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A B S T R A C T

This study investigates the impact of walking and e-hailing on the scale economies of on-demand
mobility services. An analytical framework is developed to i) explicitly characterize the physical
interactions between passengers and vehicles in the matching and pickup processes, and ii)
derive the closed-form degree of scale economies (DSE) to quantify scale economies. The general
model is then specified for conventional street-hailing and e-hailing, with and without walking
before pickup and after dropoff. We show that, under a system-optimum fleet size, the market
always exhibits economies of scale regardless of the matching mechanism and the walking
behaviors, though the scale effect diminishes as passenger demand increases. Yet, street-hailing
and e-hailing show different scale economies in their matching process. While street-hailing
matching shows a constant DSE of two, e-hailing matching is more sensitive to demand and its
DSE diminishes to one when passenger competition emerges. Walking, on the other hand, has
mixed effects on the scale economies: while the reduced pickup and in-vehicle times bring a
positive scale effect, the extra walking time and possible concentration of vacant vehicles and
waiting passengers on streets negatively affect scale economies. All these analytical results are
validated through agent-based simulations on Manhattan with real-life demand patterns.

. Introduction

The competition between taxis and ride-hailing companies (e.g., Uber) has been a heated debate in both academia and industry
n recent years. After commencing their operations, ride-hailing services grew at an impressive pace, both in terms of passengers
nd drivers, which posed the question of whether traditional taxis would cease to exist (Cramer and Krueger, 2016; Nie, 2017).
owever, ten years later, both systems still co-exist in many cities, especially those with high demand densities. To well explain

his phenomenon, one needs a clear understanding of the physical process underlying both services and more importantly, their
conomic implications. This is also the key motivation of the present study.

One major difference between taxi and ride-hailing services is how they match their vehicles with passengers. For decades,
he taxi industry has been struggling with the so-called search friction, i.e., the spatial mismatch between vehicle supply and
assenger demand. Typically, the hailing process in conventional taxi services relies on either passengers and drivers making visual
ontact on the streets, known as street-hailing, or manual dispatch. On the other hand, ride-hailing companies use advanced mobile
ommunication technologies to match passengers and drivers online. Such a hailing process is referred to as e-hailing and has
een celebrated for significantly reducing search friction (Frechette et al., 2019; Buchholz, 2022). Another considerable difference
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between taxis and ride-hailing, yet often overlooked, is walking. Most ride-hailing trips are served on a door-to-door basis, where
passengers are picked up and dropped off at their very origins and destinations, respectively. For street-hailing taxis, this is however
not the case. Instead, passengers usually walk towards where they expect taxis to appear (e.g., major streets and points of interest).
While less implemented in practice, recent studies have shown that walking can also greatly benefit on-demand mobility as it
prevents vehicles from traversing local streets (Fielbaum et al., 2021; Fielbaum, 2022; Gurumurthy and Kockelman, 2022).

In this paper, we aim to establish the relationship between the above two fundamental features and the scale economies in
on-demand mobility, i.e., how the system output (e.g., trip throughput and service quality) evolves with the input (e.g., demand
level and fleet size). Although it is widely acknowledged that conventional taxi markets display strong scale economies, also known
as increasing returns to scale (e.g., Douglas, 1972; Arnott, 1996), there is a lack of convincing theory for e-hailing, and the role of
walking has not been previously analyzed. Meanwhile, empirical evidence has suggested a loss of scale economies in e-hailing when
demand and supply densities are both high (Zhang et al., 2019). These seemingly contradictory results motivate us to conduct
 comprehensive analysis of the scale economies in on-demand mobility services. Along with its theoretical contributions, our
esults are of great significance for practice. In general, the existence of scale economies indicates if monopoly or competition
hall be expected in markets at different demand levels. Furthermore, in-depth scrutiny of the scale effect of e-hailing and walking
rovides practical insights on whether and where they shall be encouraged to improve service quality and system efficiency (Jiao
nd Ramezani, 2024).

