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Abstract—Mobile manipulators operating in dynamic environ-
ments shared with humans and robots must adapt in real time to
environmental changes to complete their tasks effectively. While
global planning methods are effective at considering the full task
scope, they lack the computational efficiency required for reactive
adaptation. In contrast, local planning approaches can be executed
online but are limited by their inability to account for the full task’s
duration. To tackle this, we propose Globally-Guided Geometric
Fabrics (G3F), a framework for real-time motion generation along
the full task horizon, by interleaving an optimization-based planner
with a fast reactive geometric motion planner, called Geometric
Fabrics (GF). The approach adapts the path and explores a mul-
titude of acceptable target poses, while accounting for collision
avoidance and the robot’s physical constraints. This results in a
real-time adaptive framework considering whole-body motions,
where a robot operates in close proximity to other robots and
humans. We validate our approach through various simulations
and real-world experiments on mobile manipulators in multi-agent
settings, achieving improved success rates compared to vanilla GF,
Prioritized Rollout Fabrics and Model Predictive Control.

Index Terms—Mobile manipulation, constrained motion plann-
ing, geometric fabrics, collision avoidance.

I. INTRODUCTION

THE deployment of mobile manipulators in human-centered
environments, including households and hospitals, relies

on their ability to carry out object-focused tasks like navigation,
grasping, transportation and placement. These long-horizon
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Fig. 1. A schematic overview of G3F. Given the current state of the envi-
ronment, RF provides two distinct forward predictions for linearization and
warm-starting the quadratic program (QP) solver. After refining the solution of
the optimization-based planner iteratively, the path with the lower cost guides
the geometric motion planner GF.

tasks can span several tenths of seconds or involve sequen-
tial processes, e.g. pick-and-place, where global guidance is
essential for smooth execution. In dynamic environments, of-
fline global planning alone is insufficient as humans and other
robots might obstruct the predefined paths or end-effector target
poses [1], while online local planning methods are limited to
short-term planning and overlook the complete task horizon.
This highlights a need for global methods capable of adapting
online to the movements of other agents. Moreover, if other
agents or obstacles block a precomputed target pose, the planner
should identify an alternative end-effector pose to accomplish
the task online. By addressing the global planning problem and
object-centric tasks simultaneously, efficient solutions can be
enabled for cluttered and multi-agent settings.

The most common way to adapt to environmental changes
is through repeated replanning, often using optimization-based
frameworks such as Model Predictive Control (MPC), e.g. [2],
[3], [4]. However, the required computation for long-horizon
tasks is a major bottleneck for high-dimensional systems in
dynamic environments [5]. Data-based methods represent an
attractive alternative since they can drastically reduce compu-
tational time. Nonetheless, these approaches require a lengthy
process of data collection and subsequent training, while often
lacking guarantees to satisfy all physical constraints [6]. Another
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class of methods for fast replanning is built on the concept of
geometry control, such as Geometric Fabrics (GF) [7] encoding
the desired behavior of the system, including joint limits and col-
lision avoidance, into geometries represented by second-order
differential equations. As GF are inherently reactive, e.g. have no
prediction horizon, Prioritized Rollout Fabrics (P-RF) were pro-
posed in [8] to forward simulate multi-agent systems via Rollout
Fabrics (RF) and resolve deadlocks based on prioritization.

Most online planning methods for object-focused tasks rely
on a high-level planner providing global guidance toward a
static target pose, such as a pick or place pose. However, in
dynamic environments, a static target pose may become un-
reachable. By exploring alternative end-effector target poses
online, mobile manipulators can adapt and complete their tasks
even if the pre-computed pose is obstructed. Nevertheless, as
discussed in Section II, most methods that investigate alternative
pick-and-place poses either neglect collision avoidance or are
computationally inefficient, making them unsuitable for reactive
execution.

