, even for non-planar

surfaces, see Fig. 2.

• Multi-object tracking: To track the objects over time, we

use a set of Kalman Filters, one per object. The object

proposals are assigned to Kalman Filter tracks using the

Hungarian Algorithm [27], [28].

Because a supermarket has a large and often changing set of

products, the main requirement for our perception pipeline is



that it should be easily adaptable. This observation from retail

environments led us to the constraint on the perception pipeline

that it should not require retraining when new products are

added. Such a constraint can be addressed using, so-called,

few-shot models. In the following, we describe the details of

our object detection and classification method.

The method utilizes YOLO for object detection, relying on

product details for object classification. Additionally, our sys-

tem allows adding products using a single or few images.

This dynamic addition of new products is possible trough

a few-shot model we dub ProtoProductNet. This model is

based on ProtoNet [29]. ProtoNet matches query images to

target classes by their distance in feature space. For each

target class a prototype is constructed that is essentially the

mean of the features of a number of example images of this

class. By matching query images to target prototypes, ProtoNet

essentially learns to encode features that classify similarity

between query images and target classes. Because this model

picks random query- and target classes from a dataset for

every iteration, ProtoNet learns a general feature extraction

strategy that is invariant of the actual class. This is important

for adding new products, as classifying new products is as

easy as providing the model with new target images.

The exact implementation of ProtoNet we use is based on

P>M>F [30]. P>M>F shows that in few-shot learning pre-

training (P) is more important than meta-training (M), which

is in turn more important than fine-tuning (F). For the best

results the authors of P>M>F suggest using ProtoNet with a

Vision Transformer pre-trained with DINO [31] as the feature

extractor and meta-training it with a small learning rate.

However like most few-shot classification models, ProtoNet

assumes that query images can only be one target class.

Not only would comparing a query image to all supermarket

products increase inference time, attributing it to a likeliest

product is unsafe. If our product detector misidentifies a

human as a product, the classifier must correctly recognize

that and not classify it as the most likely product.

ProtoProductNet makes exactly this possible. It uses a ViT

pre-trained with DINO to extract image features, and predicts

if those features are part of a target prototype based on

their cosine distance. ProtoProductNet then passes this cosine

distance through a linear layer combined with a sigmoid

function to translate it to a confidence score. If query images

have a confidence < 0.5, they are considered not the target

class. Using a sigmoid function however leads to a loss of

relational information between classes. In contrast to ProtoNet,

that predicts only the most likely target class among a set of

target classes with a softmax function, a sigmoid predictor

only uses the cosine distance per class to make predictions.

As this mechanic is an important reason why ProtoNet works

so well, ProtoProductNet will also be allowed to choose the

likeliest from a number of prototypes. This means that next

to a target prototype, a number of helper prototypes will be

chosen. When classes are likelier to be a helper class then the

target class, they are considered to be not the target class. As

classes that are close together in feature space are harder to

distinguish, it makes only sense to choose helper prototypes

that are close to the target prototype.

VII. INTERACTION AND TEACHING CAPABILITIES

To quickly adapt our robot to new store environments and

products, we created four interfaces for operators: a digital

twin for remote monitoring and control, adding product classes

to the perception, trajectory teaching mode, and audio expla-

nations of the robot’s symbolic actions.

A. Digital Twin for Remote Monitoring and Control

Herein, we introduce a digital twin mechanism to support re-

mote monitoring and control of a mobile manipulator in a retail

setting, as shown in Fig. 10. By scanning the environment in

three dimensions, we construct a virtual model that accurately

represents the workspace. The robot, when operational in a

supermarket, is connected to this digital twin through Wi-

Fi or 4G, enabling operators to monitor its status and issue

commands remotely. The addition of a tablet interface allows

for flexible monitoring and control by on-site staff, who can

easily adjust the robot’s course or teach it new tasks as needed.

B. Interactively adding product classes to perception

Sec. VI explains ProtoProductNet, our adaptation to the state-

of-the-art ProtoNet, to make the few-shot learning approach

scalable for the supermarket environment. To add new unseen

product classes to ProtoProductNet, we developed a custom

user interaction for human operators. The interaction contains

the following steps 1) the operator uses a barcode scanner,

attached to the robot, to scan the new product 2) the operator

puts the product in view in front of the robot’s camera 3)

a GUI with the view of the camera pops up on the screen

and the operator interactively drags a box around the new

product. The robot should already start detecting the product,

as can be verified by a bounding box appearing on screen.

