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Abstract— We present Sadcher, a real-time task assign-
ment framework for heterogeneous multi-robot teams that
incorporates dynamic coalition formation and task precedence
constraints. Sadcher is trained through Imitation Learning
and combines graph attention and transformers to predict
assignment rewards between robots and tasks. Based on the
predicted rewards, a relaxed bipartite matching step generates
high-quality schedules with feasibility guarantees. We explicitly
model robot and task positions, task durations, and robots’
remaining processing times, enabling advanced temporal and
spatial reasoning and generalization to environments with
different spatiotemporal distributions compared to training.
Trained on optimally solved small-scale instances, our method
can scale to larger task sets and team sizes. Sadcher outper-
forms other learning-based and heuristic baselines on random-
ized, unseen problems for small and medium-sized teams with
computation times suitable for real-time operation. We also
explore sampling-based variants and evaluate scalability across
robot and task counts. In addition, we release our dataset of
250,000 optimal schedules: autonomousrobots.nl/paper_
websites/sadcher_MRTA/ §

I. INTRODUCTION
Autonomous multi-robot systems (MRS) are designed for

complex, real-world settings, including earthquake disaster
response scenarios [1], autonomous construction [2], pro-
duction assembly processes [3], or search and rescue mis-
sions [4]. Interest in MRS and multi-robot task assignment
(MRTA) has grown rapidly in recent years [5]. Efficient
MRTA algorithms optimize resource usage and minimize
operational time [6]. MRS improve performance and enhance
system robustness as a multi-robot team is more resilient
against individual robot failures and performance bottlenecks
[7], [8]. Using sub-teams of robots, i.e., dynamic coali-
tion formation, enables teams to tackle complex tasks that
would otherwise be infeasible for a single robot [8]–[10]. In
practice, relying on a team of homogeneous robots where
each robot possesses all skills can become impractical if
task requirements are highly diverse, involving different sen-
sors and actuators [11]. Instead, using heterogeneous robots
brings practical and economic advantages, by leveraging
existing specialized robots [12] and deploying simpler robots
that are more cost-effective to implement and maintain [8]
and more robust to failures [6]. MRS operate in dynamic
environments where sudden changes, new tasks, unexpected
task requirements, robot malfunctions, or moving obstacles
can occur [5]. Hence, the ability to adaptively replan in real-
time is essential. Modeling precedence constraints, which
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Fig. 1. Illustrative use case of autonomous construction on Mars. Circles
represent tasks, color indicates required skills. Robot skills are shown as
colored squares. Tasks requiring skills no single robot has (e.g., search for
material in top left) must be executed by a synchronized coalition of robots.

impose a logical temporal sequence among tasks, further
enhances applicability to real-world scenarios [13] where
some tasks depend on the completion of prior tasks.

Motivated by these challenges this paper proposes Sad-
cher, a framework for real-time scheduling of heterogeneous
multi-robot teams with dynamic coalition formation and
precedence constraints. Our main contributions are:

• A learning-based model, combining graph attention net-
works and transformers, which accounts for robot/task
positions, task dependencies and durations, robots’ ca-
pabilities, and robots’ remaining time to complete the
current task. This enables advanced spatiotemporal rea-
soning and generalization.

• A dataset of 250,000 optimally solved small-scale prob-
lems, usable as demonstrations for imitation learning or
to benchmark against optimal schedules.

II. RELATED WORK

Following the taxonomy introduced in [14] and extended
in [15], MRTA problems can be categorized on 4 axes:
(1) single- or multi-task robots (ST/MT), (2) single- or multi-
robot tasks (SR/MR), (3) instantaneous or time-extended as-
signment (IA/TA) where TA incorporates information about
future tasks and scheduling decisions, (4) interdependence
of agent-task utilities, i.e. with cross-dependencies (XD), an
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agent’s utility for a task depends on the tasks assigned to
other agents. This work addresses ST-MR-TA-XD settings.