We propose Globally-Guided Geometric Fabrics (G3F),
a framework for real-time motion generation achieving
reactiveness in dynamic environments while considering the full
task horizon from start to goal. We approximate the trajectory
optimization problem as a QP by leveraging RF for lineariza-
tion of the constraints and providing an initial guess to the
solver (Fig. 1). This allows us to consider the time horizon
until completion of the task, whereas online optimization-based
methods usually limit the time horizon up to a few seconds.
To explore the multitude of acceptable target poses for task
completion, we explicitly model the task’s degree of freedom
into the QP. By coupling the optimization-based planner with a
lower-level motion generator, we achieve real-time performance
that accounts for the whole-body kinematics of mobile manipu-
lators while avoiding dynamic obstacles. The effectiveness of
our approach is verified in several simulated and real-world
multi-agent scenarios.

To this end, our contributions are as follows:
� Globally-Guided Geometric Fabrics (G3F): A real-time

motion generation approach combining an optimization-
based planner with Rollout Fabrics for adaptive motion
planning in dynamic environments.

� Object-informed planning: G3F enables the robot to ex-
plore alternative target poses and account for collision
avoidance and physical constraints, ensuring efficient and
reactive execution of object-centric tasks.

� We experimentally evaluate the approach in simulated and
real-world multi-agent scenarios, using qualitative exam-
ples and a quantitative comparison against GF, P-RF and
MPC.

II. RELATED WORK

A. Motion Planning for Mobile Manipulators

Common approaches to motion planning for high-dimensi-
onal systems, such as mobile manipulators, are sampling
-based and optimization-based methods. Sampling-based
planners, including probabilistic road maps (PRM) [9], [10] and

variations of rapidly exploring random trees (RRT) [11], [12],
are however primarily used for static environments where a plan
is generated offline and then executed, as their computational
complexity poses challenges for reactive execution [1]. In con-
trast, optimization-based motion planners incorporate predic-
tions of other agents’ behavior, including them as constraints
within the optimization program. Model Predictive Control
(MPC) solves the optimization problem over a receding horizon
while replanning the solution based on the current configuration
and environment. Whole-body MPC has been applied to a single
mobile manipulator in several real-world settings, e.g. [2], [3],
[5], [13]. Another strategy is to separate base and manipulator
motion planning, where the base is moved during navigation
and for a manipulation task only the arm is moved [14]. This
simplifies planning but could lead to inefficient task execution,
e.g. when the base cannot be adjusted to achieve an alternative
end-effector pose. Therefore, this work focuses on whole-body
motion generation leveraging all degrees of freedom (DoFs) for
efficient navigation and manipulation in obstacle-rich dynamic
environments.

Geometric motion planning offers a fast alternative to
optimization-based motion planners, ensuring stable, conver-
gent behavior for kinematically redundant robots via differential
geometry [15]. Geometries shape a manifold of the configuration
space in such a way that collision avoidance, limit avoidance and
goal-reaching are achieved in a smooth manner. The recently in-
troduced Riemannian Motion Policies are suitable for designing
human-like motions [16], and are extended to Geometric Fabrics
(GF) in [17]. These fabrics provide convergence to local minima
using straightforward construction rules [7], [18] and can adapt
to dynamic environments [19], while having a high planning
frequency compared to optimization-based methods [19]. GF
have been further expanded for multi-agent systems, introducing
P-RF, resolving deadlocks based on prioritization by leveraging
RF to forward simulate the multi-robot system. In RF, actions
are computed via GF at every predicted step along the horizon
given the current state and predicted goal of each agent [8].
More global solutions are provided in [20] by using fabric
rollouts as a set of candidates for a sampling-based optimizer
along with a learned warm-start. In contrast, our approach
leverages fabric rollouts to warm-start the QP solver, enabling
online trajectory planning for mobile manipulators in dynamic
environments while considering a longer time horizon and being
less computationally intensive.

B. Sequential Motion Planning

Sequential object-centric tasks, such as pick-and-place, are
explored in Task and Motion Planning (TAMP) [21], [22],
examining the intertwined relationship between long-horizon
sequences of discrete actions and continuous motion parameters.
However, the computational time required makes these meth-
ods often unsuitable for real-time adaptive replanning. For the
reactive execution of TAMP, [23] formulates the problem using
relative Cartesian coordinates alongside operational space con-
trollers; however, it cannot handle situations where the original
target pose is unreachable. SEC-MPC decomposes the control
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of the sequential plan into three sub-problems using MPC [24],
while we address the problem by leveraging geometry control.
Even though the discussed TAMP frameworks exhibit enhanced
task variability, our method contributes to TAMP research by en-
abling online generation of long-horizon motions for sequential
pick-and-place tasks, where intermediate goals are reached.