To further enhance the detection the operator can add images

from different angles of the product. The cropped images

selected by the operator are saved locally and combined with

the product’s barcode. If the same barcode is encountered in

future orders, our perception pipeline will now know how to

classify the product accurately, without retraining the network.

C. Teaching grasping trajectories to the robot

As outlined in Sec. V, fabrics require global guidance to

effectively execute complex symbolic actions that are essential

for some products, see Fig. 2. To simplify the process of

obtaining this guidance in the form of trajectories, we leverage

human expert demonstrations, effectively teaching the robot.

We distinguish between two phases for teaching, the recording

and the playback. For both phases, we assume that the product

is visible and detected by the robot, such that we can compute

a transformation between the root link and the product.
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Fig. 10: Overview of the remote monitoring and control system. a) Laptop-based remote interface for monitoring and control system; b) Visualization of the
robot within the actual retail environment; c) Tablet interface for on-the-go monitoring and task programming.
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Fig. 11: The human operator can easily ‘teach’ the robot a new picking
strategy by moving the arm, thus passing implicit knowledge to the robot.

1) Recording: When recording a trajectory, we first reduce

the stiffness of the robot to the bare minimum, such that it

can easily be pushed around by the human operator. Then, the

human operator can activate recording by pressing a button

on our tablet interface. From that moment onwards, the state

values x for the constraints defined for picking in Sec. V-D

are recorded, see Fig. 11. The state of the gripper, active or

non-active, and whether a product is attached to the gripper

are also recorded. The generated sequence of constraint values

and gripper states is stored as a reference trajectory.

We additionally record the transformation matrix between the

root link of our kinematic chain and the product to be picked.

That allows us to later generalize the recording to different

product poses by applying a rigid body transformation to the

trajectory.

2) Playback: During trajectory playback, we loop through the

recorded goals sequentially, continuing when a desired goal

accuracy has been reached. In contrast to the recording part,

where we exclude motion of the base, during playback the

base motion is activated, see Fig. 13. To account for different

product poses between recording and playback, we transform

the goals on the fly based on the product pose estimate, see

Sec. VI, using the following transform:

item,rT
item,p =

(

baseT
item,r

)
−1

base
T item,p,

where baseT
item,r is the transformation matrix between the

manipulator’s base link and the product during recording and

baseT
item,p is the transformation matrix between the manipula-

item,rT
item,p

Fig. 12: To generalize to different item poses, recorded trajectories (red) are
transformed based on the the transformation between the item’s pose during
recording and during playback (orange). The new trajectory (blue) is then
tracked using our trajectory generation method.

tor’s base link and the product during playback, see Fig. 12.

Using this continual feedback we effectively employ a visual

servoing [32] approach and are robust against changes in

product location during the pick. In addition to fabrics goals,

the recording also contains information about the state of

the vacuum pump. This state information is replicated during

playback, and used to know when a product should have been

attached. In the playback routine for picking we then modify

the fabrics goal if a product is not yet attached where it is

expected. The goal is modified to effectively push further into

the shelf along the z-axis of the nozzle head, until a product

is attached, or a maximum threshold is reached.

D. Generalizability

To reduce the number of taught trajectories, we rely on generic

trajectories. Our gripper design led to a horizontal and a

vertical pick trajectory, where the two suction cups are either

aligned horizontally or vertically. As most considered products

have a planar surface, we can use these two trajectories for

most products. These trajectories are replaced by product

specific trajectories in case of repeated failures. For example,

unconventional bottle shapes require modified trajectories.

Similar to existing works on learning-from-demonstration

[33], we argue that non-experts can, over time, create an

increasingly complete trajectory database for all products to

further improve performance. Importantly, general trajectories
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Fig. 13: During playback, fabrics actively use the base’s forward motion as a prismatic joint to compensate for misplacement during navigation.

have proven to be sufficient for most of our products. Note that

all trajectories are robot agnostic and only gripper specific, so

we expect them to be transferable to other robots with similar

gripper designs. The generalizability of our approach relies on

the transformation of trajectories according to the item’s pose.

The robot’s workspace is a natural limitation, as items placed

outside the workspace (i.e. on the lowest or highest shelf or at

the back on the shelf) are kinematically unreachable and thus,

not resolvable by our teaching approach.