Formally, this paper sets out to theoretically quantify scale economies in on-demand mobility with e-hailing and walking. To
this end, we develop an analytical framework consisting of a physical matching model and an aggregated economic model. The
former explicitly characterizes the matching (i.e., how are users and vehicles assigned to each other) and pickup (i.e., what happens
after the matching and before the passenger boards the vehicle) processes in street-hailing and e-hailing, with and without walking.
Its key outputs are then integrated into the economic model to solve the system-optimum fleet size given the demand rate. With
mild approximations, we derive close-form solutions to the system-optimal fleet size and accordingly, the degree of scale economies
(DSE), a traditional quantitative measure of scale economies whose formal definition is provided later in the paper. This enables us
to rigorously analyze the scale effects of e-hailing and walking, and consequently, give insights into the design and operations of
ride-hailing services at various market scales. The derived analytical results are further demonstrated by simulations on a realistic
case study with more realistic operations constructed on the Manhattan network.

The main findings and practical insights of this paper are summarized as follows:

• The system-level DSE is always greater than one but decreases with demand, regardless of the matching mechanism and
walking. This theoretical result is validated through simulations. It implies that, without external interventions (e.g., control
on market entry), a monopoly is expected in low-density areas while competition could be observed in high-demand areas.

• DSE in street-hailing matching is constant and equal to two, insensitive to demand level. In contrast, DSE in e-hailing matching
equals 1.5 in low-demand areas, while it decreases with the demand level, approaching one in high-demand areas. The loss of
scale effect is largely due to the unmatched passengers competing for vehicles in the same region. Consequently, introducing
additional vehicles often saves more waiting time in street-hailing than e-hailing. This also explains why street-hailing is more
competitive in a high-density market.

• Walking does not change the fundamental properties of the DSE and has mixed impacts on its value. On the one hand, the
reduced pickup and in-vehicle times due to walking bring a positive scale effect. On the other hand, the extra walking time and
the concentration of vacant vehicles and waiting passengers on certain streets negatively affect scale economies. We derive a
necessary condition under which the overall impact of walking on DSE is negative, while our simulation results suggest that
the influence of walking on DSE tends to be negative in street-hailing and positive in e-hailing.

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section 3 describes the overall setting
and the service schemes studied in this paper. Section 4 describes in detail the matching mechanisms and derives the closed-form
expressions of matching outputs for each scheme. Section 5 presents the economic model and derives the DSE in each scheme
with e-hailing and/or walking. Section 6 details the simulations run over the Manhattan network and compares their results to the
theoretical findings. Section 7 summarizes the practical implications derived from this study, and finally, Section 8 concludes and
proposes directions for future research.

2. Related work

In this section, we review two streams of literature. The first part summarizes different approaches to modeling the matching
rocess in on-demand mobility services, and the second reviews existing studies on the scale economies in shared transport services,
ncluding on-demand mobility.

2.1. Matching in on-demand mobility

The matching process in on-demand mobility services refers to the time interval from passengers’ arrival in the system to their
ickups. A matching model then maps from the matching input, which is dictated by passenger demand and vehicle supply, to the
atching output, which is often expressed by metrics like passenger waiting time, vehicle searching time, pickup rate, etc. The

implest model assumes matching is frictionless (e.g., Lagos, 2000; Bimpikis et al., 2019), that is, the number of matched trips
(or pickups) equals the minimum between the number of waiting passengers and the number of vacant vehicles. While this model
2 
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produces reasonable estimates of the matching outcomes, particularly in the extremely over- and under-supplied system, it fails to
capture the characteristics of different matching mechanisms (e.g., street-hailing vs. e-hailing). A more widely used matching model
in the transportation literature is the Cobb–Douglas function (e.g., Yang et al., 2010; Yang and Yang, 2011; Zha et al., 2016), which
draws an analogy between matching and production. Accordingly, the matching mechanism does not change the model structure but
nly affects its parameters. Due to the lack of a physical model, these parameters are often set based on assumptions (e.g., He and