A. Conventional Methods

Mixed Integer Linear Programming (MILP) offers ex-
act solutions for complex ST-MR-TA-XD problems [16],
though its exponential runtime hinders real-time use. The
MILP-based CTAS framework [11] explicitly models risk
in agent capability for task decomposition and scheduling.
Simpler heterogeneous ST-SR scenarios can be addressed
with the Tercio algorithm [3], which uses an MILP-based
task allocator and a polynomial runtime task scheduler.
Auction algorithms like [4], [17] treat tasks as non-atomic
– tasks execution can be incremental, not requiring coalition
formation. [18] uses auctions to solve heterogeneous ST-
MR problems with atomic tasks. Genetic Algorithms offer
anytime solutions that balance exploration and exploitation:
[19] tackles heterogeneous ST-SR, [20] focusses on coalition
formation of homogeneous robots, while [12] can handle
heterogeneity and coalition formation. Other optimization
metaheuristics applied to heterogeneous ST-MR include Ant
Colony Optimization [10] and Particle Swarm Optimization
[21]. Greedy formulations like [6] employ construction and
improvement heuristics to balance runtime and performance.

B. Learning-based Methods

Deep learning methods promise fast solution generation
and good scalability, by offloading most of the computation
to the training phase [22]. Reinforcement Learning (RL)
does not require a training dataset, but might spend a lot of
time on infeasible solutions [23]. RL is used to solve ST-SR
problems with mildly heterogeneous robots – robots differ
in efficiency but can all perform any task – in [24] and [25].
Other RL methods solve ST-MR problems with dynamic
coalition formation, but only for homogeneous robots [26],
[27]. Recently, RL has been used to tackle heterogeneous ST-
MR problems with dynamic coalition formation in [28]. The
authors mitigate some of the problems RL faces through a
flash-forward mechanism which allows for decision reorder-
ing to avoid deadlocks during training.

Instead of RL, other methods use Imitation Learning (IL)
from optimal solutions during training, which requires a
(computationally expensive) expert dataset, but benefits from
stable training. [23] presents an IL method for mildly het-
erogeneous robots without coalition formation (ST-SR). Both
[29] and [30] address heterogeneous ST-MR problems with
a network predicting task assignment rewards and a bipartite
matching algorithm yielding task assignments based on these
rewards. In [29], coalition formation is only considered if
a task fails to be completed by a single robot. There are
cases in which a lower cost schedule could be obtained by
considering coalition formation for all tasks, e.g., two robots
are faster at completing the task than one. [30] improves upon
this by always considering coalition formation. Furthermore,
they introduce voluntary waiting, which increases perfor-
mance through enabling better future coalition formation by
delaying task assignments. However, [30] omits locations

and durations in their network architecture. This implicitly
assumes task durations and travel times to be negligible or
to match the training distribution.

In this paper, we extend previous IL methods by explicitly
modeling robot/task positions, task durations, and robots’
remaining time to complete the current task. This enables
advanced spatiotemporal reasoning, e.g., synchronizing robot
arrivals and anticipating task readiness and robot availability.
Additionally, it supports generalization to environments with
unseen spatiotemporal distributions.

III. PROBLEM STATEMENT

Notation. Matrices are boldface uppercase (e.g. M ∈
IRn×m), vectors are boldface lowercase (e.g. v ∈ IRd), and
scalars are lowercase (e.g. s).

We model a system of N heterogeneous robots, M tasks,
and a set of skills S. Each robot is capable of performing
a subset of S, and each task requires a subset of S to be
performed at its location for the given task duration.

The N heterogeneous robots with Si ⊆ S distinct skills,
are modeled as an undirected graph Gr = (R,C), where
each vertex in R = {ri}N is a robot with dr dimensions.
Robot states ri = [pr

i , t
r
i , a

r
i , c

r
i ] include position pr

i ∈
IR2, remaining duration at the current task tri , the robot’s
availability ari ∈ {0, 1}, and the binary capability vector over
the global skill set cri ∈ {0, 1}|S|. C ∈ {0, 1}N×N represents
the network connection among the robots. For simplicity, we
assume a fully connected graph, so Ci,j = 1 ∀i, j, but the
model is designed to accept any connected graph as input.