E. Audio feedback

During the robot’s operation, we are interested in providing

audio explanations of the robot’s actions as feedback to

operators, e.g., to monitor the robot and to be notified about

failures. We do this by 1) generating compact prompts of the

robot’s action and state and 2) using Large Language Models

(LLMs) to generate short informative explanations that are

played via the robot’s speaker.

a) Prompt generation: We leverage the structure of the gen-

erated BT’s and symbolic state information (see Sec. IV) to

generate prompts for an LLM. For every sub-tree in the gener-

ated BT, we automatically add explanation nodes that generate

prompts for symbolic actions and items. An explanation is

described by its name a formulated as a verb in the present

continuous form, e.g., a = placing. The item’s name i is

taken from the product database, e.g., i = Whole Milk. We

generate string prompts of the form pr:

pr := action a i c,

where c ∈ {running,failed,completed,retry} is

the status returned from the sub-tree. An example for a gener-

ated prompt is “action picking Whole Milk retry”.

b) Explanation generation: We generate explanations by

prompting an LLM on the fly with our generated prompts.

To this end, we provide the LLM with a context describing

that the robot is deployed as an order picking robot in a

supermarket with five symbolic actions and that the task is

to generate a concise explanation of the prompt to operators.

During operation of the robot, we simultaneously generate the

explanations and play them back via the robot’s speaker. For

instance, for the prompt “action picking Whole Milk

retry”, we generate the explanation: “Oops! It seems like

I had a little trouble placing the Whole Milk into my basket.

No worries, I’ll give it another try and make sure it goes in

smoothly this time”.

VIII. VALIDATION

To evaluate the performance and how well our robot adapts, we

validated our robot in picking customer orders in two realistic

environments. Our driving validation questions were:

1) What is the success rate of our robot?

2) What are causes for failures of the robot?

3) How well did the robot recover from disturbances?

We first describe the two validation environments, followed by

summarizing the robot’s performance and how it recovered

from introduced disturbances such as misplaced items. A

video showcasing our robot can be found in the paper’s

supplementary material.

A. Validation environments

We evaluated our robot in two different, realistic but controlled

environments:

a) AIRLab (see Fig. 1): Our AI for Retail (AIRLab) envi-

ronment is a university laboratory at TU Delft that resembles

parts of real supermarkets of our Dutch retail partner. AIRLab

has OEM shelves and products. We used this environment to

develop and validate our system during development.

b) Realistic store: We also validated our robot in a realis-

tic store layout of our Dutch retail partner, used by their

development teams for testing before moving into their real

stores. For confidentiality, we cannot show this store. The main

differences to AIRLab are a larger number of products in the

shelves that are also more densely packed, similar to the real

stores of our partner. Moreover, the shelves also contained

product information tags. We prepared one full day in this store

to validate our system, including creating a map, scanning

available products, and connecting to the product database.

B. Comparison to teleoperated systems

A direct comparison to a human picker seems of little use as

the current stage of the system is not competitive in terms of

capabalities and speed to a human picker. Instead, we compare

the autonomy of the picking strategy to a teleoperated version

of it. The focus on the picking for this lies in its important

contribution to the overall success rate and execution time,



TABLE III: Number of attempted, succeeded and recovered symbolic action attempts for picking and placing (the more complex symbolic actions). Note,
that a recovery is defined as a successful execution of a symbolic action after a failure.

AIP-goal picking placing

attempted succeeded recovered attempted succeeded recovered attempted succeeded recovered
AIRLab 81 50 9 65 45 9 46 43 2

Realistic store 151 90 26 153 98 25 91 90 6

see Fig. 16a. For this study, the robot starts facing the shelf

where the product is expected. The teleoperator has access

to the camera image from the camera mounted on the end

effector. Control is limited to Cartesian movements of the end

effector, base forward motion and vacuum activation. Then,

the teleoperator has access to the same controls available

to the robot in autonomous mode. Therefore, the symbolic

actions evaluated in this study are the look-for-a-product and

picking-of-a-product. This limited study was performed for a

subset of five different products from the set used in the demo

stores. Teleoperation results in similar execution times than the

autonomous mode, see Fig. 14. This indicates that the execu-

tion times is likely limited by the hardware setup, including

sensors and actuators, and not by the modules responsible for

the autonomous behavior. However, we acknowledge that the

teleoperation study is limited in scope and that more capable

teleoperation setups, see for example [34], might substantially

outperform the autonomous mode.

Fig. 14: Execution times for the combination of look-for-a-product and
picking-of-a-product between teleoperation and autonomous mode.

C. Performance

Performance is evaluated by success rate and execution times.

