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Abstract
Robots will increasingly operate near humans that introduce uncertainties in the motion planning problem due to their
complex nature. Optimization-based planners typically avoid humans through collision avoidance chance constraints. This
allows the planner to optimize performance while guaranteeing probabilistic safety. However, existing real-time methods
do not consider the actual probability of collision for the planned trajectory but rather its marginalization, that is, the
independent collision probabilities for each planning step and/or dynamic obstacle, resulting in conservative trajectories.
To address this issue, we introduce a novel real-time capable method termed Safe Horizon MPC that explicitly constrains
the joint probability of collision with all obstacles over the duration of the motion plan. This is achieved by reformulating
the chance-constrained planning problem using scenario optimization and predictive control. Out of sampled realizations
of human motion, we identify which cases affect the optimization. This allows us to certify the planned trajectory in real-
time. Our method is less conservative than state-of-the-art approaches, applicable to arbitrary probability distributions of
the obstacles’ trajectories, computationally tractable and scalable. We demonstrate our proposed approach using a mobile
robot and an autonomous vehicle in an environment shared with humans.
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1. Introduction

Mobile robots can improve our quality of life, from
transporting goods in warehouses (Simon, 2019) to helping
us commute more efficiently and safely using self-driving
vehicles (Walker, 2019). In most applications where robots
are currently deployed, the operating domain does not allow
the robots to operate near humans or they do so in a
conservative manner to simplify the robot navigation task.
To deploy mobile robots in real-world environments, such
as our cities, they need to be capable of navigating among
humans, which remains challenging.

In crowded environments, the robot needs to understand
and infer the motion of humans in order to move safely and
efficiently. Unfortunately, human behavior is hard to predict
and varies per person. In addition, human intentions cannot
be explicitly communicated to the robot. This inherently
makes the motion prediction of humans nondeterministic.
Recent perception methods, such as Kooij et al. (2019),
Salzmann et al. (2021), and Yue et al. (2023), infer human
intentions, returning probabilistic information concerning
humans. These probabilistic predictions need to be con-
sidered and exploited by the motion planner.

Figure 1. Overview of the proposed scenario-based motion
planner. Predicted obstacle trajectories are sampled to obtain
scenarios, where each scenario represents a trajectory for all
obstacles over the planning horizon. By ensuring safety for all
scenarios, probabilistic safety of the motion plan is guaranteed.
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If we look at the motion planning problem from a
probabilistic perspective, the occurrence of a collision is a
probabilistic event. Our goal is to assess and bound the
Collision Probability (CP) of the planned trajectory. This is
challenging because of the non-Gaussian and multi-modal,
that is, multiple paths are possible, distributions involved
when predicting human behavior. In addition, when the
collision probability spans a duration, for example, over
the planned trajectory, then it must consider the correlation
over time. The time correlation exists because the first
collision in a trajectory renders it unsafe, such that all
subsequent collisions can be ignored. Almost all of pre-
vious works, such as Blackmore et al. (2006), Luders et al.
(2010), van Den Berg et al. (2011), Zhu and Alonso-Mora
(2019), Wang et al. (2020a, b), and De Groot et al. (2021),
do not account for this correlation, which leads to con-
servative trajectories. Similarly, the collision probability in
these works is computed per obstacle, which degrades
performance when more obstacles influence the plan, that
is, in crowded environments. By accounting for the cor-
relation in time and by considering all obstacles, one
would be able to plan more efficient trajectories without
compromising safety.

We achieve this goal by devising a novel probabilistic
safe motion planner based on scenario optimization and
nonlinear Model Predictive Control (MPC). Nonconvex
scenario optimization (Campi et al., 2018) is a sampling-
based approach for assessing the probability that a con-
straint holds under uncertainty. In the context of this paper,
the imposed constraint probabilistically enforces collision
avoidance between the controlled robot and the dynamic
obstacles over the duration of the motion plan (see
Figure 1). Scenario optimization has found limited appli-
cations in robotics. Its a posteriori safety verification is
computationally demanding and it cannot directly be ap-
plied to distributions with unbounded support (e.g.,
Gaussians). We address these limitations in this work for our
target application of motion planning in dynamic 2D en-
vironments, enabling its use in similar robotics applications.

In practice, the uncertainty associated with the motion of
detected obstacles is predicted forward in time (Step 1). We
sample scenarios from these predictions that describe the
trajectories of all dynamic obstacles during the planning
horizon (Step 2) and construct collision avoidance con-
straints around each of the scenarios (Step 3). The robot
trajectory is optimized with respect to the constraints (Step
4), which provides probabilistic collision avoidance. This is,
to our knowledge, the first real-time capable method that
bounds the CP of the planned trajectory jointly, in contrast
with the existing state-of-the-art where the same quantity is
conservatively approximated through its marginals. Our
method therefore provides more consistent real-time
guarantees on the CP, irrespective of the number of time
steps and obstacles, and the underlying probability distri-
bution that describes obstacle motion. This ultimately en-
ables our method to trade-off safety and planning
performance more accurately. We refer to our novel

probabilistic safe motion planner as Safe Horizon MPC
(SH-MPC).

2. Related work and contribution

A sizable body of literature exists on motion planning for
safe, autonomous navigation. In this section, we review
some of the existing work on trajectory optimization with
collision avoidance under uncertainty. For a general over-
view of autonomous navigation, we refer the reader to
Paden et al. (2016) and Schwarting et al. (2018b).

2.1. Collision avoidance under uncertainty

An important problem in autonomous navigation is to
prevent collisions with dynamic obstacles. In trajectory
optimization (Brito et al., 2019; Schwarting et al., 2018a),
the navigation problem is formulated as an optimization
problem where performance criteria are optimized (e.g.,
lane following and progress towards the goal) under con-
straints (e.g., collision avoidance and actuator limits). Due
to large and multi-modal uncertainties in human motion
prediction, collision avoidance in the mean or nominal case
(e.g., constant velocity) may lead to collisions in practice.
Many works therefore consider how to address this
uncertainty.

One can consider the collision avoidance problem as a
special case of optimization under uncertainty, for which
two common approaches exist. Robust optimization (Ben-
Tal and Nemirovski, 1998) requires the constraints to be
satisfied for all possible realizations of the uncertainty,
while stochastic optimization (see Mesbah (2016) for an
overview) allows for a violation of the constraints, as long
this happens with a probability smaller than an upper
bound ϵ. Because the set of all possible realizations is often
not available or too conservative, we focus in the re-
mainder of this section on stochastic optimization. We
refer to Kouvaritakis and Cannon (2016) for more details
on both methods in the context of Model Predictive
Control (MPC).

2.2. Collision-avoidance chance constraints

The probability of constraint violation in stochastic opti-
mization is specified through chance constraints, which
constrain the probability that a nominal constraint is sat-
isfied. Exact evaluation of these chance constraints is
however intractable in almost all applications. Existing
works therefore focus on an approximation of the con-
straints. These can be divided into discrete-time and
continuous-time methods. Discrete-time methods (e.g.,
Blackmore et al. (2006)) consider the CP at a fixed set of
time intervals, usually at the discretization time of the robot
dynamics. Continuous-time methods (e.g., Frey et al.
(2020)) instead consider the CP over a continuous time
interval, resulting in more accurate approximations but
usually at a high computational cost. For our real-time
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application, we focus on the discrete-time methods. Existing
discrete-time methods usually approximate chance con-
straints through additional assumptions on the probability
distribution associated with the uncertainty, for example, by
assuming Gaussian distributions in Zhu and Alonso-Mora
(2019) and in Fisac et al. (2018) or through additional
assumptions on the controlled robot, for example, by as-
suming linear dynamics in Blackmore et al. (2006). The
recent works (Wang et al., 2020a; De Groot et al., 2021)
have resolved many of the assumptions, making the
framework applicable to nonlinear robot dynamics and
arbitrary probability distributions. However, the chance
constraints in these and many other works are not imposed
on the robot’s planned trajectory, that is, the timed sequence
of planned positions, but rather on each of its individual
positions over the planning horizon. This fails to accurately
bound the probability of colliding at any time. Similarly,
chance constraints imposed per obstacle fail to estimate the
probability of colliding with any obstacle. In this regard,
three types of chance constraint formulations have been
considered in previous work: Marginal, Conditional, and
Joint.

2.2.1. Marginal chance constraints. Constraints on each
position along the trajectory are referred to as marginal
chance constraints. Let event Ak denote the case that no
collisions occur at time k and PðAkÞ therefore be the
probability that the robot is safe at timestep k. Then the exact
probability that a trajectory is safe over N steps is given by

PðAÞ ¼ ∏N
k¼1 PðAk j A0 : k�1Þ. That is, the CP for each

position is conditional on the probability of avoiding col-
lisions up until the position is reached at time k. The
problem is simplified if we assume instead that this event is
independent for all states (ePðAÞ ≈∏kPðAkÞ). In Janson et al.
(2018), these marginal methods are further divided into
additive and multiplicative approaches.