Shen, 2015; Wang et al., 2016). On the other hand, the matching model is often built on queuing theory in the literature of operations
esearch. For instance, Banerjee et al. (2015) models the single-region ride-hailing system as an 𝑀∕𝑀∕1 queue, where the vacant

vehicles form the queue and the service rate is given by the passenger arrival rate. Other studies consider waiting passengers to
form an 𝑀∕𝑀∕𝑘 queue, where 𝑘 denotes the number of vehicles (Taylor, 2018; Bai et al., 2019; Feng et al., 2021). This modeling
framework is further extended in Besbes et al. (2022) to have the service rate — the inverse of total passenger travel time that
ncludes both waiting time and in-vehicle time — dependent on the demand-supply relationship in the system.

Although Cobb–Douglas and queuing-based models capture the matching friction in on-demand mobility, they have ignored
he physical interactions between passengers and vehicles. In contrast, another array of research builds the matching model from
etailed cruising and searching behaviors of vehicles and passengers on streets. Douglas (1972) considered a street-hailing taxi

market where vacant vehicles are uniformly distributed on roads and perform random cruising. Accordingly, the passenger waiting
time is derived to be inversely proportional to the line density of vacant vehicles. With a different setting of radio-dispatch taxi
service, Arnott (1996) showed the passenger waiting time is inversely proportional to the square root of the spatial density of
vacant vehicles. The same model is further extended to model the matching process in e-hailing with more operational details such
as matching radius and matching interval (Zha et al., 2016; Xu et al., 2017; Yang et al., 2020). However, one critical factor that
distinguishes e-hailing from radio-dispatch taxis — the competition among waiting passengers — has been largely omitted in the
literature. While radio-dispatch services are often operated in low-density regions, e-hailing is more often found in high-density
urban areas. Consequently, e-hailing passengers are likely to compete for the same pool of vehicles against each other due to the
sufficiently large matching radius. The negative impact of passenger competition was first recognized in Zhang et al. (2019) and
ater integrated into the matching model proposed in Yang et al. (2020). Yet, neither of them differentiated the virtual matching

and physical pickup processes. Hence, the influence of passenger competition on each subprocess is still unclear.
Recently, Li et al. (2024b) proposed an aggregate matching and pickup model for mobility-on-demand services. Similar to this

study, they separate the matching and pickup processes and derive the expected matching and pickup times under the assumption
of uniformly distributed vacant vehicles and waiting passengers. Li et al. (2024b) also discussed returns to scale in the matching
rocess and showed the model reduces to several previous studies (e.g., Yang and Yang, 2011; Castillo et al., 2017) at corner cases

(e.g., sufficiently small or large matching radius). Differently, this paper focuses on the scale economies at the market level and
aims to derive close-form quantitative measures under general market conditions and matching mechanisms.

2.2. Scale economies in shared transport

In the literature on transportation economics, it is widely accepted that public transit (e.g., bus) enjoys economies of scale. A
well-known example is the Mohring effect : an increase in demand would induce a higher transit frequency, which, in turn, reduces
the passenger waiting time and improves the service quality (Mohring, 1972). Scale effects have also been demonstrated in vehicle
sizing (Jansson, 1980) and transit network design (Basso and Jara-Díaz, 2006; Fielbaum et al., 2020). Another common finding in
transit systems is that their scale economies tend to diminish as demand continues to increase.