C. Object-Centric Planning

Recent advances have shown that data-driven models are
capable of determining feasible object-centric poses, such as
grasp candidates, for several objects [25]. By processing sensory
inputs from RGB-D cameras, data-driven models provide grasp
candidates for the given objects, usually in the form of a grasp
axis [26], [27], [28]. However, most methodologies are focused
on determining the object-centric pose without considering
the full environment, thereby overlooking blocking obstacles
and other agents. This issue is especially common for mobile
manipulators operating in multi-agent dynamic environments.
The GOMP planner [29] exploits the grasp axis by creating
an additional DoF around it to compute pick-and-place poses
and trajectories that enable faster pick-and-place cycle time,
considering collision avoidance on the height of the end-effector.
To speed up the computation time, [6] trained a neural network
(NN) on data from the GOMP-based planner to warm-start the
optimization process. Our work shares similarities with [6], [29]
in exploiting the target pose axis and incorporating it into a QP,
but we achieve run-time performance incorporating whole-body
collision avoidance in dynamic multi-agent scenarios, without
relying on data-collection and training, by leveraging geometric
fabrics.

III. PRELIMINARIES

In this section, we provide an introduction to geometric fabrics
(Section III-B), a fundamental concept of our method, starting
with the required notations (Section III-A).

A. Notation

A robot has a configuration q in the configuration space
C with time-derivatives q̇ and q̈. In the context of geometric
control, tasks can be defined in different spaces, e.g. defining a
task variable x as the difference between the goal position and
the current end-effector position. A task variable xj ∈ Xj is
defined with dimension mj ≤ n, ∀j ∈ [M ] where M indicates
the number of task spaces and [M ] denotes the shorthanded
notation of the set {j ∈ Z

+ : j ≤M}. For task variables indi-
cating a pose, the notation ζ is used, consisting of a position
p = [x, y, z]� and orientation expressed as the rotation matrix
R, forming the transformation matrix T . A twice-differential
map φj : C → Xj connects the configurations q of the robot
with the task variablesxj . The mapφj relating the configuration
space to the end-effector pose ζee is denoted as φee provided by
the forward kinematics (FK).

B. Geometric Fabrics

Geometric fabrics (GF) define the desired behavior of a
system using second-order differential equations of the form
ẍ = h(x, ẋ) [7], [17]. These artificial dynamical systems,
notated by their corresponding equations of motion
M(x, ẋ)ẍ+ ξ(x, ẋ) = 0, represent a task such as avoiding
a collision between the end-effector of the robot and an
obstacle. To ensure that trajectories generated by the dynamical
systems are converging when forced, the system ẍ = h(x, ẋ)
is energized using a Finsler energy Le with the corresponding
equations of motion MLe

ẍ+ ξLe
= 0,

ẍ = energizeLe
[h(x, ẋ)] = h− ẋ� (MLe

h+ ξLe
)

ẋ�MLe
ẋ

ẋ (1)

The resulting system ẍ = h̃(x, ẋ) = M̃
−1
ξ̃ then forms a geo-

metric fabric [17]. To ensure path consistency, e.g. energization
only changes the speed along the path but not the path itself,
the function h(x, ẋ) is designed to be homogeneous of order 2,
h(x, γẋ) = γ2h(x, ẋ), ∀γ ≥ 0.

To combine all behaviors, the dynamical systems defined
in their respective task space X are pulled to the configura-
tion space C and summed. The pullback operation maps the
energy-conserving fabric to the configuration space using a
twice-differential map φ [7],

pullφ
(
M̃ , ξ̃

)
X
=

(
JTφM̃Jφ,J

T
φ (ξ̃ + J̇φq̇)

)
C
. (2)

The resulting energy-conserving fabric can be forced by a nav-
igation policy f to the minimum of a potential function ψ(q)
when damped,

q̈ = h̃(q, q̇) + f(q, q̇). (3)

Equation (3) is therefore a combination of all avoidance be-
haviors, e.g. collision avoidance and limit avoidance, defined
as energy-conserving fabrics h̃(q, q̇) and a policy forcing the
system to a desired goal, f(q, q̇).