The M tasks and their respective precedence constraints
are represented as a directed acyclic graph Gt = (T ,P).
Each task is a vertex in T = {tj}M with dt dimensions, and
is described by tj =

[
pt
j , t

t
j , r

t
j , s

t
j

]
, with position pr

i ∈ IR2,
expected duration ttj , required skills rtj ∈ {0, 1}|S| and status
stj ∈ {0, 1}3. The status indicates whether tasks are ready,
assigned, or incomplete, e.g., stj = [1, 0, 1] represents a task
that is ready to be scheduled, currently not assigned, and
incomplete. Precedence constraints are encoded in the edges
PM×M , where Pi,j = 1 means the i-th task is a predecessor
of the j-th task. The j-th task is only ready to be scheduled
if all its preceding tasks have been completed. A task can
only commence when all required skills are covered by the
dynamically formed coalition of robots assigned to it. This
can be denoted as cC ⪰ rtj where cC is the element-
wise sum of robot capabilities cri of assigned robots and
⪰ is the element-wise greater-or-equal operator. The tasks
require tightly coupled coalitions [20] - all robots have to be
present at the task location for the entire execution duration.
Furthermore, we introduce an idle task tM+1 that robots
can choose to increase overall performance by delaying
assignments until a better coalition can be formed.

Robots start at location pstart
i and end at pend

i . The cost
function aims to minimize the makespan, defined as the latest
arrival time of any robot at pend

i after completing its tasks:

min max
i∈{1,...,N}

(
tfinish
i + τ

(
pfinish
i ,pend

i

))
(1)



where tfinish
i is the time robot i finishes its final task, which

is computed as the sum of its execution times, idling times,
and travel times. τ

(
pfinish
i ,pend

i

)
is the travel time from the

location of the last finished task pfinish
i to the end location

pend
i . Travel times can be estimated using Euclidean distance

or path planning algorithms that take obstacles into account.

IV. METHOD
The Sadcher framework consists of a neural network based

on attention mechanisms to predict assignment rewards for
robots to tasks that is agnostic to the size of the input graphs,
i.e., can handle arbitrary numbers of robots and tasks. A re-
laxed bipartite matching algorithm extracts task assignments
based on the predicted reward. During runtime, the method
asynchronously recomputes assignments at decision steps,
i.e., when robots finish tasks or new tasks are announced.

A. Network Architecture
The high-level network structure is depicted in Fig. 2 and

is similar to [30], but extended with a distance multilayer
perceptron (MLP) that informs the network about relative
distances between robots and tasks and separate heads for
predicting rewards for ”normal” tasks and the idle action.

The key components of the network are graph attention
encoders (GAT) [31], transformer blocks [32], and reward
MLPs that project latent embeddings into a reward matrix.

1) Graph Attention (GAT) Encoder Blocks: After map-
ping robot features ri and task features tj into d-dimensional
embeddings, the embedded robot and task features are pro-
cessed by separate GATs to capture local information-rich
latent representations of the input graphs. GATs process a set
of node features, incorporating information from neighboring
nodes based on an adjacency matrix. While the robot features
are processed as a fully connected graph, assuming all-to-all
attention, the task GAT leverages the encoded precedence
constraints in the adjacency matrix to understand the tempo-
ral task logic. A single head of the GAT computes attention
weights αi,j between node i and its neighbors j, based on
a projected feature vector h′ = hWh (where h is the input
node feature and Wh is a learned weight matrix):

αi,j =
exp(LeakyReLU(a([h′

i||h′
j ])))∑

k∈N i∪i exp(LeakyReLU(a([h′
i||h′

k])))
(2)

here, a is a learnable linear transformation, || denotes con-
catenation and Ni is the set of neighbors of node i. A Leaky
ReLU [33] in combination with a softmax function over the
neighbors of node i yields the final αi,j . The resulting αi,j

represent the relative importance of node j to node i, en-
abling context-aware feature propagation. Spatiotemporally
related tasks or robots with complementary skills will attend
more strongly to each other. The output hGAT

i for a single
head at node i is a sum of a self-loop contribution and the
transformed neighbor contributions:

hGAT
i = αi,ih

′
i + LeakyReLU

 ∑
j∈Ni,j ̸=i

αi,jh
′
j

 (3)

In the GAT encoder blocks, we apply multi-head GAT,
concatenating the outputs of ZGAT independent heads and
applying residual connections and layer normalization. The
GAT encoder consist of LGAT such layers and outputs hGAT R

for robots and hGAT T for tasks respectively.
2) Transformer Encoder Blocks: Following the GAT en-

coders, the representations hGAT R and hGAT T are processed
by independent transformer encoders, to build the global
context of robots and tasks. Each transformer block applies
multi-head self-attention (MHA) [32] on the input h:

αz = Softmax
(
(WQ

z h)(W
K
z h)⊤√

d

)
(WV

z h) (4)

MHA(h) =
(
α1||α2|| . . . ||αZ

)
WO (5)

where d is the key dimensionality. MHA computes this
operation in parallel for ZT heads to generate the final
outputs hT R for robots and hT T for tasks respectively.