Orders are divided into success, i.e. the entire order was suc-

cessfully collected and returned to the client, partial success,

i.e., at least one product was not collected and at least one

was collected, and failure, i.e., no product was collected. This

is visualized by the inner ring in Figs. 15a and 16a. We also

inform about the failure reasons and the number of products a

successful order contained (outer ring in Figs. 15a and 16a).

For each symbolic action, we report execution times and how

many failures were recovered by the adaptive task assignment

method, see Table III. As the symbolic action remains active

throughout the entire treatment of one product, there lower

bound is the sum of the execution times of the other symbolic

actions.

(a) Success-rate across order sizes and failure causes.

(b) Execution times of symbolic actions in seconds. Note that symbolic actions remain
active until the desired state, i.e., product in basket, is reached or a failure occurs. In
that case, the symbolic action is re-attempted.

Fig. 15: Success-rate and action execution times in AIRLab environment. A
total of N = 27 were performed.

D. Success rate and recoveries

Our evaluation in a lab-like environment reveals that we can

achieve a success rate of about 60% for few-items orders,

see Fig. 15a. Additionally, we observe that most failures are

caused during ‘picking’. In Table III, we see that recoveries,

i.e., a symbolic action failed at least ones before it succeeded,

were common. Thus, it shows that decision-making that is able

to deal with disturbances is essential in this sort of application.

Investigating the execution times, it can be seen that ‘picking’

is also the symbolic action that takes most time in collecting

an item, roughly 50s on average between starting the grasp at

its completion, see Fig. 15b.

A remarkable property of our system is its reliability and

fault tolerance at a very low computational cost. Specifically,

apart from the perception, all the components, including the



(a) Success-rate across order sizes and failure causes.

(b) Execution times of symbolic actions in seconds. Note that symbolic actions remain
active until the desired state, i.e., product in basket, is reached or a failure occurs. In
that case, the symbolic action is re-attempted.

Fig. 16: Success-rate and action execution times in realistic store environment.
A total of N = 45 were performed.

decision-making and the trajectory generation, are running on

the Intel NUC with an Intel Core i7-10710U, a low-power

CPU that is roughly 80% worse than the compute unit used

in [11] according to www.cpubenchmark.net. This relies on

our multi-level approach to adaptability and recovery from

disturbances and runtime uncertainties:

a) Skill level: Our Skills are adaptive to disturbances such

as sensor noise, to which our object recognition is robust, or

physical disturbances. Examples of the latter are the ability of

our compliant arm control to accommodate someone holding

it —e.g., if an operator identifies an issue with the item being

picked by the robot and wants to take it from the robot— or the

visual serving enabled by our object detection and trajectory

generation that continuously adapts the motions in case the

position of the object changes in the field of view of the robot.

b) Task execution level: If the adaptability of the symbolic

actions falls short of accounting for a disturbance, e.g., the

operator took the item from the robot. It is now out of

its field of view; failing to detect the item, our extremely

reactive online planner would generate an alternative sequence

of symbolic actions to achieve the desired intermediate subgoal

belief state of the item being in sight, resulting in the trajectory

generation component smoothly transitioning to a trajectory

for the end effector to look for another instance of that item

in the shelf. The formulation of the online planning problem in

terms of desired states instead of symbolic actions results in a

failure recovery behaviour that is easier to scale since there is

no need to re-write an entire application-specific logic, which

is the case in solutions based on state machines, but one can

extend the definition of the planning problem with new states

and eventually new symbolic actions if new symbolic actions

are developed for the robot.

c) Task plan level: The BT structure with pre-defined recover-

ies retries a subgoal, e.g., getting an item into the basket, up to

three times when it fails. This ensures a reasonable trade-off of

reliability and performance, e.g., most of the time the second

attempt to pick and item was enough. If the third attempt

fails, most likely, the item can not be grasped. This heuristic

is computationally simple and easily adjusts to new items, e.g.,

allowing more attempts for incredibly challenging items.

The evaluation in the realistic store environment shows that

the system can be deployed to a human-shared environment

without a major loss of performance, see Fig. 16a. This test

environment also confirms that most reliability issues are

caused by the picking action.

IX. LESSONS LEARNED AND KEY TAKEAWAYS

Throughout our project, we have gained valuable insights that

inform our approach to deploying robotic systems effectively.

These lessons, drawn from hands-on experience, highlight

key considerations and strategies we believe essential for

successfully implementing robotic software solutions.