IV. GLOBALLY-GUIDED GEOMETRIC FABRICS (G3F)

Geometric fabrics, being a local motion planning method, re-
quire global guidance to avoid local minima like deadlocks. Our
proposed method, G3F, provides this guidance via a real-time
adaptive reference path. Section IV-A introduces the nonlinear
program (NLP) problem formulation, followed by G3F achiev-
ing real-time guidance by simplifying the NLP into a QP via RF,
allowing for online target pose adaptations.

A. Problem Formulation

Consider a mobile manipulator that is required to complete
its task, e.g. grasp a cup, while remaining collision-free in
a dynamic environment. This can be expressed as an NLP
formulation that minimizes the control objective f(τ ) along
the trajectory of length T , represented by a set of the robot’s
joint-space waypoints τ = [q0, q1, . . ., qT ]

�, while satisfying
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constraints,

min
τ

f(τ ), (4a)

s.t. φee(qk) ∈ P, (4b)

g(qt) ≤ 0, ∀t ∈ [0, T ]. (4c)

The constraints encapsulate that the robot’s end-effector pose,
obtained via forward kinematics φee(qk), at waypoint qk, lies
within the interval of feasible end-effector target posesP , where
k = T for constraining the final waypoint in (4b). The inequality
constraints in (4c) ensure joint limits and collision avoidance
with obstacles and other agents along the discrete path τ are
considered.

Solving the full NLP in (4) over the entire trajectory horizon
is computationally costly, especially for high DoF-systems. We
propose G3F for online trajectory generation by approximating
the NLP as an informed QP by using RF.

B. Optimization-Based Planner

Reformulating an NLP into a QP, requires careful consider-
ations to preserve the global nature of the solution. Therefore,
we propose to leverage GF as a fast collision-free local motion
planner, as well as its extension RF to provide an initial guess
for the QP and joint-space waypoints for constraint linearization
(Fig. 1). By using GF as the local motion planner, the QP
optimizes a sparser set of waypoints and reduce the number of
constraints to the core collision links of the robot. Our approach
will jointly optimize the trajectory towards the target pose and
the target pose itself, allowing exploration of alternative poses
in complex environments. The resulting QP serves as an effec-
tive, sparse planner along the full task horizon that guides the
low-level motion planner GF. The QP is solved sequentially at
every iteration h ∈ [1, . . . , H] with H the number of iterations,
to refine the initial guess and linearized constraints,

min
τh

fQP(τh), (5a)

s.t. lbh ≤ Ahqt ≤ ubh, ∀qt ∈ τh, (5b)

where the constraints lbh, Ah, and ubh are linearized using the
fixed points determined by the solution at the previous iteration
τh−1, where τ 0 is given by RF.

1) Objective Function: We formulate the objective function
of the QP in convex quadratic form penalizing the sum of squared
accelerations along the trajectory, as well as minimizing the
difference between decision variables τ and the initial guess
τ 0,

fQP(τ ) = τ�Qτ + (τ − τ 0)
�(τ − τ 0), (6)

where Q is a positive semi-definite matrix expressed as Q =
A�A, with A being a finite-difference matrix used to compute
joint accelerations q̈t = Atqt from joint positions qt ∈ τ . The
vector τ 0 represents the initial guess provided by RF. The
quadratic penalty (τ − τ 0)

�(τ − τ 0) minimizes the deviation
from the initial guess τ 0. By favoring a solution close to the
initial guess, this approach enhances consistency and prevents
the QP solver from generating large variations in consecutive
iterations. The objective function enforces smooth motions to

achieve feasible trajectories, with the joint limits for the first
waypoint q0 set to the current state of the robot.