3) Reward Prediction: The normalized relative distances
between robot i and task j are passed through the distance
head MLPD to compute the distance feature di,j :

di,j = MLPD
(
Normalize(∥pR

i − pT
j ∥2)

)
(6)

While task and robot positions are part of the raw input
features in Gr and Gt, this explicit distance term provides
the network with direct access to spatial proximity.

We construct feature vectors fi,j for each robot-task pair
by concatenating the local (GAT) and global (transformer)
representation of robot i and task j with the distance term
di,j , so fi,j ∈ IR4×dk+1:

fi,j = hGAT R
i ∥ hGAT T

j ∥ hT R
i ∥ hT T

j ∥ di,j (7)

This information-rich representation is then passed through
the reward head MLPR to compute the task assignment
reward Ri,j to assign robot i to task j. The idle reward
RIDLE

i is computed by passing fi,j to the idle head MLPI
and summing the outputs across all tasks for each robot i:

Rtask
i,j = MLPR (fi,j) , RIDLE

i =

M∑
j=1

MLPI(fi,j) (8)

MLPI can be understood as learning per-task signals that
encourage a robot to wait when short-term idling is advan-
tageous (e.g., a nearby task will become ready soon). The
final predicted reward R contains the task rewards Rtask

i,j for
all pairs of robots i and tasks j, concatenated with the idle
rewards RIDLE

i for each robot i, so R ∈ IRN×(M+1).

B. Task Assignment through Bipartite Matching

The final reward R can be interpreted as the edge re-
wards between robots R and tasks T at a given timestep,
encoding the full complexity of the current problem state.
To extract task assignments at this timestep, we employ a
relaxed bipartite matching formulation (no strict one-to-one
matching). The constraints ensure valid assignments: (10)
prevents robots from being assigned more than one task,
(11) guarantees that each task’s required skills are fully



Fig. 2. Sadcher architecture overview. Robot and task graphs are processed by graph attention and transformer encoders and concatenated with distance
features. The reward matrix is estimated by the Idle and Reward MLPs and final task assignments are extracted using relaxed bipartite matching. B: batch
size, N : number of robots, M : number of tasks, dr : robot input dimension, dt: task input dimension, d: latent dimension.

covered by the assigned coalition using the element-wise
inequality ⪰, and (12) enforces that only idle robots and
ready tasks are matched. The bipartite matching finds the
optimal assignment matrix A∗ ∈ IRN×(M+1) that maximizes
the selected edge reward encoded in R:

A∗ = argmax
A

∑
i,j

Ai,jRi,j (9)

subject to:
M+1∑
j=0

Ai,j ≤ 1, ∀i ∈ R (10)

N∑
i=0

Ai,j c
r
i ⪰ ctj , ∀j ∈ M (11)

Ai,j = 0, ∀i, j : i /∈ Ridle ∨ j /∈ Tready (12)

This formulation prevents deadlocks since no coalition can
be assigned to a task that it cannot execute. However, it
allows for redundant assignments, so after computing A∗, we
remove robots that do not contribute unique required skills,
starting from the robot with the highest travel time to the
task. Additionally, we implement a pre-moving strategy: If
robot ri is assigned the idle task tM+1, it moves towards the
task with the highest reward tihighest = argmax1≤j≤M Ri,j ,
without being formally assigned to it. This does not con-
catenate the tasks into a fixed schedule for the robot, since
assignments are recomputed at decision steps. The robot is
likely to be assigned to tihighest at the next decision step, so
pre-moving can reduce the delay to task start if ri would
have been the last coalition member to arrive at tihighest.