Additive approaches impose constraints on each marginal
probability (i.e., PðAkÞ ≤ ϵk). Using Boole’s inequality
ðPð[kAkÞ ≤

P
kPðAkÞÞ the CP of the trajectory is bounded

by the sum of the individual CPs. Under Gaussian uncer-
tainty, Blackmore et al. (2006) reformulated the constraints
as an analytical constraint on the 1D Cumulative Density
Function (CDF). The same idea is used in Zhu and Alonso-
Mora (2019) in an MPC framework to prevent collision
between robot and obstacle volumes. In Masahiro Ono and
Williams (2008), the bound on each marginal probability is
updated, known as risk allocation, while maintaining the
same total risk bound (i.e.,

P
k ϵk = ϵ). In Luders et al.

(2010) and Aoude et al. (2013), marginal chance constraints
are applied to the Rapidly expanding Random Trees (RRT)
algorithm such that each node in the tree is statistically safe.
When the uncertainty is non Gaussian, the CDF of the
probability distribution is typically not available. In Wang
et al. (2020b, a), an MPC for motion planning is formulated
where inequalities are posed on stochastic moments of the
marginal probability distribution. A similar approach for
linear dynamics is applied in Ren et al. (2023) where the

conditional Variance-at-Risk (cVaR) is used to minimize
constraint violation. In our previous work (De Groot et al.,
2021), we ensure safety for a finite set of sampled chance
constraints and generalize the associated safety properties
using the scenario approach (Campi et al., 2018).

The multiplicative formulation explicitly constrains the
product of the marginal probabilities. It was applied in van
Den Berg et al. (2011) to plan motion under sensing and
actuation uncertainty. An alternative marginal formulation
is proposed in Fisac et al. (2018), which bounds the largest
marginal constraint violation.

The limitation of marginal approaches is that the bound
on the CP of the trajectory is inaccurate, as noted by Patil
et al. (2012) and Janson et al. (2018). It is shown in Janson
et al. (2018) that the trajectory CP approaches ∞ and 1 for
the additive and multiplicative formulation, respectively,
when the number of evaluations in the trajectory increases,
regardless of the real CP. Marginal constraints only asses the
risk correctly for the first time step and a single obstacle. The
risk of the remainder is under- or overestimated. Overes-
timation of the risk and the associated unsafe space along
the time horizon can cause the planning problem to become
infeasible and may cause the robot to freeze. Due to these
limitations, Patil et al. (2012) conditioned marginal chance
constraints on being collision-free at prior times and
evaluated them by truncating the part of the distribution in
collision in each time instance. This formulation is more
accurate but is limited to Gaussian distributions.

2.2.2. Joint chance constraint. Some authors formulate a
joint chance constraint on the CP of the planned trajectory.
Joint chance constraints estimate the open-loop risk over the
time horizon more accurately, making it less likely that the
problem becomes infeasible and improving performance. The
joint CP can be evaluated by using sampling-based methods
(Janson et al., 2018). In particular, Blackmore et al. (2010),
Janson et al. (2018), and Schmerling and Pavone (2017)
consider Importance Sampling Monte Carlo (ISMC) sam-
pling to approximate the CP. An empirical estimate of the
constraint violation is obtained by sampling the joint distri-
bution over trajectories and evaluating the constraint for each
sample. Since MC methods approximate the CP and its
gradient with sampling, they can be computationally expen-
sive to apply in trajectory optimization without further alter-
ations. An alternative is to formulate a mixed-integer problem
(Blackmore et al., 2010) to decide which samples may be
violated, but these problems are hard to solve in real-time.

2.3. Scenario optimization

Rather than constraining each of the marginal CPs along the
planned trajectory, we constrain the joint CP of the tra-
jectory. We solve the resulting problem with Nonconvex
Scenario Optimization (NSO) (Campi et al., 2018) under an
explicit chance constraint on the joint CP. Scenario optimization
is well established for convex optimization under uncertainty
(Calafiore and Campi, 2006; Campi and Garatti, 2008, 2011;
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Schildbach et al., 2013) and has recently been extended to the
general nonconvex case (Campi et al., 2018; Garatti and Campi,
2023). NSO solves the optimization problem under uncertainty
by drawing a large set of samples from the uncertainty, that is,
possible future motions of all obstacles, and formulating a
deterministic constraint, for example, collision avoidance, for
each sample. Our approach leverages a constraint formulation
where many of the sampled constraints can be pruned, resulting
in a deterministic program that can efficiently be solved online.

The NSO framework (Campi et al., 2018) cannot directly
be applied to reformulate the joint collision avoidance chance
constraint. To assess probabilistic safety, it traditionally needs
to repeat the optimization problem once for each scenario and
thus cannot be applied in real-time. In addition, unbounded
distributions (e.g., Gaussian distributions) cannot be readily
incorporated. We address these limitations in this work, in-
cluding distributions with unbounded support (Sec. 5.1) and
significantly reducing the computational complexity of the
online safety assessment (Sec. 5.3) for our application to
motion planning in dynamic environments. This allows us to
apply the framework to online motion planning in real-time.

2.4. Contribution

The contributions of this paper are:

(1) A novel trajectory optimization method, Safe Horizon
MPC, that explicitly constrains the collision probability
over the full duration of the planned trajectory. This dis-
tinguishes our work from previous work, where the col-
lision probability is constrained per planning time instance.
The idea is that each sample we draw from the distribution
of the uncertain obstacle trajectories corresponds to a single
collision avoidance constraint over the horizon.Wewant to
stress that each sample represents a possible trajectory for
all obstacles. The probability of collision is controlled
through the number of samples drawn. By relying on
sampling, our planner is distribution agnostic.

(2) An approach that, under a convexity assumption on the
iterations of the underlying optimization algorithm (that
holds, for example, for Sequential Quadratic Program-
ming), identifies the scenarios that hold the solution in
place (known as the support) during optimization, in
contrast with the general framework of Campi et al. (2018)
where the support is computed after optimization. We
leverage this information to certify the motion plan online.

We compare our approach in two simulation environ-
ments, on a mobile robot and a self-driving vehicle, with
pedestrians against marginal baselines and show that our
method achieves shorter task durations while maintaining
the probabilistic safety specification. In addition, we show
that the computation times scale well with respect to the
number of obstacles and the type of distribution. Finally, we
deploy our method on a mobile robot navigating among
pedestrians. Our planner is implemented in C++/ROS and
will be released open source.

2.5. Notation

Vectors and matrices are expressed in bold and capital bold
notation, respectively.We use⋀ to denote the “and” operation
and⋁ to denote the “or” operation. The notation CnCi refers to
the set C from which the element Ci is removed.

3. Problem formulation

We consider a controlled robot with nonlinear discrete-time
dynamics

xkþ1 ¼ f ðxk ,ukÞ, (1)

where xk 2R
nx and uk 2R

nu denote the states and inputs,
respectively. The robot state is assumed to contain its x-y
position p ¼ ½x, y� 2R

24R
nx . Humans in the environment of

the robot pose constraints on the navigation envelope. We
model the robot area with the union of nd discs and the area of
each obstacle with a single disc. The position of the robot disc
with index c at time step k is denoted pck . We model each
obstacle region with a single disc for simplicity, our method
trivially extends to the case of multiple discs. We consider that
the motion prediction of the dynamic obstacles is uncertain by
modeling the positions of at most M obstacles as random
variables. In particular, we denote the uncertain position of
Obstacle j at time step k as δk, j4δk, where δk contains all
obstacle positions at time k. The joint uncertainty

δ ¼ δu1 ,…, δuN
� �u 2Δ stacks the uncertainty over all N time

steps. The probability space1 of the joint uncertaintyΔ ¼ R
2MN

therefore captures the future N positions of M obstacles and is
endowed with a σ-algebra D and a probability measure P.

3.1. Chance constrained planning problem

The planning problem is visualized in Figure 2. The dy-
namic uncertainty of other road users affects the navigation
envelope of the robot. To constrain the probability of a
collision with any obstacle along the horizon, we formulate
a single chance constraint for collision avoidance. This
leads to the following Chance Constrained Problem (CCP)
Problem 1. CCP.

min
u2U
x2X

XN
k¼0

Jðxk ,ukÞ (2a)

s:t: x0 ¼ xinit (2b)

xkþ1 ¼ f ðxk ,ukÞ, k ¼ 0,…,N � 1 (2c)

P ⋀
N

k¼1

⋀
nd

c¼0

⋀
M

j¼0

kpck � δk, jk2 ≥ r
� �" #

≥ 1� ϵ (2d)

where xinit denotes the initial state of the robot, objective
J is designed to achieve control objectives, X4R

Nnx and
U4R

Nnu denote state and input constraints over the
horizon, respectively, (2d) is the chance constraint for
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avoiding collisions in every time step with all obstacles
and r is the summed radius of the robot and obstacle discs
(for simplicity assumed the same for all obstacle and
robot discs). This problem is in general nonconvex due to
the nonlinear dynamics and collision avoidance chance
constraint. Our goal is to compute a control input u and
trajectory x under the uncertainty δ that is collision-free
with a probability of at least 1 � ϵ, where ϵ denotes the
maximum collision probability over the planned
trajectory.