2) Target-Pose Adaptation: Since the target pose might be
unreachable due to the manipulation task conflicting with colli-
sion avoidance, we explore alterative target poses by modeling
the task’s degrees of freedom (DOF) into the QP explicitly. We
assume that a high-level subsystem produces a precomputed
target pose candidate with respect to the world frameW , denoted
as WT g. To incorporate a multitude of acceptable target poses
into (5b), the target pose constraint in (4b) is formulated as
separate inequality constraints for position and orientation. The
end-effector position constraint ensures that the end-effector
position remains within a bounding sphere, ‖pee − pg‖2 ≤ αg,
where αg represents the task-dependent positional tolerance.

The orientation constraint is expressed as a set of rotational
constraints on only two axes of the end-effector frame, since
constraining two axes restricts the third axis as well. For illus-
tration, we explore the scenario where the z-axis of the desired
end-effector frame should align with the z-axis of the target
frame, while rotations around the x-axis are allowed. The first
rotational constraint enforces the difference in rotational angle
θz along the z-axis, between the end-effector frame T ee and
target frame WT g, to be zero with some small tolerance αz ,

cos(αz) ≤ (ν̄z
ee)

� ν̄z
g, (7)

where ν̄z
ee and ν̄z

g are the normalized rotational z-axis column-
vectors contained in the transformation matrices T ee and WT g

respectively.
The second rotational constraint defines the additional DoF as

a relative rotation θ around the x-axis with respect to the original
target pose, constrained within a specified interval ±θmax,

cos(θmax) ≤ (ν̄x
ee)

� ν̄x
g, (8)

where ν̄x
ee and ν̄x

g are the normalized rotational x-axis column-
vectors extracted from T ee and WT g respectively. These con-
straints are linear as the forward kinematics relating the waypoint
qi ∈ τ towards T ee, are linearized using the previous solution
of τ . The combination of (7) and (8) allows for alternative
end-effector poses on selected waypoints of τ , e.g. on the final
waypoint at t = T .

3) Collision Avoidance: By integrating collision avoidance
in the long-horizon planner, we can ensure that the path is
collision-free if a solution is found and we can reactively adapt
to the movements of the other agents. As the fast local mo-
tion planner GF includes whole-body collision avoidance, the
collision-avoidance constraints in the QP can consider a sparser
set of links on the ego-agent. Collision avoidance is represented
as inequality constraints, with these links and obstacles approx-
imated as a set of spheres, expressed as follows for one collision
pair:

||plink − pobst||2 ≥ rlink + robst, (9)

where plink and pobst are the center position of spheres of the
robot’s links and obstacles respectively and rlink and robst their
radii [30]. To compensate for the reduced number of collision
constraints, we use larger radii than for GF.
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C. Rollout Fabrics

We employ RF to initialize the aforementioned QP, as RF pro-
vides collision-free initial guesses for the QP and configuration-
space paths along which the constraints are linearized. RF
provide forward predictions of the robot’s movements where
actions at each prediction step are computed efficiently via GF,
similar to [8]. Unlike [8], we predict the ego-robot’s state-action
pairs over a horizon K, assuming a quasi-static environment
at each time-step t, thereby allowing for extended prediction
horizons. To avoid forward simulating complex dynamics, a
second-order integrator is used as the joint-space prediction
model, with a low-pass filter applied to the velocity, qk+1 =
qk +Δt(αvq̇k + (1− αv)q̇k), ∀k ∈ K, with time-stepΔt and
constant αv. After each timestep, we compute the Euclidean
norm between the predicted end-effector position, obtained via
φee(qk+1) and the target position to stop the rollout early if the
distance to the target pose falls within the tolerance.

As mentioned in Section III-B, a fabric consists of a com-
bination of several tasks, shaped via second-order differential
equations. In the following, detailed design guidelines are pro-
vided for each component within GF and RF.

1) Repulsion Dynamics: For collision avoidance and joint
limit avoidance, the dynamical system repels the robot’s body
from the undesired region. A possible dynamical system for a
repelling motion is of the form, ẍ = h(x, ẋ) = −α0

xz ẋ
2, where

ẋ2 and (α0

xz ) are element-wise operations, and the barrier (α0

xz )
with order z ∈ [1, 2, . . .] enforces repulsion with task variable
x expressing the distance between an undesired region and a
position along the robot’s body. The system ẍ = h(x, ẋ) is
homogeneous of order 2 in ẋ.