C. Training through Imitation Learning

1) Training Data Generation: We generate 250,000
small-scale problem instances (8 tasks, 3 robots, 3 skills)
with fully randomized configurations: each robot is assigned
1–3 skills, each task requires 1–3 skills, task locations and
robot start/end depot lie in [0, 100] × [0, 100] ⊂ IR2 and
are randomly sampled. Execution times are drawn uniformly
from [50, 100], precedence constraints are acyclic and gen-
erated between random task pairs, and robot travel speed is
assumed to be 1 unit per timestep. To solve these scenarios

optimally, we extend the exact MILP formulation of [16]
with precedence constraints. Due to its exponential time
complexity, both in the number of robots and tasks, only
small instances can be solved in a reasonable time to generate
a training dataset. We omit modelling of stochastic travel
times, as our framework handles deviations via real-time
replanning and does not need conservative safety margins.

2) Optimal Reward Extraction: To train the network
to imitate the optimal behavior, we extract “ground-truth”
reward matrices Ok ∈ IRN×(M+1). The optimal schedules
are sliced into K decision points T dec

k , corresponding to
timesteps when a task finishes and the robots require re-
assignment. At each T dec

k the optimal reward is calculated
based on the time difference between T dec

k and the finish
time of task j with discount factor γ ∈ (0, 1]:

Ok,i,j = γ

(
T finish
j −T dec

k

)
ok,i,j (13)

where ok,i,j = 1 if robot i is assigned to task j in the optimal
solution and the decision point occurs before the task’s start
time (T dec

k < Ti,j,start); otherwise, ok,i,j = 0.
We handle the idle action tM+1 in the same way: If the

time between a robot’s last finish time and its next start time
exceeds the travel time between the corresponding tasks, we
treat this interval as an explicit idle assignment in the optimal
schedule and compute its reward using the above formulas.

By design, this reward encoding captures the optimal
decision logic: The next selected task will have the highest
reward, with decreasing rewards for later tasks. Given the
sequence of optimal rewards Ok over all decision steps T dec

k ,
the bipartite matching algorithm outputs the exact solution.

3) Training Details : We modify the loss L from [30] by
applying the inverse mask (1−Xk) to the second term:

L = ∥Xk◦(Rk−Ok)∥1+λ∥(1−Xk)◦(Rk−Ok)∥1 (14)

where ◦ denotes the element-wise product operator, Ok is
the optimal reward, Rk is the predicted reward and Xk ∈
IRN×(M+1) is a feasibility mask with Xi,j = 1 if robot
i is available and task j is ready, else Xi,j = 0. The
first term encourages accurate prediction of feasible rewards,
while the second discourages high values for infeasible
ones. λ balances the two terms: Intuitively, accurate feasible



predictions are more important than suppressing infeasible
ones, as the bipartite matching will select high reward tasks.
We use the ADAM optimizer [34] to train the network.

V. EXPERIMENTS AND RESULTS

We evaluate makespan and computation time metrics for
six algorithms, averaged over 500 unseen problem instances
with randomized task locations/durations, skill requirements,
robot capabilities, and precedence constraints. Experiments
are conducted on a consumer machine with an AMD Ryzen
7 4800H CPU and NVIDIA GeForce GTX 1650 GPU.

A. Compared Algorithms

1) Baselines: There exist few algorithms in literature
that address heterogeneous ST-MR-TA-XD with precedence
constraints, often without weights or datasets [30]. We chose
one available algorithm for each of the approaches commonly
followed (optimization, learning, heuristic search):
(1) An MILP formulation based on [16], adding precedence
constraints and omitting stochastic travel times, which pro-
vides optimal solutions with formal guarantees. A decentral-
ized RL framework HeteroMRTA [28], adapted for prece-
dence constraints by masking out tasks that have incomplete
predecessors during action selection. We compare against
(2), the single solution variant HeteroMRTA, where agents
choose the highest-probability task at decision steps, and (3),
the sampling variant S-HeteroMRTA (Boltzmann weighted-
random action selection) which returns the best makespan
solution across 10 runs per instance. We also implement and
compare (4), a greedy heuristic that assigns robots to tasks
based on reducing the remaining skill requirements the most
and breaking ties based on travel time (shortest first).

2) Sadcher Variants: (5) The Sadcher framework pre-
dicts robot-task rewards deterministically as described in
Section IV. We also benchmark (6), a S-Sadcher variant,
which samples reward matrices from a normal distribution
centered around the deterministic output then used by the
bipartite matching. This introduces stochastic variations in
the schedules. As for S-HeteroMRTA we run this process 10
times per instance and select the best-performing rollout.