When P is estimated by a prediction model the collision
avoidance constraint is formulated with respect to an es-

timate bP of P and the chance constraint relates to the es-
timate of the probability distribution.

3.2. Scenario-based planning problem

Directly evaluating chance constraint (2d) is not com-
putationally feasible in closed loop. Our goal is to for-
mulate a sampled deterministic version of the CCP,
known as a Scenario Program (SP) (Campi et al., 2018).
The challenges for safe robot navigation within this
framework are to determine the number of samples that
must be drawn and, consequently, to identify the samples
that affect the optimization.

3.3. Paper organization

In the following, we first consider a more general CCP
formulation that can be solved by the proposed framework.
We provide a brief summary of the nonconvex scenario
optimization framework of Campi et al. (2018) to show how
this general class of CCPs can be solved via its associated
SP. We then present our main results in Sec. 5, which shows
how this SP can be solved in closed loop as MPC. Finally,
we apply our main results to probabilistic motion planning
in dynamic environments, in Sec. 6.

4. Nonconvex scenario optimization

In the following, we summarize the main results of the NSO
framework of Campi et al. (2018) that we use to build our

motion planning framework. To this end, consider the
following generalization of Problem 1,
Problem 2. General CCP.

min
u2U
x2X

XN
k¼0

Jðxk , ukÞ (3a)

s:t: x0 ¼ xinit (3b)

xkþ1 ¼ f ðxk ,ukÞ, k ¼ 0,…,N � 1 (3c)

P gðx, δÞ ≤ 0½ � ≥ 1� ϵ, δ2Δ: (3d)

The nominal constraint g(x, δ) ≤ 0 must be satisfied
with a probability of at least 1 � ϵ. The main idea of
scenario optimization is to solve Problem 2 by im-
posing deterministic constraints for a set of scenarios
V = {δ(1), …, δ(S)} 2 ΔS, where each scenario is in-
dependently extracted from P (ΔS represents the S-fold
Cartesian product of Δ associated with drawing S ran-
dom samples). The number of sampled scenarios is
known as the sample size S. Using scenarios, the SP for
Problem 2 is formulated as

Problem 3. General SP.

min
u2U
x2X

XN
k¼0

Jðxk ,ukÞ
(4a)

s:t: x0 ¼ xinit (4b)

xkþ1 ¼ f ðxk ,ukÞ, k ¼ 0,…,N � 1 (4c)

gðx, δðiÞÞ ≤ 0, δðiÞ 2V, i ¼ 1,…, S, (4d)

where chance constraint (3d) has been replaced by the
deterministic constraints for each of the scenarios in (4d).
To simplify notation, we define a decision as

θ : ¼ xu,uu
� �u2Θ, where Θ¼X×U. Each scenario δ(i)

imposes a constraint on the decision, denoted θ2ΘδðiÞ ,

ΘδðiÞ ¼ fθ2Θ : gðx, δðiÞÞ ≤ 0g. Formally, to make a decision
based on the scenarios, the decision algorithm A is defined,
that maps the scenarios to a decision (i.e., solving Problem 3).
This (sub)optimal decision θ* ¼ AðVÞ is called the scenario
decision. The probabilistic guarantees derived from the SP
depend on the following assumption.
Assumption 1. For any finite S = 1, 2,… and for any set of
scenarios V 2 ΔS, it holds that

AðVÞ 2ΘδðiÞ , i ¼ 1,…, S: (5)

We focus our attention on the planning problem by
considering only finite sample sizes S. Assumption 1 is
not trivially satisfied for motion planning. It requires that
a feasible trajectory exists for all possible extractions in
the support, which is particularly problematic for un-
bounded distributions (e.g., Gaussians). We will consider

Figure 2. The chance constrained motion planning problem
considered in this paper with the robot (yellow) navigating
under probabilistic motion predictions of obstacles (blue/green).
The distribution of the motion predictions can take any form but is
visualized here with several modes and their variance (arrows/
shaded regions).
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a relaxed constraint formulation in Sec. 5.1 to address this
limitation.

Since the scenario decision accounts for all sampled
scenarios, each additional scenario makes the scenario
decision more robust. Consequently, the more scenarios that
are used to compute the scenario decision, the lower is the
probability that the resulting decision will violate the
constraints. Formally, the violation probability, V : Θ → [0,
1], given by

V ðθÞ :¼ P δ2Δ : θÏΘδ½ �, (6)

defines the probability that a decision θ violates a newly
observed scenario. We also refer to this probability as the
risk of the decision. Since the decision θ depends on the
realization of the randomly sampled scenarios, the vio-
lation probability V(θ) is in itself a random variable over
the product probability measure, given by P

S = P ×… ×P
(S times). We are therefore interested in lower bounding
the confidence, which is the probability that the scenario
decision achieves a risk of at most ϵ. The key variable to
obtain this bound is the support subsample, defined as
follows.
Definition 1.Campi et al. (2018): Given a set of scenariosV
= {δ(1), …, δ(S)}, a support subsample C ¼ fδði1Þ,…, δðinÞg
is a tuple of n elements extracted from the set of scenarios
with i1 < i2 <… < in, which gives the same solution as with
all scenarios in place, that is,

Aðδði1Þ,…, δðinÞÞ ¼ Aðδð1Þ,…, δðSÞÞ: (7)

The cardinality of the support subsample is referred
to as the support size, that is, n :¼ jCj. In the context of
this paper, a scenario is said to be of support if it is an
element of the considered support subsample. A sce-
nario that can be excluded from a support subsample
without changing the solution is said to be not of
support. For example, a sampled human trajectory δ(i)

can be excluded from the support if it does not change
the robot’s optimal behavior under the current set of
human trajectory samples.

The support size captures the number of scenarios
necessary to hold the solution of the SP in place and is
strongly correlated with its risk. This correlation can be used
to derive a probabilistic guarantee on the solution of the SP
using only the support and sample size. For a confidence 1
� β, Theorem 1 in Campi et al. (2018) provides the bound

P
S½V ðθ*Þ> ϵðnÞ� ≤ β, (8)

where the risk is defined as a function of the support size,
ϵ(n) : {0, …, S} → [0, 1], that must satisfy

XS�1

v¼0

S

v

� �
1� ϵðvÞ½ �S�v ¼ β, ϵðSÞ ¼ 1: (9)

Equation (8) therefore upper limits the probability that the
scenario decision θ* exceeds the acceptable risk ϵ(n) by β.

The risk is divided equally over all support values by the
mapping

ϵðnÞ ¼

8>><>>:
1, n ¼ S,

1� β

S S
n

� � ! 1
S�n

, otherwise:
(10)

This mapping certifies the solution without further
information on the problem. Other mappings are pos-
sible; for more details, see Campi et al. (2018). The
interpretation of equation (8) is that when an algorithm
computes a decision θ* along with the support size n*,
then the risk is certified to be no larger than ϵ(n*)
with confidence 1 � β. For example, with N = 1000 and
1 � β = 1 � 10�6, when the support size is n* = 6,
then equation (10) gives ϵ(6) = 5.4% and we can
certify that the risk is bounded by 5.4% with confidence
1 � 10�6.

A general algorithm to determine the support is the
greedy algorithm of Campi et al. (2018). After solving
Problem 3, this algorithm removes one scenario at a time,
solving Problem 3 again. If the solution changes for a
scenario, then that scenario is part of the support. The
samples remaining after checking all scenarios constitute a
support subsample.

4.1. Limitations of NSO for motion planning

An SP can be constructed from the CCP in Problem 1 by
sampling scenarios from the distribution over obstacle
trajectories and formulating collision avoidance constraints
for each scenario. However, this strategy is not directly
applicable for the motion planning problem because of two
limitations.
Limitation 1. Assumption 1 is not always satisfied.
Drawing samples from the probability distribution of future
obstacle motion can lead to an infeasible problem (e.g., if
samples are close to the robot). For unbounded distributions
(e.g., Gaussians), there is always a nonzero probability of
drawing such a sample.
Limitation 2. Certifying the trajectory requires solving S
additional optimization problems of similar complexity to
the original problem (the greedy support estimation), which
is computationally intractable for real-time trajectory
optimization.

Our goal is to address these limitations so that
we can solve Problem 1 with an SP to bound the
joint CP.

5. Safe horizon model predictive control

This section introduces our safe motion planning
framework. First, we reformulate the SP to obtain a real-
time solvable problem that satisfies Assumption 1.
Then, we show how the support can be estimated during
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optimization. Finally, we derive the sample size of
the SP.