2) Energization: A geometric fabric h̃ conserves a Finsler
energy, and therefore all repulsive terms are energized as in (1). A
limit or collision Finsler that adheres to these rules isLe = α0

xz ẋ
2

where z ∈ [2, 4, . . .]. The combined energy-conservative fabrics
h̃(q, q̇) are formed by pulling all task-specific fabrics using the
pullback operation in (2) and summing them in configuration
space C.

3) Attractor Dynamics: To ensure convergence towards a
goal, the energy-conservative fabric is forced towards the mini-
mum of a potential function [7], ψ(x), e.g.

ψ(x) = α0

(
‖x‖+ 1

α1
ln
(
1 + e−2α1‖x‖

))
(10)

where a straightforward choice for the task variable x is the
difference between the end-effector pose of the robot ζee and the
goal pose ζg. The navigation policy f is formed by the deriva-
tive of the potential function and additional damping B(q, q̇)q̇

with B > 0, e.g. f = M̃
−1
(−∂ψ −B(q, q̇)q̇), which ensures

convergence to the local minimum of ψ under the assumption

that M̃
−1

is a positive definite matrix [17].
4) Speed-Control Via Execution Energy Regulation: The

speed profile of the energized geometry is determined by the
Finsler energy Le. Often, it is desired to regulate a so-called
execution energy Lex. The forced fabric in (3) can therefore be
altered by an additional term αex,

q̈ = h̃+ f + αex where αex = ηα0
ex + (1− η)αψex (11)

Algorithm 1: Globally-Guided Geometric Fabrics.

where α0
ex and αψex are the energization coefficients to maintain a

constant execution energy Lex under a zero potential ψ = 0 and
when forced ψ > 0 respectively, and η is a constant between 0
and 1. For more details on energy regulation, we refer to [7],
[18].

D. G3F in Multi-Agent Scenarios

In Sections IV-B and IV-C, we describe G3F, a framework
for real-time motion generation including target-pose optimiza-
tion, solving a QP sequentially informed by RF. Algorithm 1
summarizes G3F for a multi-agent scenario, where every robot
is controlled in a decentralized manner, observing the other
agents as a set of collision sphere poses, WT obsts, and radii,
where the poses are updated at every time step. RF provides a
collision-free initial guess for the optimization-based planner,
τRF, coll. In some cases, achieving a collision-free trajectory via
RF can be challenging due to the local nature of fabrics, and RF
might be biased towards a locally optimal plan. Therefore, the
optimization-based planner is initialized with two types of joint-
space trajectories for τ 0 in (5): 1) Trajectories by RF respecting
collision avoidance, τRF, coll, 2) trajectories generated by RF
without collision avoidance, while still respecting kinematics
and joint limits, τRF, free. Using GF for initialization improves
task success and the QP solver performance over linear inter-
polation or the zero vector. We solve the QP sequentially with
these two different initializations for τ 0 ∈ {τRF, coll, τRF, free},
resulting in two different sequences, τ coll and τ free (Line 4-7).
The sequence with the lowest objective cost, provided by (6), is
mapped to its corresponding sequence of end-effector poses Ξee

via the forward kinematics φee (Line 11, 12). Via a reference
tracker (Line 13), a local goal in the form of an end-effector
pose, ζee ∈ Ξee, is provided to the low-level motion planner, i.e.
GF (Line 14). When the QP cannot find a feasible solution, the
final pose from the last feasible solution of the QP is supplied
to GF.
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TABLE I
STATISTICS FOR FOUR SIMULATED MULTI-AGENT SCENARIOS COMPARING THE PROPOSED G3F AGAINST GF, P-RF, AND MPC