• Human expert trajectories are an efficient way of

encoding grasping strategies: Through the recording of

human expert picking trajectories, we could address a

significant portion of collision avoidance challenges and

grasping strategies for specific products. This approach

effectively allows for the encoding of per product strate-

gies regarding grasp approach, location, and retrieval in

a far more streamlined manner compared to traditional

hard-coded behaviors. We showed that default trajectories

generalize for various similarly shaped products, so that

the number of trajectories can be much lower than the

number of different products. Although the adaptation of

recorded trajectories proved successful, we require more

complex methods to mitigate remaining failure cases.

• Accurate product detection and continuous visual

feedback are crucial: Accurate product detection and

pose estimation emerged as critical requirements within

the confines of supermarket environments because of the

small size of certain products and the lack of clearance.

Continuous visual feedback, particularly through visual

servoing techniques, played a pivotal role by enabling

real-time tracking of products and refining pose estima-

tions as the robotic arm approached the target object.

www.cpubenchmark.net


Failure case Potential causes

Product knocked over during pick Inaccuracy in product detection or trajectory following, resulting in insufficient vacuum seal
Collision with shelf Changes in environment due to shelf railing, price tags or discount tags
Product outside reachable space The arm cannot physically reach the bottom or top shelf
Collision with surrounding products on the shelf Products are differently positioned than during taught behavior
Vacuum gripper fails to attach Factors like product size, weight, shape and material can cause vacuum suction to be insufficient

TABLE IV: Qualitatively evaluated list of potential failure cases

• Vacuum grippers may fail with light and small

products: We underestimated the inherent difficulty in

effectively picking very light and small products. This

challenge highlights the need for alternative gripping

mechanisms or specialized approaches tailored to han-

dling such delicate items.

• Grasping angles heavily influence seal integrity and

stability: We put particular emphasis on selecting optimal

grasping angles to ensure both seal integrity and product

stability during suction grasping. Preferably, the grasp is

positioned on a product’s flat side to establish a secure

seal while minimizing the risk of product displacement or

toppling. A slight angle of approach that gently presses

the product against the surface further enhances stability.

• Compliant robots are key in dynamic environments:

Compliance is essential when safely operating rigid

robotic arms in dynamic environments and alongside

humans. To guarantee collision avoidance with humans

requires accurate human detection and intent detection.

As this is highly complex, we opted for safety through

compliance during arm motion and rely on raw lidar data

during base motion. Beyond safety, compliance offers

inherent forgiveness in the event of grasping failures.

Together with our adaptive online task planner, this

combination enables our robot to recover or retry au-

tonomously, minimizing human interventions.

• Whole body control enhances efficiency: Whole body

(or semi-whole body) control simplifies the task of pick-

ing products from diverse shelves within a supermarket

setting. The expanded configuration space with the addi-

tional degrees of freedom significantly enhances planning

efficiency and reliability, thereby streamlining operations.

• Rapid and iterative software development is imper-

ative: Rapidly iterating our software directly on the

physical robot was a critical success factor for us. Swift

iterations serve as a reliable indicator of the eventual

outcome. Furthermore, our realistic rest lab environment

with anticipated operational conditions enhanced overall

system robustness.

• Lack of high quality mobile manipulators hinders

progress: Contrary to prevailing notions, the development

of mobile manipulators present substantial challenges,

particularly in research. Existing solutions remain scarce,

and researchers are often forced to deal with inaccurate

and unreliable mobile bases and robotic arms with short

battery lives. Similarly, versatile gripper design is an

unsolved research topic. This underscores the need for

continued exploration and innovation in this domain to

bridge existing gaps and facilitate rapid advancements in

robotic research.

X. CONCLUSION

In this DEMO-paper, we present our approach to order-picking

in human-shared retail environments. In contrast to previous

approaches for that application [11], we deploy a failure-

robust task-planning method that can recover from failure of

the individual sub-modules and propose a way to simplify

the ‘programming’ of the robot by leveraging teaching. We

show that a significantly simpler robot design than [11] can be

successful at the task of in-store order-picking. The approach

was evaluated in a realistic store environment and in a lab-like

environments without much modifications. In the future, we

must address the challenge of interacting with more complex-

shaped items, such as fruits and vegetables. That requires the

integration of either a gripper switching method or a more

intricate gripper design, as suggested in [11].
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[12] A. Dömel, S. Kriegel, M. Kaßecker, M. Brucker, T. Bodenmüller, and
M. Suppa, “Toward fully autonomous mobile manipulation for industrial
environments,” International Journal of Advanced Robotic Systems,
vol. 14, no. 4, p. 1729881417718588, 2017.
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