5.1. Motion planning scenario program

Safe Horizon MPC bounds the joint CP by solving an SP.
In the planning problem, the scenarios extracted from P

represent realizations of the future motion of all obstacles
in the near future (see Figure 3(a)). Using these scenarios,
we can construct the following SP from the CCP in
Problem 1
Problem 4. Motion Planning SP.

min
u2U, x2X

d2R

XN
k¼0

Jðxk ,ukÞ þ wdkdk22 (11a)

s:t: x0 ¼ xinit (11b)

xkþ1 ¼ f ðxk ,ukÞ, k ¼ 0,…,N � 1 (11c)

⋀
S

i¼0

⋀
N

k¼1

⋀
nd

c¼0

⋀
M

j¼0

kpck � δðiÞk, jk2 ≥ r þ d
� 	

, (11d)

where (11d) represents the scenario constraints (bundled
with the “and” operator) and wd > 0,wd 2R weighs the
slack variable. Compared to the general SP in Problem 3,
Problem 4 adds a single joint slack variable d 2R over the
collision constraints that denotes the minimum distance
kept to all obstacles over the duration of the trajectory.
Because of the slack introduced through d, there is always
a solution to Problem 4 and Assumption 1 is satisfied
(addressing Limitation 1). We utilize a single slack
variable to allow the scenario constraints to be pruned for
real-time performance. Less conservative trajectories
may be obtained with S slack variables as proposed in
Garatti and Campi (2023), but come at a high compu-
tational cost. The violation probability associated with
Problem 4 is

P δ2Δ




 ⋀N
k¼1

⋀
nd

c¼0
⋀
M

j¼0
kpck � δk, jk2 ≥ rþd
� �" #

≥ 1�ϵ: (12)

For d = 0, the violation probability matches that of Problem
1 and is bounded through the NSO framework. When d ≤ 0,
the optimization could not find a sufficiently safe solution.

The robot can use this information to adjust its behavior and
ensure safety (e.g., by slowing down or using a fallback
plan).

5.2. Improved computational efficiency

While Problem 4 can be solved with off-the-shelf nonlinear
program solvers, its problem statement is computationally
inefficient. The collision-free space described by (11d) is
nonconvex and can lead to high support (i.e., requiring
many samples). We consider a more efficient over-
approximation of the collision avoidance constraints with
lower support.

We linearize the collision regions with respect to the
previously planned robot trajectory (denoted bp). After
linearization, each scenario is associated with a linear
constraint (depicted in Figure 3(b)). For a previous robot
position bpk and obstacle position δk, the constraints are
given by

Hðbpk , δk , dÞ ¼ fpk jAðbpk , δkÞupk ≤ bðbpk , δk , dÞg, (13)

where

Aðbpk ,δkÞ¼ δk�bpk
kδk�bpkk, bðbpk ,δk ,dÞ¼Auδk�ðrþdÞ: (14)

The linearized collision region contains the original collision
region for zero slack, preserving the probabilistic guarantees
when d = 0. In addition, the linearization is applied locally to
each timestep k and robot disc c, resulting in a locally tight
approximation of the original collision regions. For the lin-
earized constraints, we obtain the following SP:

min
u2U, x2X

d2R

XN
k¼0

Jðxk ,ukÞ þ wdkdk22 (15a)

s:t: x0 ¼ xinit (15b)

xkþ1 ¼ f ðxk , ukÞ, k ¼ 0,…,N � 1 (15c)

⋀
S

i¼0
⋀
N

k¼1
⋀
nd

c¼0
⋀
M

j¼0
pck 2H bpck , δðiÞk, j, d� 	� 	

: (15d)

Figure 3. Schematic illustration of Safe Horizon MPC applied to a mobile robot. (a) Scenarios are sampled from the trajectory
distributions. Each time instance of SP (Equation (4)) is associated with a set of sampled obstacle positions as visualized by the green
and blue circled pedestrians. (b) Halfspace constraints are constructed between sampled obstacles and the robot, and are reduced to a
probabilistic safe polytope for each time instance and robot disc, depicted by the yellow lines. (c) Problem 5 is solved via Algorithm 1.
The resulting trajectory is certified up to a probabilistic bound.

de Groot et al. 7



The linearization exploits the geometry of the motion
planning problem to reduce the size of the support. Most
of the linearized constraints become redundant (they are
fully contained in other constraints) and can be excluded
from the planning problem. We provide more details in
Appendix A.

To drastically reduce the computational demand of this
formulation, we reorder Constraints (15d) as

⋀
N

k¼1

⋀
nd

c¼0

⋀
S

i¼0

⋀
M

j¼0

pck 2H bpck , δðiÞk, j, d� 	� 	" #
, (16)

to pair constraints that apply to a single robot disc position
pck . Because of the overlap between the constraints, each of
these constraint pairings can be described by a small subset
of the constraints for d = 0 (see Figure 3(b)). The constraints
(15d) can, therefore, be reduced to free-space polytopes
before optimization, which significantly reduces compu-
tation times. We denote these polytopes, for disc c and time
step k as

Pc
kð0Þ ¼ pck j ⋀

ði, jÞ2I c
k

pck 2H bpck , δðiÞk, j, 0� 	( )
, (17)

where the indices of scenarios that form the boundary of the
polytope are collected in the set I c

k . For d > 0, the polytope is
denoted Pc

kðdÞ and consists of the same linear constraints
relaxed with a distance d. We derived an algorithm based on
recursive search, detailed in Appendix B, that performs this
pruning in less than 100 μs, while it typically reduces the
number of constraints by a factor 102� 103. We verified, for
an example in our simulations, that with 10,816 samples, the
final polytope consists of 11 constraints on average.

The final SP that is solved online, after pruning, is given
by
Problem 5. Safe Horizon MPC.

min
u2U, x2X
d2R

XN
k¼0

Jðxk ,ukÞ þ wdkdk22 (18a)

s:t: x0 ¼ xinit (18b)

xkþ1 ¼ f ðxk ,ukÞ, k ¼ 0,…,N � 1 (18c)

pck 2Pc
kðdÞ, "k,"c: (18d)

The SH-MPC problem can be solved in real-time while
bounding the joint CP of its trajectory (see Figure 3(c)).

5.3. Estimating the support

The joint CP that is bounded by SH-MPC depends on the
sample size S and the support n. In the following, we
propose an estimate of the support bn ≥ n that can efficiently
be computed during optimization.

For a convex SP, the support can easily be computed as
its support constraints are active (Campi and Garatti, 2008;
Garatti and Campi, 2019). Computing the support in the
nonconvex case is much harder as this property does not
hold. We show here that the support can be estimated
through the active constraints after each iteration of the
nonconvex optimization. An iteration refers to the
procedure that is repeated to solve the nonconvex op-
timization, such that the decision algorithm can be
described by a repeated sequence of iterations

Al :Θ×ΔS →Θ, l 2 0,…,L as

A ¼ ALð…A1ðA0ðθ0,VÞ,VÞ…,VÞ: (19)

We define the support of an iteration as a set of scenarios that
results in the same output as the output where all scenarios
are considered. The support of the decision algorithm can be
connected with that of its iterations by the following lemma.
Lemma 1. Consider a decision algorithm A, separated
according to (19). Its support C satisfies

C4VnVns, Vns ¼ \L
l¼0

Vl
ns, (20)

where

Vl
ns ¼ δðiÞ 2V j Alðθl,VÞ ¼ Alðθl,VnδðiÞÞ� �

, (21)

is the set of scenarios not of support in iteration l.

Proof. Scenarios in Vns can be excluded for all l without
changing the solution, that is, by (20) and (21),

Aðθ0,VnδðiÞÞ ¼ Aðθ0,VÞ ¼ θ*, (22)

for all δ(i) 2 Vns. Therefore, by Definition 1 all scenarios in
Vns are not of support forA. The support ofA is therefore in
the complement of this set with respect to the set V and the
result follows.

The support set obtained through Lemma 1 is an over-
estimation. It is possible that a scenario changes the solution
of an intermediate iteration without changing the final
solution.

To apply this lemma to SH-MPC, we note that a local
optimum of Problem 5 can be computed by iteratively
linearizing the problem and solving a convex optimization.
In this case, each iteration of the solver is a convex scenario
optimization for which the support constraints are active
(Campi and Garatti, 2008). For example, in Sequential
Quadratic Programming (SQP), each iteration Al refers to
the inner QPs. We explicitly impose this assumption on the
solver.
Assumption 2. Each iteration Al of decision algorithm A
solves a convex optimization problem.

The active constraints can be identified by verifying
which of the scenario constraints of the convex program are
exactly satisfied. We therefore require the additional
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assumption that the constraints of the convex problem are
satisfied in each iteration.
Assumption 3. The solution computed by each iteration Al

is feasible with respect to its inequality constraints.