V. EXPERIMENTS

A. Experimental Setup

The presented framework is evaluated in both simulation and
on real hardware. In each setting, we use a 9-DoF mobile manip-
ulator consisting of a Clearpath Dingo holonomic mobile base
and a Kinova Gen3 lite 6-DoF manipulator. The optimization-
based planner is solved using the QP solver OSQP [31] in
conjunction with the symbolic framework CasADi [32] without
parallelization or use of a GPU. Due to the complexity of the
simulated environments, the long-horizon planner, including RF
and the optimization-based planner, were configured to operate
at a frequency of 2 Hz and GF at 100 Hz. In real-world ex-
periments, the long-horizon planner operates at 4 Hz and GF
at 25 Hz, primarily constrained by communication limitations
with the robotic hardware. The computation time of RF is
influenced by the time-step Δt = 0.05s, the maximum horizon
lengthK = 500, goal weighting of RF and a distance to a target
pose. The simulation experiments run on a laptop with an Intel
Core i7 and 16 GB RAM, whereas in real-world experiments,
all is executed on the onboard NVIDIA AGX Orin of the robots.
To detect the poses of static obstacles, humans, robots and target
objects, we employ the Vicon motion capture system. More
details and videos can be found on our website.

B. Simulation Experiments

In the simulation experiments, we compare our method G3F
across four realistic scenarios against three state-of-the-art meth-
ods, namely vanilla GF [17], P-RF [8], and a MPC for whole-
body control of a mobile manipulator [2] which we extend for
a decentralized multi-agent scenario with a horizon of 2s and
ΔtMPC = 0.1s. Each scenario is simulated in 20 randomized
environments, varying in terms of the robots’ starting config-
urations and the poses of obstacles and objects, Fig. 2. Poses
of the holonomic bases are uniformly sampled within scenario-
specific ranges for (x, y, θ), with the Euclidean distance of (x, y)
from the tables varying between 6.4m and 3m, and the rotation
θ ∈ [−2.0, 2.0]rad. Object positions are sampled within annular
regions around the centers of the tables. In all scenarios, we
consider the task successfully accomplished if all agents reached

Fig. 2. Example environments of the simulated scenarios.

their target position within a task-dependent tolerance, given by
a Euclidean distance of 0.07m. For comparison, we evaluate the
success rate, time-to-success, collision rate during execution,
and computation time of the low-level planner and high-level
planner if applicable. The ego robot is approximated by two
or five collision spheres, for the long-horizon planner and GF
respectively, while other robots are represented by two spheres
encapsulating the mobile base and the upper wrist link of the
arm. Each table is modeled by two collision spheres. Collision
violations are detected by checking contacts between all rigid
bodies in the Pybullet physics engine.

The results in Table I show that the proposed G3F outperforms
GF, P-RF and MPC in terms of success rate across all scenarios.
The computational effort of the low-level planner within G3F is
approximately 1 ms, achieving high reactivity, while the high-
level planner is online adaptive in real-time as well. Although not
optimized over, each robot achieves its task within reasonable
time, while remaining collision-free in all scenarios compared
to GF, P-RF and MPC.

In Scenario 1, the mobile manipulators are tasked to pick a
cup placed on two different tables, forcing the robots to cross
paths while avoiding each other, as illustrated in Fig. 2(a). G3F
achieves a 100% success rate, improving significantly over GF
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Fig. 3. Selected time frames for resolving a crossover in a multi-robot scenario using G3F. The optimized reference waypoints for the end-effectors, Ξi
ee, for the

robots i ∈ [1, 2] are shown as blue and orange lines respectively.

(70%) and P-RF (70%) and MPC (45%), showcasing the ability
of G3F to solve long-horizon planning problems in dynamic
multi-agent environments.

In Scenario 2, two mobile manipulators navigate closely to
grasp assigned cups on the same table. As illustrated in Fig. 2(b),
our method shows an 85% success rate, compared to the 35%,
35%, and 65% success rates achieved by GF, P-RF, and MPC,
respectively. The benefit of optimizing the grasp pose (Fig. 4(a))
over a static grasp pose (Fig. 4(c)) is observed as both agents
adapt their grasp pose given the current state of the other agent.
Most G3F failures arise when the high-level QP cannot find a
feasible solution due to local minima, which could be improved
in future work by diversifying RF.

In Scenario 3, an agent is blocking the path to the table without
adapting its pose to make room for the ego agent, shown in
Fig. 2(c). Note that P-RF is omitted in Table I, as it requires a
multi-agent setting to assign priorities. By considering the full
task horizon to the target pose and adaptability of the grasp
pose, our method achieved a 100% success rate, outperforming
the other methods. In particular, MPC suffers from a short
horizon, resulting in deadlock scenarios in local minima caused
by collision avoidance.