By an informal definition, a service system is said to exhibit economies of scale if the average cost decreases with the service
hroughput. Douglas (1972) showed such property also holds in a taxi market when the service quality, dictated by the vacant
ehicle density, is fixed. Besides taking the entire market as a whole, researchers also believe the matching process in on-demand
obility displays economies of scale, or equivalently, increasing returns to scale (e.g., Arnott, 1996; Yang and Yang, 2011). Empirical

evidence, however, only supports this hypothesis to be true in conventional taxi services, whereas in e-hailing services, it is found
the matching process is prone to constant returns to scale (Schroeter, 1983; Frechette et al., 2019; Zhang et al., 2019). Nevertheless,
it has been shown that ride-pooling has a great potential for enhancing the scale economies in e-hailing (Kaddoura and Schlenther,
2021; Fielbaum et al., 2023; Liu et al., 2023). Walking, however, has not been much touched in the literature. Although it has been
implemented in practice to improve the efficiency of matching and pickup (Yan et al., 2020; Gurumurthy and Kockelman, 2022;
Fielbaum et al., 2023), its impact on the system’s scale economies is still not well understood.

3. Model setup and service schemes

In this study, we consider a grid network with two types of streets, as shown in Fig. 1. The major streets form the skeleton
of the network. Between every two major streets, there are 𝐿 local streets with equal spacing 𝑠. Accordingly, the intersections are
classified into three types: (i) Type-1: between major streets; (ii) Type-2: between local streets; and (iii) Type-3: between local and
major streets.

Based on the matching mechanism and the existence of walking, we define four service schemes: (i) street-hailing without
alking (𝐷 𝑆), (ii) street-hailing with walking (𝑊 𝑆), (iii) e-hailing without walking (𝐷 𝐸), and (iv) e-hailing with walking (𝑊 𝐸).1

1 The letter 𝐷 in 𝐷 𝑆 and 𝐷 𝐸 stands for ‘‘door-to-door’’, while 𝑊 denotes ‘‘walking’’.
3 
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Fig. 1. Illustration of studies grid network and trips. 𝑂𝑖 (𝐷𝑖) is the trip origin (destination) and 𝑂̃𝑖 (𝐷̃𝑖) is the pickup (dropoff) location in the schemes with
walking.

In all schemes, origins and destinations are all situated at Type-2 intersections (i.e., passengers travel between local blocks). When
walking is considered, passengers are picked up and dropped off on major streets that are closest to their origins and destinations,
respectively, thus pickups and dropoffs happen at Type-3 intersections. It is worth noting that although 𝑊 𝑆 (i.e., taxis pick up and
drop off passengers at major streets) and 𝐷 𝐸 (i.e., e-hailing vehicles serve door-to-door trips) are more commonly observed in real
life, all four combinations are studied in this paper to identify the specific effects of e-hailing and walking.

Throughout this paper, we use one road segment of length 𝑠, referred to as an arc, as the geographic unit (see Fig. 1). Hence, an
arc corresponds to one block on local streets and one block between two major streets measures 𝐿 + 1 arcs. Hereafter, all density,
length, and area variables are measured in arcs. Let 𝑣 be the average travel speed on major streets, then vehicles take 𝛿 = 𝑠∕𝑣
to traverse an arc. We introduce two factors 𝛼𝑙 , 𝛼𝑎 > 1 to denote the ratios of 𝑣 to local street travel speed and walking speed,
respectively. Hence, the time for vehicles to traverse an arc is 𝛼𝑙𝛿 and for passengers, it takes 𝛼𝑎𝛿 to walk over an arc.

To facilitate the analysis, we introduce the following assumptions, which are also used in previous studies to obtain insights at
the macroscopic level (e.g., Yang and Yang, 2011; Zhang et al., 2019), which is also the main objective of this study.

Assumption 1 (Stationary Market). The market has reached a steady state where passenger demand and vehicle supply are both
uniformly distributed in space. Accordingly, the market conditions can be described by the average vacant vehicle density 𝑉 > 0
(veh/arc), the average unmatched passenger density 𝑊 ≥ 0 (pax/arc), and the demand rate 𝑄 (pax/hr/arc), i.e., the passenger
arrival rate per unit area.