The scenario constraints are in general nonlinear due to
the robot dynamics. In each iteration, and as commonly
done to solve nonlinear problems, the solver makes the
problem convex, deriving constraints from the locally
linearized dynamics. We only require that these constraints
are satisfied. Using these assumptions, we propose the
following support estimation.
Theorem 1. If iterationsAl of the decision algorithm satisfy
Assumptions 2 and 3, then the support of Problem 3 satisfies

C4[L
j¼0

Vj
active ¼ bC, bn :¼ jbCj, (23)

where, with gl the inequality constraints of Al,

Vl
active ¼ fδðiÞ 2V j ∃k glðxlk , δðiÞk , dlÞ ¼ 0g, (24)

denote the active constraints in iteration l.
Proof. Under Assumption 2, the support constraints of

iteration l are in the setVl
active (all constraints are satisfied by

Assumption 3). Under convexity, Vl
active is therefore the

complement of the setVl
ns. Invoking Lemma 1 and using De

Morgans Law (Morgan, 1847), we obtain (23).
The support of SH-MPC can therefore be estimated by

the aggregated set of active scenarios over all iterations,
addressing Limitation 2. In practice, we use Sequential
Quadratic Programming (SQP) (Nocedal and Wright, 2006)
Chapter 18 to solve Problem 5, which satisfies Assumption
2 (convexity of iterates) and Assumption 3 (feasibility of
intermediate iterates).

5.4. Determining the sample size

With the support of SH-MPC estimated through Theorem 1
and directly available after optimization, it remains to de-
termine the sample size S for SH-MPC such that the joint CP
of its trajectory is at most ϵ.

Problem 5 can only be solved once due to the strict real-
time requirements on the planner. We therefore propose to
find a sufficiently high S that certifies the joint CP almost
always. To that end, we define a support limit n describing a
support size that we expect not to exceed and use it to certify
the optimized trajectory in practice.
Theorem 2. SH-MPC (Problem 5) with sample size S,
computed from (10) with support limit n, does not exceed a
specified risk of ϵ (with specified confidence 1 � β) if its
support is lower than the support limit, that is, if n ≤ n.

Proof. SH-MPC satisfies Assumption 1 and with ϵ(n) as
in (10), Theorem 1 in Campi et al. (2018) ensures that (8)
holds. Since ϵ(n) in (10) is monotonically increasing in n
(i.e., ϵ(n + 1) > ϵ(n), "n < S) and given that the computed S
ensures that ϵðnÞ ≤ ϵ, we have that ϵðnÞ ≤ ϵ,"n ≤ n.

Theorem 2 shows that SH-MPC solves the CCP in
Problem 1 if its support is lower than the support limit (and
if d = 0).

In practice, the support limit can be estimated by de-
ploying the planner and collecting the support estimation of
Theorem 1. In our approach, we keep track of the largest
estimated support over a large number of iterations and use
this empirical worst-case support as the support limit. An
alternative could be to start with a large support limit,
lowering it when it is not passed for many iterations. Since
the support limit is likely higher than necessary for many
iterations, the trajectories computed by SH-MPC become
conservative. The support limit however allows the planner
to incorporate the joint collision avoidance chance con-
straint in real-time. Conservatism can be reduced by run-
ning several instances of SH-MPC in parallel (along the
lines of Mustafa et al. (2023)), which can lead to lower and
more consistent support. Alternatively, the support limit
could be continuously adapted based on its online esti-
mation. We consider these future work.

5.5. Algorithm outline

Algorithm 1 summarizes the SH-MPC framework. Offline,
we compute the sample size S based on the joint CP ϵ,
confidence 1� β and support limit n (Line 2). We provide a
Jupyter notebook with this paper (De Groot, 2024) that
performs this computation using a bisection of (10). Online,
the predicted probability distribution is received from the
perception module and scenarios are sampled from it (Line
4 � 5). We solve l iterations of Problem 5, determining the
active scenarios and aggregating the support set in each
iteration (Line 7 � 9). If the slack is zero and the support
limit is not exceeded, then the final trajectory is certifiably
safe and its first input is executed (Line 10� 12). Otherwise,
the robot executes a fallback action (e.g., braking).

6. Results

We evaluate SH-MPC in simulation, comparing against two
MPC baselines, and in real-world experiments on a mobile
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robot among pedestrians. A video of the results accom-
panies this paper (De Groot et al., 2024a).

6.1. Simulation setup

We consider a mobile robot moving through an environment
with pedestrians (see Figure 4) in which the robot is modeled
by a kinematic unicycle model (Siegwart and Nourbakhsh,
2011). We assume throughout that the distribution of pe-
destrian motion is known in order to evaluate the perfor-
mance of the planner in isolation (i.e., without prediction
errors). We first validate on a Gaussian case, where the
baselines may leverage the shape of the distribution to ap-
proximate the probabilistic collision-free space accurately. In
this case, the pedestrian dynamics are given by

δkþ1 ¼ δk þ ðvþ δw, kÞdt, δw, k ∼Nð0,ΣwÞ, (25)

where Σw 2R
2×2 is a diagonal covariance matrix (i.e.,

random variables in the x and y direction are independent). Its
diagonal entries σwx = σwy = 0.3 are kept constant over the
horizon. The nominal velocity is denoted by v2R

2. The
pedestrian and robot radius are 0.3 m and 0.325 m, respec-
tively. Throughout our simulations and experiments, we set the
maximum open-loop joint CP as ϵ = 0.05. This value can be
handled computationally by the considered methods and is
typically sufficient to prevent collisions in closed-loop without
excessively reducing the probabilistic collision-free space.

6.2. Implementation of SH-MPC

All baselines and SH-MPC use the Model Predictive
Contouring Control formulation in Brito et al. (2019), which

tracks a reference path and reference velocity while pe-
nalizing robot inputs. We solve Problem 5 using the Forces
Pro SQP solver (Domahidi and Jerez, 2014) with at most 12
iterations. We empirically selected the support limit n ¼ 10.
With ϵ = 0.05 and setting a confidence of 1 � β = 0.99, the
sample size is S = 1351. If the support limit is exceeded or the
slack is nonzero, we slow down the robot. The linearization
of the constraints requires the previous plan to be feasible.We
use of a projection step to ensure that this holds in all time
steps. This projection step consists of a projection orthogonal
to the direction of robot movement, which almost always
results in a feasible plan. In the remaining cases, we solve a
feasibility program using Douglas–Rachford Splitting
(Aragón Artacho et al., 2020). SH-MPC is implemented in
C++/ROS and will be released open source.

6.3. Baselines

We compare SH-MPC against a deterministic baseline and
two probabilistic baselines that constrain the marginal CP,
that is, the independent CP per time instance and/or obstacle.

(1) DeterministicMPC: Avoids the mean of each mode as
a deterministic circular obstacle.

(2) S-MPCC (De Groot et al., 2021): Marginal CP per
time instance.

(3) CC-MPC (Zhu and Alonso-Mora, 2019): Marginal CP
per time instance and obstacle.

S-MPCC handles arbitrary distributions. It solves an SP
where scenario constraints are posed on the marginal dis-
tributions. For each time k, it samples from the independent

Figure 4. Planned trajectories for the different methods in the Gaussian simulation with eight pedestrians. The robot plan and associated
collision areas are drawn in blue. For all methods, visualizations are shown in blue to green colors for stages 0, 5, 10, 15, and 19,
respectively. (a) Circles show the predicted areas occupied by the obstacles following the mean of the Gaussian distribution. (b) Circles
show the level sets of the Gaussian distribution at the specified ϵ. (c) Sampled pedestrian positions (excluding pruned samples in the
center) are drawn as points with their collision area, borders of the safe polytopes are drawn as colored lines. (d) Similar to (c) but
depicting sampled trajectories as dashed lines and highlighting support constraints. (a) Deterministic baseline. (b) Gaussian baseline at
ϵk = 0.0003125. (c) S-MPCC at ϵk = 0.0025. (d) SH-MPC at ϵ = 0.05.
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obstacle distribution at k to obtain a collision-free polygon.
It is assumed that all constraints in the polygon are of
support (set to 20 in these simulations), which requires S =
75946 for instance when ϵk = 0.0025. Samples in the center
of the distribution are pruned in the Gaussian case to reduce
the number of samples considered online.

CC-MPC is strictly applicable to Gaussian distributions.
It approximates the collision probability via the Cumulative
Density Function (CDF) of the Gaussian distribution. The
linearized collision avoidance chance constraint

P auk, jðpk�δk, jÞ ≥ r
h i

≥1�ϵk , ak, j ¼ pk�δk, j
kpk�δk, jk, (26)

is equivalent, under a Gaussian distribution of δk,j, to

auk, jðpk � δk, jÞ�r ≥ erf�1ð1� 2ϵkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2auk, jΣak, j

q
, (27)

where erf�1 is the inverse standard error function and Σ is
the covariance matrix of the uncertainty. This constraint is
imposed separately for each time step and obstacle.