B. Training-Domain Evaluation

We evaluate the algorithms on 500 randomized problem
instances of the training domain size (8 tasks, 3 robots, 3
precedence constraints). Results are shown in Fig. 3 and 4.

1) Makespan: The MILP formulation provides optimal
makespans, establishing a baseline for comparing the average
relative gaps of other methods. S-Sadcher (gap: 3.8%) and
Sadcher (gap: 6.8%) are the best-performing non-optimal
algorithms. HeteroMRTA performs worst (gap: 21.5%), but
sampling reduces the optimality gap to 10.8%, leveraging
its RL policy, which follows a sampling strategy during
training. In the pairwise comparison in Fig. 4, Sadcher
achieves a lower makespan for 403 of 500 instances (80.6%,
binomial test: p ≈ 2 × 10−45). S-Sadcher outperforms S-
HeteroMRTA on 389 of 500 instances (77.8%, binomial test:
p ≈ 3× 10−37). Greedy reaches an average gap of 20.4%.

2) Computation Time: For dynamic scenarios with real-
time requirements, the time per assignment decision (tdec)
is crucial. MILP cannot compute instantaneous assignments,
but only globally optimal schedules. S-HeteroMRTA and
S-Sadcher roll out the full scenario to select the best as-
signments. Therefore, these three algorithms, do not yield
a time per decision, but only for full solution construction
(tfull). Due to its simplicity, the greedy algorithm computes
the fastest (tdec: 0.080 ms; tfull: 1.7 ms). HeteroMRTA (tdec:
9.1 ms; tfull: 0.20 s) is faster than Sadcher (tdec: 22 ms; tfull:
0.57 s), which needs to solve the relatively expensive bipar-
tite matching for each decision. S-HeteroMRTA computes
full solutions in 0.96 s, S-Sadcher in 5.7 s, and MILP in 76 s.
In the worst case, MILP takes up to 12 minutes, rendering it
infeasible for real-time applications, even on small problems.

3) Precedence Constraints: The Sadcher model demon-
strates an understanding of task dependencies by priori-
tizing the assignment of predecessor tasks. This improves
performance by unlocking successors earlier and enabling
better global schedules. On average, the model assigns ready
predecessor tasks approximately 1.7 times more frequently
compared to the baselines. (S-) HeteroMRTA and Greedy
cannot make this informed decision, but selecting tasks with
incomplete predecessors is prevented through masking.

C. Out-of-Domain Generalization

To evaluate generalization, we scale the number of robots
N ∈ {3, 5, 20}, and the task number M ∈ [6, 250] (see
Fig. 5) and compare the makespan gap relative to Sadcher
(trained on N=3, M=8). With a 1-hour cutoff, the MILP
solver fails to find solutions beyond 10 tasks and 7 robots
within this limit. For smaller problem sizes, it finds the
optimal makespans, outperforming Sadcher by 6-16%.

For N=3 robots, S-Sadcher and Sadcher are the strongest
non-optimal methods across all M . S-HeteroMRTA outper-
forms Greedy for M≤60 and HeteroMRTA finds the highest
makespans overall. Although Sadcher’s relative performance
is best for small M , it outperforms Greedy by more than 4%
and (S-) HeteroMRTA by more than 9% for M=250.

For N=5 robots, S-Sadcher remains the best learning-
based method across all M . S-HeteroMRTA performs better
than Sadcher for M≤9, but is surpassed by Sadcher beyond
that, and by Greedy for M≥70. HeteroMRTA outperforms
Greedy for 7≤M≤10. Greedy reaches a 2% gap for M=200.

For N=20 robots, relative performance changes signifi-
cantly, with degradation of the learning-based methods: S-
Sadcher is the best-performing method only for M≤70,
beyond that, Greedy becomes superior. S-HeteroMRTA con-
sistently beats Sadcher, yet only outperforms Greedy for
M≤50. HeteroMRTA surpasses Sadcher for M≥150, and
the performance gap for M≤100 between the two is smaller
compared to scenarios with fewer robots.