Assumption 2 (Passenger Behaviors). The trip origins and destinations are uniformly distributed over Type-2 intersections. Passengers
are patient, i.e., they will remain waiting until picked up. When walking is allowed, passengers walk to the closest major street,
breaking ties randomly.

Assumption 3 (Vehicle Behaviors). When being vacant, vehicles randomly cruise in the network. In 𝐷 𝑆 (𝑊 𝑆), vehicles only cruise
on local (major) streets to maximize the probability of finding a passenger, whereas in e-hailing (𝐷 𝐸 and 𝑊 𝐸), vehicles cruise on
both types of streets.

While the above assumptions are introduced to simplify the analytical model, they are relaxed in the simulations (Section 6) to
capture more realistic demand and supply patterns.

4. Physical matching model

In this section, we present a general matching model and use 𝑘 ∈ {𝐷 𝑆 , 𝑊 𝑆 , 𝐷 𝐸 , 𝑊 𝐸} to denote the service scheme. Our main
objective is to derive the closed-form estimates of the matching output, i.e., the passenger waiting time that consists of three parts:
4 
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Fig. 2. Matching areas in street-hailing and e-hailing with the same matching radius 𝑅𝑘 = 2.

(i) matching time 𝑤𝑚
𝑘 , from the passengers’ emergence to their engagement with a pickup vehicle, (ii) pickup time 𝑤𝑝

𝑘, from the
engagement to the pickup, and (iii) walking time 𝑤𝑎

𝑘 when applicable.

4.1. Components of passengers waiting time

4.1.1. Matching time
The matching time refers to the time elapsed from when a passenger starts searching for a vehicle until when it is assigned, either

because of visual contact in street-hailing (𝐷 𝑆 and 𝑊 𝑆) or via the centralized dispatching in e-hailing (𝐷 𝐸 and 𝑊 𝐸).
To begin with, we define the matching radius 𝑅𝑘 in units of arc as the maximum distance from which a passenger can be matched

with a vacant vehicle. In practice, the matching radius in street-hailing is determined by physical constraints (e.g., how far can
users and drivers make visual contact), whereas that in e-hailing is normally bounded by the maximum acceptable pickup time.
Accordingly, the matching area 𝐴𝑘, also in units of arc, defines the area within which vacant vehicles can be hailed by the passenger.
Due to the underlying matching mechanism, the same matching radius yields different matching areas in street-hailing and e-hailing,
as illustrated in Fig. 2. Specifically, we have 𝐴𝑘 = 4𝑅𝑘, 𝑘 ∈ {𝐷 𝑆 , 𝑊 𝑆} and 𝐴𝑘 = 4𝑅2

𝑘, 𝑘 ∈ {𝐷 𝐸 , 𝑊 𝐸}. The detailed derivation is
provided in Appendix B.1.

Note that when vehicle supply is excessive, passengers can be guaranteed to be matched with vehicles within the matching area
𝐴𝑘. However, when demand is relatively high, a vehicle within the matching area may be dispatched to passengers because the
vehicle is closer to them. In this case, unmatched passengers in close proximity are essentially competing with others for vehicles.
To capture such a passenger competition, we further introduce the notion of effective matching area, denoted by 𝐴, to represent the area
within which any vacant vehicle is for sure matched to the passenger.2 Let 𝛾𝑘 = max(𝐴𝑘𝑊 , 1) be the number of waiting passengers
in the matching area, including the studied passenger, then the effective matching area is 𝐴𝑘 = 𝐴𝑘∕𝛾𝑘, which implies the matching
area is evenly distributed to the unmatched passengers. Similarly, we define the effective vacant vehicle density as 𝑉 = 𝜃𝑘𝑉 , where
𝜃𝑘 is a density correction factor that reflects the accumulation of vehicles on a certain type of street. As per Assumption 3, vacant
vehicles accumulate on different types of streets in 𝐷 𝑆 and 𝑊 𝑆, which yields different values of 𝜃𝑘. On the other hand, vacant
vehicles are uniformly distributed in 𝐷 𝐸 and 𝑊 𝐸 and thus 𝜃𝑘 is simply 1 in the two schemes. The detailed derivation of 𝜃𝑘 is
provided in Appendix B.2.