Since SH-MPC is characterized by a single bound ϵ on the
trajectory CP, while the baselines specify bounds ϵk on the CP
for each k and for each obstacle, we consider three versions of
the baselines. The first sets ϵk = ϵ, which is not provably safe
but relies on updates of the controller to remain safe. The
second version sets ϵk = ϵ/N, accounting for the marginal
approximation over time since

P
kϵk = ϵ, but ignoring

marginalization per obstacle. As S-MPCC inherently ac-
counts for the obstacle marginalization, it matches SH-
MPC’s safety specification (joint CP of ϵ) with this version.
The third version accounts for both marginalizations, setting

ϵk = ϵ/NM such that M
P

kϵk = ϵ. CC-MPC only attains the
same safety specification as SH-MPC using this last version.

6.4. Weights and parameters

The only difference between the planners is their collision
avoidance constraints. We use the same solver, weights and
cost function for all methods. Weights of the MPC problem
are given in Table 1. We define a horizon of N = 20 steps,
with a discretization step of 0.2s, giving a time horizon of
4.0s. The control rate is 20 Hz, corresponding to a sampling
time of 50 ms. The computer running the simulations is
equipped with an Intel i9 CPU@2.4GHz.

6.5. Baseline comparison—Gaussian
uncertainties

Weconsider an environmentwithmultiple dynamic pedestrians
following the dynamics in equation (25) where v describes a
constant velocity. We validate the actual CP of the motion plan
offline after the experiments throughMonte Carlo sampling for
all methods, where the dynamics in equation (25) are used to
generate the samples. We compute the CP by dividing the
number of samples where the robot and obstacle discs overlap
at any stage by the total number of samples (set to 105). The
marginal CP (CPk) is computed without taking prior collisions
into account. We validate in a scenario with 8 pedestrians.

Figure 4 depicts snapshots of the simulations. Quanti-
tative results are summarized in Table 2. The deterministic
baseline completes the task faster than the other methods but
attains a high CP and consequently collides in total in 102
cases, whereas the other methods do not collide. S-MPCC is
more conservative than the other methods because of its
conservatively large sample size. CC-MPC, that uses the
Gaussian CDF, bounds the marginal CP (CPk) per obstacle
accurately. However, when ϵk = 0.05, its maximum joint CP
is 0.2264, which exceeds 0.05. The trajectories are safe

Table 1. Weights of the MPC problem (see Brito et al. (2019)).

Contour Lag Velocity Acceleration Ang. Velocity

0.005 0.1 0.05 0.05 0.05

Table 2. Statistical results for the eight pedestrian environment under Gaussian uncertainty (sec. 6.5). Results compare the marginal CP
(“CPk”) and joint CP (“CP”), the task duration, minimum distance to the pedestrians and computation times over 100 experiments. For the
CPs we report the maximum observed over all experiments and compare it to the specified bound (a dash indicates that no bound is
specified on the particular CP). Other results are reported as “average (standard deviation)” unless stated otherwise. The divider separates
methods that do not bound the joint risk at ϵ = 0.05 (above) and methods that do (below). Our method (SH-MPC) is less conservative than
the baselines with similar safety specifications.

Method Max CPk/Spec. (%) Max CP/Spec. (%) Dur. [s] Min Dist. [m] Runtime (Max) [ms]

Deterministic MPC 0.9387/- (-) 0.9989/- (-) 10.1 (0.9) -0.03 (0.07) 13 (76)

S-MPCC (ϵk = 0.05) 0.0037/0.0500 (7) 0.0049/- (-) 15.6 (2.6) 0.36 (0.06) 47 (137)

CC-MPC (ϵk = 0.05) 0.0929/0.0500 (186) 0.2264/- (-) 10.3 (2.0) 0.12 (0.03) 10 (45)

CC-MPC (ϵk = 0.0025) 0.0047/0.0025 (187) 0.0159/- (-) 16.9 (4.5) 0.24 (0.07) 10 (39)

S-MPCC (ϵk = 0.0025) 0.0002/0.0025 (7) 0.0002/- (-) 19.2 (3.2) 0.55 (0.08) 83 (286)

CC-MPC (ϵk = 0.0003125) 0.0008/0.0025 (30) 0.0019/- (-) 18.4 (2.4) 0.32 (0.07) 11 (33)

SH-MPC (ϵ = 0.05) 0.0073/- (-) 0.0092/0.0500 (18) 16.0 (1.9) 0.34 (0.03) 27 (66)
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under ϵk = 0.0025 in practice with a maximum overall CP of
0.0159, although it is not theoretically accounting for the
obstacle marginalization. This is evident in the marginal CP
that, with 0.0047, exceeds its specification of 0.0025. For
clarification, Figure 6 illustrates this error made by obstacle
marginalization on a 1-dimensional example. The version of
CC-MPC with the same safety specification as SH-MPC,
constrains ϵk = 0.0025/8 = 0.0003125. The results indicate
that SH-MPC moves through the environment faster than
the safe baselines with the same safety specification as its
joint CP (0.0092) is less conservative than that of the
baselines (e.g., 0.0019 for CC-MPC).

6.6. Baseline comparison: Gaussian mixture

We now modify the distribution to incorporate a probability
that the pedestrians will cross. We encode this scenario with
a Markov Chain (see Figure 5) that changes pedestrian
movement from horizontal to diagonal in addition to the
Gaussian process noise of the previous simulations. We
define the pedestrian dynamics as

pkþ1 ¼ pk þ ðBvþ δw, kÞdt, δw, k ∼Nð0,Σw, kÞ, (28)

where B is either Bh ¼ 1 0½ �u or Bd ¼
1ffiffiffi
2

p 1ffiffi
2

p
� �u

depending on the state of the Markov Chain. The uncer-
tainties associated with this motion can be modeled as a
Gaussian Mixture Model (GMM), where each possible state
transition in theMarkov Chain leads to a separate mode with
an associated probability (in total 21 modes). For example,
the mode where the pedestrian crosses after two steps occurs
with probability p2 = (1 � 0.025)0.025. We apply the

deterministic baseline to the GMM distribution by avoiding
the mean of each mode. For CC-MPC, we formulate the
constraints at a risk of ϵk for all modes, which can lead to
conservatism when multiple modes influence the plan. We
validate in this environment with eight pedestrians.

Results are summarized in Table 3. SH-MPC outper-
forms the baselines on almost all metrics. We observed in
total 25 collisions for the deterministic baseline. The
computation times of CC-MPC become excessive due to the
many modes to be considered, while the computation times
of SH-MPC (and S-MPCC) are unaffected.

6.7. Empirical analysis and sensitivity

6.7.1. Support estimation. We compare our proposed support
estimation in equation (23) with the default Greedy algorithm
of Campi et al. (2018) in a scenario with one static pedestrian.
We manually vary the sample size between 100 and 1000 and
collect, for 100 iterations of each sample size, the runtime of the
optimization with support estimation and the estimated support
size. Figure 7 shows that, while the runtime of our support
estimation is negligible compared to the optimization, the
greedy algorithm takes roughly S + 1 times as long to solve.

6.7.2. Empirical risk distribution. We visualize the em-
pirical distribution of the joint CP for each value of the
support estimate in Figure 8 computed for the simulations of
Sec. 6.5. In line with the theory, we observe that the tra-
jectory CP is on average higher for higher support values.
Our support limit (n = 10) is reached in only 2 out of 33564
cases and is never exceeded. In the other cases, our support
limit is conservative. In the simulations of Sec. 6.6, the
support limit is exceeded six times in total. This usually
indicates that the planner’s intended trajectory is becoming
increasingly risky and is a valid cause for slowing the robot
down. The same situation can result in d > 0 (i.e., infeasible
optimization problem) of which we detected 50 occurrences
in the same simulations.

Table 3. Statistical results for the eight pedestrian environment under multimodal uncertainty (sec. 6.5). Displayed results follow the
notation in Table 2. Our method (SH-MPC) maintains a similar joint CP and similar computation times when the probability distribution
describing pedestrian motion is non-Gaussian.

Method Max CPk/Spec. (%) Max CP/Spec. (%) Dur. [s] Min Dist. [m] Runtime (Max) [ms]

Deterministic MPC 0.9426/- (-) 1.0000/- (-) 11.7 (1.8) 0.12 (0.20) 204 (483)

S-MPCC (ϵk = 0.05) 0.0042/0.0500 (8) 0.0059/- (-) 17.6 (4.3) 0.41 (0.16) 44 (123)

CC-MPC (ϵk = 0.05) 0.1027/0.0500 (205) 0.3175/- (-) 16.6 (4.7) 0.16 (0.18) 100 (340)

CC-MPC (ϵk = 0.0025) 0.0053/0.0025 (213) 0.0196/- (-) 18.2 (4.6) 0.35 (0.13) 106 (299)

S-MPCC (ϵk = 0.0025) 0.0002/0.0025 (6) 0.0002/- (-) 19.6 (3.0) 0.42 (0.22) 73 (131)

CC-MPC (ϵk = 0.0003125) 0.0007/0.0025 (28) 0.0028\/- (-) 18.8 (4.4) 0.45 (0.12) 106 (323)

SH-MPC (ϵ = 0.05) 0.0081/- (-) 0.0107/0.0500 (21) 16.3 (4.3) 0.36 (0.14) 27 (67)

Figure 5. Markov chain modeling of a crossing pedestrian.
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6.7.3. Sensitivity to ϵ and N. We validate the sensitivity of
SH-MPC to varying risk specifications (ϵ) and horizon
lengths (N) in the scenario of Sec. 6.5. Figure 9(a) shows
that reducing the specified risk results in longer task du-
rations and that the approach becomes slightly more con-
servative for lower risk specifications. In line with the
theory, Figure 9(b) indicates that changing the horizon
length does not significantly affect the CP. Instead, the
trajectories become more cautious when the same risk must
be guaranteed over a longer duration.