Overall, Sadcher excels on smaller robot teams across
all task counts, but its performance decreases with more
robots. We hypothesize that increasing the number of tasks
while keeping the number of robots fixed is similar to solv-
ing multiple smaller subproblems sequentially, where local



Fig. 3. Comparison on 500 unseen, randomized problem instances (8 tasks, 3 robots, 3 precedence constraints) for makespan (left), and computation
time (right). Lower means better performance. Wilcoxon significance levels are annotated for Sadcher compared to HeteroMRTA variants. All other
pairwise differences are statistically significant (p < 0.05), except between S-HeteroMRTA and Greedy (p = 0.21). For algorithms requiring full solution
construction, total computation time is reported; for methods returning instantaneous assignments, both time per decision and total time are shown.

Fig. 4. Pairwise makespan comparison of HeteroMRTA vs. Sadcher (left)
and S-HeteroMRTA vs. S-Sadcher (right). Each point is one solved instance;
points below the diagonal indicate better performance by (S-)Sadcher.

Fig. 5. Relative makespan gap to Sadcher for 3, 5, and 20 robots
(top left to bottom left). Bottom right: Computation time for 3 robots
(for algorithms requiring full solution construction (Sample-HeteroMRTA,
Sample-Sadcher, MILP), total computation time is reported, for methods
returning instantaneous assignments (HeteroMRTA, Sadcher, Greedy), time
per decision is reported). Task counts M ∈ [6, 250], with S = 3 skills and
M/5 precedence constraints. Each point shows the mean over 100 runs.

scheduling rules learned during training remain effective. On
the other hand, larger teams require different local scheduling
strategies that diverge from the distribution Sadcher has seen
during training. For high task counts, the greedy algorithm
- especially in combination with bigger robot teams - starts
beating the learning-based methods. Sampling-based variants
(S-Sadcher, S-HeteroMRTA) have a higher impact on smaller
problems, where the smaller solution space makes rollouts
more likely to yield improvements.

Greedy computes fastest, delivering near-instantaneous
decisions (≤3 ms). The computation time of HeteroMRTA
is minimally affected by scaling (≤20 ms), while Sadcher is
slower and scales worse due to the bipartite matching step
(≤ 80 ms per decision). The sampling-based variants require
significantly longer computation (up to 450 s for S-Sadcher
and 40 s for S-HeteroMRTA for M=250), which makes them
impractical for online computation on large problems.

VI. CONCLUSION

In this work, we proposed Sadcher - an IL framework to
address real-time task assignment for heterogeneous multi-
robot teams, incorporating dynamic coalition formation and
precedence constraints. Reward prediction with relaxed bi-
partite matching yields strong performance with feasibility
guarantees. Sadcher outperforms RL-based and heuristic
baselines in makespan across small to medium-sized robot
teams and a wide range of task counts. For bigger teams, the
advantage is lost due to lack of demonstrations. Sadcher can
generate assignments in real-time across all tested problem
sizes, but the sampling variant S-Sadcher is only real-time for
smaller problems. Sadcher relies on a large (computationally
expensive) dataset of expert demonstrations for training.

Future work will explore fine-tuning IL policies with
RL, which could increase performance on larger problem
instances where expert solutions are very expensive or infea-
sible to obtain. Additionally, extending the dataset with sub-
optimal demonstrations for bigger problem instances could
improve scalability.
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[14] B. P. Gerkey and M. J. Matarić, “A Formal Analysis and Taxonomy of
Task Allocation in Multi-Robot Systems,” The International Journal
of Robotics Research, vol. 23, no. 9, pp. 939–954, Sept. 2004.

[15] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, Oct. 2013.

[16] A. Aswale and C. Pinciroli, “Heterogeneous Coalition Formation and
Scheduling with Multi-Skilled Robots,” June 2023.

[17] I. Ansari, A. Mohamed, E. F. Flushing, and S. Razak, “Cooperative and
load-balancing auctions for heterogeneous multi-robot teams dealing
with spatial and non-atomic tasks,” in 2020 IEEE International Sym-
posium on Safety, Security, and Rescue Robotics (SSRR), Nov. 2020.

[18] M. Irfan and A. Farooq, “Auction-based task allocation scheme for
dynamic coalition formations in limited robotic swarms with hetero-
geneous capabilities,” in 2016 International Conference on Intelligent
Systems Engineering (ICISE), Jan. 2016, pp. 210–215.

[19] H. Chakraa, E. Leclercq, F. Guérin, and D. Lefebvre, “A Centralized
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