Let 𝛿𝑘 denote the matching interval of scheme 𝑘, which dictates how frequently matching is performed. In practice, the matching
interval in street-hailing and e-hailing with instant matching can be considered approaching zero because passengers are constantly
searching for vehicles. However, a small matching interval would largely complicate the model. Thus, the following assumption is
introduced:

Assumption 4 (Minimum Matching Interval). The matching interval is always equal to or larger than the travel time of a single arc,
i.e., 𝛿𝑘 ≥ 𝛿.

We remark that although this assumption might seem strong, especially in the case of street-hailing, its impact is mild and limited
to a few seconds as detailed in Appendix C. With Assumption 4 and the others introduced in Section 3, we can derive the matching
time in a general form, as detailed in the following proposition.

Proposition 1 (Matching Time). Under Assumptions 1 and 4, the expected matching time can be approximated as

𝑤𝑚
𝑘≈

(

1
𝐴𝑘𝑉𝑘

+ 1
2

)

𝛿𝑘 =
(

𝛾𝑘
𝜃𝑘𝐴𝑘𝑉

+ 1
2

)

𝛿𝑘. (1)

Proof. See Appendix E.1. □

2 A similar definition of ‘‘dominant area’’ is introduced in Yang et al. (2020).
5 
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4.1.2. Pickup time
Following the literature (e.g., Besbes et al., 2022), we assume the passenger is matched with the closest vacant vehicle in the

effective matching area and derive the pickup time as the time interval from the passenger being matched to its pickup.
The derivation of pickup time in street-hailing is straightforward thanks to its simple matching mechanism (i.e., passengers can

only see vehicles on streets crossing the intersection). For e-hailing, it is considerably more complicated because the probability
varies among possible pickup distances and a fraction of the pickup route is taken on local streets. Further, passenger competition
shall be considered in both street-hailing and e-hailing when the waiting passenger density is sufficiently large (𝛾𝑘 > 1), though
its impact is more significant in e-hailing due to the much larger matching area. With mild approximations, we obtain a closed-
form pickup time summarized in the following proposition, which generalizes the extreme cases of the demand-supply relationship
considered in Besbes et al. (2022) and Li et al. (2024b).

Proposition 2 (Pickup Time). Under Assumptions 1–3, the expected pickup time can be approximated as

𝑤𝑝
𝑘 = 𝜌𝑘𝑑

𝑝
𝑘𝛿 , (2)

For street-hailing schemes 𝑘 ∈ {𝐷 𝑆 , 𝑊 𝑆}, the approximation is also exact and

𝑑𝑝𝑘 =
𝑅𝑘
2𝛾𝑘

, 𝜌𝑘 =

{

𝛼𝑙 , 𝑘 = 𝐷 𝑆 ,
1, 𝑘 = 𝑊 𝑆 . (3)

For e-hailing schemes 𝑘 ∈ {𝐷 𝐸 , 𝑊 𝐸},

𝑑𝑝𝑘≈
𝑐1
√

𝑉

(

1 + 𝑊
𝑐2𝑉

)−1
, 𝜌𝑘 =

⎧

⎪

⎨

⎪

⎩

1 + (𝛼𝑙 − 1)
(

1 + 1
𝜃𝐷 𝑆

)

𝐷𝑎

𝑅𝑘
, 𝑘 = 𝐷 𝐸 ,

1 + (𝛼𝑙 − 1) 𝐷𝑎

𝜃𝐷 𝑆𝑅𝑘
, 𝑘 = 𝑊 𝐸 ,

(4)

where 𝑐1 =
√

𝜋∕4, 𝑐2 = 𝑒
√

𝜋 are constant parameters, and 𝐷𝑎 = (𝐿+1)(𝐿+2)
6𝐿 is the average walking distance.