6.8. Real-world experiments

Wevalidate SH-MPC in the real world by applying the planner
on a mobile robot navigating among pedestrians. The ex-
perimental setup consists of a Clearpath Jackal and up to three
pedestrians in a 7 m × 9m space. We detect the positions of all
agents with a motion capture system. The robot is given a
reference path along the center of the space and a reference
velocity of 1.5 m/s. When the robot reaches the end of the

reference path, it rotates without MPC control and is given the
reversed reference path. The robot is controlled at 20 Hz by
SH-MPC that models the dynamics as a second-order uni-
cycle. We specify an acceptable risk of ϵ = 0.05 over a 20 step
and 4s horizon with confidence 1� β = 0.99 and support limit
n ¼ 6. The pedestrian motion predictions follow Gaussian
constant velocity dynamics (Equation (25)), where an Ex-
tended Kalman Filter (EKF) is used to estimate the velocity.

Figure 10 depicts three experiments with one pedestrian.
SH-MPC keeps its distance from the pedestrian so that its
motion remains smooth even when the pedestrian deviates
from constant velocity behavior. In Figure 10(a) and 10(b),
it keeps sufficient lateral distance when passing, while in
Figure 10(c), it reacts to the pedestrian speeding up its pace.
Figure 11 shows three experiments with three pedestrians.
The robot evades the pedestrians smoothly in this more
crowded environment. In Figure 11(a) and 11(b), the robot
smoothly evades multiple pedestrians. In Figure 11(c), the
planner first evades two pedestrians, then reverses to ensure
the safety of the third, fast-moving pedestrian.

With 1 pedestrian, the support limit was never exceeded.
With three pedestrians, it was exceeded 30 times in total.
This could be resolved by increasing the support limit when
it is exceeded. In our case, slowing down led to safe be-
havior. We did not observe collisions in any of the ex-
periments. Because the proposed planner is a local planner,
it does sometimes get infeasible when its intended passing
maneuver becomes impossible within the specified risk.
This can be resolved by considering multiple distinct ma-
neuvers in parallel (e.g., as considered in De Groot et al.
(2023)) but this is outside of the scope of this paper.

6.9. Autonomous navigation in an
urban environment

SH-MPC can be applied to different robot morphologies and
scenarios. To demonstrate this, we deploy our approach on a
simulated self-driving vehicle in Carla simulator (Dosovitskiy
et al., 2017). The dynamics are modeled with a second-order
bicycle model (Kong et al., 2015) and the collision region
consists of three discs. We construct a collision-free polytope
for each of the discs. The pedestrians are programmed to
follow the same dynamics as in Sec. 6.6, that is, a GMM

Figure 6. A 1D illustration of the case where two obstacles
constrain the robot. Even though the marginal probability of
collision for each obstacle is less than ϵk (shaded tails) in the
center region, the joint probability of collision in the feasible
region (green shaded area) is larger than ϵk. (a) Example case.
(b) Joint and marginalized risk in the direction of the black dashed
arrow in (a).

Figure 7. The mean and standard deviation of the runtime (top)
and estimated support size (bottom).

Figure 8. The empirical distribution of the joint CP for SH-MPC
for each estimated support over 33,564 planner iterations (in
simulations of Sec. 6.5). Dots denote individual planner iterations.
Boxplots denote the statistics per support value.
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modeling crossing behavior. We do not model the interaction
between the vehicle and the pedestrians. The control frequency
is 10 Hz. We measured the computation time to be 88 ms on
average and 135 ms maximum. Figure 12 visualizes snapshots
of the simulations. In Case A (see Figure 12(b)), the planner
keeps enough distance to let the pedestrians cross while
driving as close to the path as is safe. In Case B (see
Figure 12(c)), the vehicle passes behind the pedestrians while
keeping its distance from the pedestrian that is not crossing.

7. Discussion

As expected from the theoretical analysis, our experiments
showed that SH-MPC can consistently bound the CP of the

overall trajectory. Where methods that impose marginal
constraints need to decide between performance (ϵk = ϵ) and
safety (ϵk = ϵ/NM), SH-MPC makes this trade-off more
explicit by ensuring that the CP remains consistent under
different operating conditions, such as with regards to
number of obstacles, probability distributions, and the
horizon length.

The proposed method is widely applicable. It handles
dynamic obstacles (e.g., cyclists, cars, or non-cooperative
robots) and controls systems with nonlinear dynamics. In
addition, the joint distribution of the uncertainty can capture
interactions of dynamic obstacles with other obstacles or the
robot (e.g., to predict that pedestrians evade other pedes-
trians and the vehicle). It cannot yet account for interaction
during planning, where the dynamics of the robot and
pedestrians directly influence each other, as the probability
measure P cannot depend on the optimization variables in
scenario optimization.

7.1. Reducing conservatism

Planning performance could be improved by reducing the
gap between the guaranteed and obtained risk, for ex-
ample, by assuming some knowledge of the distribution or
by running multiple scenario programs in parallel as
considered in Mustafa et al. (2023). Over-approximating
Monte Carlo sampling may be less conservative than NSO
and may reduce conservatism while maintaining safety.
Recent work (Brudermüller et al., 2024) proposed such
an approximation. Their method is less conservative, but
also computationally more demanding than SH-MPC,
achieving about an order of magnitude slower computa-
tion times than SH-MPC without considering non-
holonomic constraints.

The guarantees provided in this paper rely on an accurate
model of the uncertainty, which may be challenging to
obtain, for example, in the case of human motion prediction.
Nevertheless, the proposed method provides a planner that
attains a desired level of risk with respect to the predicted
probability distribution. The prediction model could also be
replaced by recorded samples (see De Groot et al. (2024b)),
in line with the typical scenario approach, to reduce

Figure 9. Sensitivities of the empirical CP and task duration with respect to (a) the specified CP with constant N = 20 and (b) the horizon
length with constant specified CP ϵ = 0.05, evaluated over 25 experiments in the setting of Sec. 6.5. (a) Risk sensitivity. (b) Horizon
sensitivity.

Figure 10. Past trajectories of the robot and one pedestrian
overlayed with top-view camera images. By accounting for the
possible future motion of the pedestrian, SH-MPC remains safe
and smooth even when the pedestrian deviates from constant
velocity behavior. (a) The pedestrian turns in a straight
encounter. (b) The pedestrian turns with the robot passing from
behind. (c) The pedestrian speeds up.
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modeling errors and provide formal guarantees with respect
to the true motion of the obstacles.

7.2. Computational efficiency

We showed that our approach is online capable and
scalable under typical operating conditions. For ex-
tremely low risk specifications (e.g., ϵ ≤ 5 � 10�3),
computational requirements may become excessive as a
result of the increase in sample size. This can be ad-
dressed, for example, by either pruning the samples,
given that only the extreme samples are of interest (see,

for example, De Groot et al. (2021)), or by solving an
approximate scenario optimization (Sartipizadeh and
Açikmeşe, 2020). In addition, most computations of
SH-MPC are parallel linear computations (for each
sample), which potentially leave room for further opti-
mization, for example, by delegating computations to a
Graphical Processing Unit (GPU).

The computational efficiency of our approach derives
from the merging of linear constraints which is facilitated by
modeling collision regions as discs. While this modeling
can be used to represent several obstacles, we currently
cannot efficiently handle more complex shaped obstacles,
such as objects with sharp corners. Future work could
explore if other linear constraints (e.g., towards vertices of
obstacles) could be merged safely. The same comment holds
for extension to planning problems in higher dimensions.
Directly merging halfspaces in 3D may, for example, be
more complicated than in the 2D case and may require
constraints of different shapes to be merged effectively.

7.3. Support limit

We showed that the support limit could be estimated online
by using a solver that convexifies the problem in each it-
eration, such as SQP. Although this limits the generality of
the support estimation, SQP solvers are a common choice
for robotics applications. SH-MPC furthermore requires the
user to estimate a support limit online because the support
depends on the complexity of the problem to be solved. We
do provide the online estimation of this single parameter, so
that the user can bound it conservatively based on real-
world data, enabling real-world robotics applications.