To demonstrate the scalability of our method to an increased
number of agents, we extended Scenario 1 to three decentralized
mobile manipulators in Scenario 4 (Fig. 2(d)). The increased
complexity leads to a performance drop for all methods. How-
ever, G3F still significantly outperformed the baseline methods
without introducing additional computational overhead com-
pared to Scenario 1. In contrast to geometric methods, MPC ex-
perienced a notable increase in computational time as the number
of agents increased. GF, MPC and P-RF suffer from collisions,
which could be mitigated by more conservative tuning, albeit
at the cost of success rate. Future work could enhance social
compliance by incorporating intention or goal estimation within
the QP-horizon for navigation in dense multi-environments.

C. Real-World Experiments

We evaluate our method in several real-world scenarios in-
cluding environments shared with humans, other mobile manip-
ulators and an illustrative comparison against GF.

1) Experiment 1. An Illustrative Comparison: In Fig. 4, the
advantage of globally-guided motion generation via G3F over
vanilla GF is observed. In Fig. 4(c), the proposed G3F explores
alternative grasp poses, thereby allowing both robots to reach
their target. In addition, G3F avoids local minima (Fig. 4(d)),
whereas GF halts at a local minimum caused by two spherically
modeled obstacles (Fig. 4(b)).

Fig. 4. Comparative examples of G3F versus GF and MPC illustrating
the benefit of grasp-pose adaptation (Fig. 4(d)) and globally-guided motions
(Fig. 4(e)- 4(f)).

Fig. 5. In (a) and (b), G3F is demonstrated in two environments shared with
a human moving the target object to another table. The blue trajectory shows
the optimized path computed in real-time for the last visible frame, based on the
current state of the environment.

2) Experiment 2. Multi-Agent Scenarios: In Figs. 3 and 5,
mobile manipulators are tasked to grasp an object in an en-
vironment shared with another mobile manipulator or human
respectively. In these decentralized multi-agent settings, we
observe that the robot finds a globally-guided solution via G3F,
by finding the solution to cross behind the other robot if crossing
in front is no longer suitable in Fig. 3. In the presence of a human
agent, G3F is able to react to the human changing the target pose
online by moving the object, while avoiding collisions with the
human, Fig. 5.

3) Experiment 3. Pick and Place: The proposed approach
is suitable for optimizing the path from start to goal for
a pick-and-place task, adapting the grasp and place pose
accordingly. Currently half of all waypoins are used for the
grasping stage and half for the placing stage. After grasping
the object, we optimized only the placing manoeuvre, following
the same approach as in previous experiments. We verified this
approach in three different environments Fig. 6, where the other
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Fig. 6. Pick-and-place scenarios where G3F explores alternative grasp and
place poses. Fig. 6(a) and (b) illustrate scenarios where the blue agent obstructs
the precomputed place and grasp pose respectively, while in Fig. 6(c) both robots
execute the proposed G3F.

robot is stationary in Fig. 6(a)-(b) or also controlled via G3F,
Fig. 6(c). The mobile manipulators successfully execute the
pick-and-place task, demonstrating the benefit of jointly op-
timizing the grasp and place pose based on the robot’s and
environment’s current state.

VI. CONCLUSION

This work presents a framework for reactive object-informed
whole-body motion generation, denoted as Globally-Guided
Geometric Fabrics (G3F), allowing for collision-free motions
in multi-agent settings, while considering the full task horizon
from start to goal.

By utilizing RF to warm-start and linearize the optimization
problem, we achieved real-time execution of the planner guiding
the low-level Geometric Fabrics. The framework’s performance
was demonstrated on 9-DoF mobile manipulators in a decentral-
ized manner, in a quantitative comparison against GF, P-RF and
MPC, as well as in qualitative real-world experiments. Future
work could reduce computation time through parallelization
and improve robustness via diverse forward predictions via RF.
Vision-based grasp prediction could provide static grasp poses
for a wider range of objects.
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