Figure 11. Past trajectories of the robot and three pedestrians overlayed with top-view camera images. The robot consistently
avoids collisions with pedestrians. (a) The robot evades two pedestrians smoothly. (b) During a passing maneuver, the robot
keeps a sufficient distance. (c) The robot passes two pedestrians, then reverses to ensure the safety of a third, fast-moving
pedestrian.

Figure 12. (a) Snapshot from Carla simulations. Visualization
follows Figure 4(d) for the frontal vehicle disc. (b, c) Observed
trajectories of the vehicle (dark blue) and pedestrians (green) with
start positions as black dots in two cases. (a) A snapshot of the
proposed approach in the Carla simulator. (b) Case A: Safe
overtake. (c) Case B: Passing behind.
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Future work could explore if the support limit could be
known before optimization. For example, by adapting the
constraint formulation so that the support is fixed by
construction (see Appendix A in Campi et al. (2018)).

8. Conclusions

Safe Horizon Model Predictive Control (SH-MPC) enabled
mobile robots to constrain the joint open-loop probability of
collision over the planned trajectory and with respect to all
obstacles in real-time for 2D dynamic environments. It does
so without making simplifying assumptions on the robot
dynamics or underlying probability distribution describing
the motion of the obstacles. The method uses a scenario
optimization formulation where samples of the involved
uncertainty are used as constraints to limit the collision
probability of the motion plan. The number of samples is the
main indicator for the collision probability and, under our
approach, could be computed before deploying the
controller.

Our results, with a mobile robot and an autonomous
vehicle, showed that SH-MPC better approximates the
collision probability over the duration of the motion plan
than existing methods that rely on the marginal probability
of collision. The main baseline, which achieved tight
evaluations of the risk for each time step, was shown to be
conservative over the duration of its motion plan and there
was significant variation in its overall risk when we varied
the underlying distribution. The overall risk of SH-MPC
remained less conservative and more consistent between
different environments and distributions, which resulted in
faster trajectories. In addition, we showed excellent scaling
of the computation time with respect to the number of
obstacles and under varying distributions.

The real-time performance of SH-MPC is currently tied to
a 2D environment with disc-shaped collision regions, while
the probabilistic safety certification poses assumptions on the
solver (satisfied by SQP) and requires the support limit to be
estimated online. Our future work will try to alleviate these
assumptions to further generalize our approach.
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1. See, for example, Billingsley (1995) for more details.
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A Appendix

In practice, linearization of the collision avoidance
constraints results in a support that consists of a small
subset of the scenarios. To support this observation, we
consider here how the constraint formulation impacts the
support.
Definition 2. The shadow of a scenario δ(i) under the
constraints θ2ΘδðiÞ is a region SδðiÞ4Δ such that if another
scenario satisfies δ2 SδðiÞ , then either δ(i) or δ is redundant.
That is,

SδðiÞ ¼fδ2Δ j ΘδðiÞ �Θδg[fδ2Δ j Θδ�ΘδðiÞg: (29)

An example shadow is visualized in Figure 13(a) for
the proposed constraints. Note that in Figure 13(b),
the shadow always occupies a non-zero area. This is
a result of the linearization and a set of box
constraints on the position that limit the range in which
constraints are considered. In this case we can prove the
following.
Theorem 3. Suppose that the shadow is non-empty for
all possible samples in the support (i.e., Sδ ≠˘, "δ 2 Δ), then
the probability that out of S samples, none of the samples are
redundant goes to 0 exponentially, for S → ∞.

Proof.Given S samples, a new sample δ is not redundant
if it falls outside of the aggregated shadow, that is, if
δÏ[S

i¼1SδðiÞ . The associated probability is

PS ¼ P δ2Δ j δÏ [S
i¼1

SδðiÞ

� �
: (30)

Since Sδ ≠ ˘, "δ 2 Δ, the aggregated shadow grows
when sample S + 1 is not redundant, that is,
[S
i¼1SδðiÞ � [Sþ1

i¼1 SδðiÞ . Therefore, PS+1 < PS and addi-
tionally Pi < 1 for i > 0. We obtain the following result,

lim
S→∞

P
S ½No redundant scenarios� ¼ lim

S→∞
∏
S

i¼1
Pi ¼ 0, (31)

implying that the probability of sampling no redundant
scenarios goes to zero. This probability is upper bounded by

ðP1ÞS , that is, it converges at least exponentially.
Although this does not prove that the support is bounded

for finite S, it shows that it is very likely that redundant
scenarios are sampled, which are not of support.

B Halfspace merging algorithm

This appendix details our algorithm for merging the set
of halfspace constraints in equation (16) into a polygon
with a minimal number of constraints. The algorithm is
tailored to scale well to a large set of constraints. We make
the following assumptions. First, we assume that box
constraints are defined around the robot with finite side
lengths 2R,R2R≥0. We further assume that the polygon is
non-empty and that the robot position lies in its interior
(which is checked before). Due to the convexity of the
polygon, it is possible to divide halfspaces in those above
and below the robot as viewed from above the robot at an
arbitrary yaw angle. We describe here how to find the
halfspaces that span the bottom half of the polygon, the
same discussion holds for the top half. The halves are
merged to obtain the final polygon. For simplicity, we
assume that the robot is at the origin.

Algorithm 2 describes the search and Figure 14 gives an
example. The main idea is to start with two halfspacesHl,Hr

that are in the polygon at the left and right extremes of the
search domain, respectively. With the y-value of halfspace h
at x denoted as Hh(x), these are indexed by

l ¼ argmaxhHhð�RÞ, r ¼ argmaxhHhðRÞ: (32)

The remainder of the procedure is applied recursively for
any two halfspaces Hi, Hj that are in the polygon at the
boundaries of a particular search domain. A key observation
is that, for another halfspace to be larger at any considered x

Figure 13. Empirical 2D visualizations of the shadow region for
linearized constraints (14) considering a single 2D position in the
trajectory. (a) Given a single scenario (red dot) positioned at (2.5,
3.5), shows what scenarios would dominate it (blue region) and what
scenarios it dominates (green region). Regions were computed by
sampling a new scenario over a grid and validating whether the two
scenarios are active for any point in the box-constraints. (b) The area
occupied by the shadow for each scenario within the box-
constraints. (a) Avisualization for one 2D position in the trajectory of
the shadow cast by the scenario positioned at (2.5, 3.5). (b) Area
occupied by the shadow.
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than these two halfspaces, it must be larger at their inter-
section (a more formal statement will follow). We therefore
compute the intersection of the given halfspaces (Line 3)
and identify the largest halfspaceHd at xij (Line 7). If d = i or
d = j, no halfspace is larger in the search domain and the
algorithm terminates. Otherwise, we obtain two new search
domains, consisting of the pairs Hi, Hd and Hd, Hj (see
Figure 14(a)). We repeat this process recursively (Lines 8
and 9) until all recursions are terminated (see Figure 14(b)).
The returned aggregated set of halfspaces (excluding du-
plicates) makes up half the polygon.

To formalize that checking halfspaces at intersections is
sufficient, we provide the following result.
Theorem 4. Given a set of halfspacesH and the halfspacesHi

andHjwith the highest y-values at the left and right extremes of
x-domain [xi, xj], respectively. If for any non-empty subdomain
x2X d � ½xi, xj� there exists a halfspace Hd 2H for which
Hd(x) > Hi(x) and Hd(x) > Hj(x) then the intersection of Hi and
Hj is in that set, that is, xij 2X d .

Proof.Assume that the theorem does not hold, such that
Hd(xij) < Hi. To be largest on the left side of the inter-
section, Hd has to intersect Hi for some x 2 [�R, xij]. Left
of that intersection, Hd(x) > Hi(x), which implies Hd(�R) >
Hi(�R). But since Hi(�R) > Hd(�R) by definition we have
contradiction. A similar conclusion is obtained for Hj.
Therefore, Hd must be larger at the intersection and the
result holds.

The computational efficiency of this algorithm comes
from an additional observation. When the search domain is
split, only halfspaces whose y-values are between the
evaluated intersection point (e.g., yij) and the largest con-
straint there (e.g., Hd(xij)) remain relevant in ongoing
searches. All other constraints can be pruned (Lines 4, 8 and
9). Consequently, only a few halfspaces have to be checked
in each recursion after the first steps.

Figure 14. Illustrative example of the halfspace intersection
algorithm with four halfspaces (lines with feasible side
colored). Splits in the search domain are denoted by solid
lines colored with the largest halfspace at that point, dashed
vertical lines denote terminated recursions. (a) Search after
one recursion (up until Line 8 of Algorithm 2). Halfspaces Hi

and Hj are identified first. At their intersection, Hd has the
largest y-value, splitting the search domain in two. (b) After
He is added on the left and the domain is split once more, all
branches terminate and the final polygon (black solid lines) is
returned.
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