Proof. See Appendix E.2. □

Several corner cases can be checked to validate Eq. (2) for e-hailing: (i) when there is sufficient vehicle supply (𝑉 → ∞), 𝑑𝑝𝑘
educes to zero and so does 𝑤𝑝

𝑘; (ii) when there is no passenger competition (𝑊 → 0), 𝑑𝑝𝑘 ∝ 1∕
√

𝑉 , in line with the literature (e.g.,
Arnott, 1996); (iii) when there is severe passenger competition (𝑊 → ∞), 𝑑𝑝𝑘 again reduces to zero, also reflecting the reality (each
passenger has an extremely small dominant area and thus, if matched, the vehicle must be close to the passenger). One exception
is the case of scarce vehicle supply (𝑉 → 0), where 𝑑𝑝𝑘 → ∞ but the pickup distance in reality is bounded by the matching radius
𝑅𝑘. We note that the matching time in this case also goes to infinity and thus the overall estimate of waiting time is still valid.

4.1.3. Walking and in-vehicle times
Finally, with the average walking distance 𝐷𝑎 derived in Appendix B.3, we can easily derive the walking time as

𝑤𝑎
𝑘 =

{

0, 𝑘 ∈ {𝐷 𝑆 , 𝐷 𝐸},
𝛼𝑎𝐷𝑎𝛿 , 𝑘 ∈ {𝑊 𝑆 , 𝑊 𝐸}.

(5)

Let 𝜏 be the average door-to-door trip duration, then the in-vehicle time is adjusted as

𝜏𝑘 =

{

𝜏 , 𝑘 ∈ {𝐷 𝑆 , 𝐷 𝐸},
𝜏 − 2𝛼𝑙𝐷𝑎𝛿 , 𝑘 ∈ {𝑊 𝑆 , 𝑊 𝐸}.

(6)

4.2. Impact of matching and walking on passenger waiting time

Let 𝑤𝑘 = 𝑤𝑚
𝑘 +𝑤𝑝

𝑘 +𝑤𝑎
𝑘 be the expected total passenger waiting time for scheme 𝑘. To simplify the notation and generate main

insights, we set 𝛿𝑘 = 𝛿 , ∀𝑘 and 𝑅𝑘 = 1, 𝑘 ∈ {𝐷 𝑆 , 𝑊 𝑆}. As demonstrated in Appendix B.4, passenger competition rarely happens in
treet-hailing. Hence, we assume 𝛾𝑘 = 1, 𝑘 ∈ {𝐷 𝑆 , 𝑊 𝑆}, which yields the total waiting time as follows:

𝑤𝑘 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

(

1
𝜃𝑘𝐴𝑘𝑉

+ 1
)

𝛿 + 𝛼𝑙−1
2 𝛿 , 𝑘 = 𝐷 𝑆 ,

(

1
𝜃𝑘𝐴𝑘𝑉

+ 1
)

𝛿 + 𝛼𝑎𝐷𝑎𝛿 , 𝑘 = 𝑊 𝑆 ,
(

1
𝐴𝑘𝑉

+ 𝑐1𝜌𝑘
√

𝑉

)

𝛿 , 𝑘 = 𝐷 𝐸 w/o competition
(

1
𝐴𝑘𝑉

+ 𝑐1𝜌𝑘
√

𝑉

)

𝛿 + 𝛼𝑎𝐷𝑎𝛿 , 𝑘 = 𝑊 𝐸 w/o competition
[

𝑊
𝑉 + 𝑐1𝜌𝑘

√

𝑉

(

1 + 𝑊
𝑐2𝑉

)−1
]

𝛿 , 𝑘 = 𝐷 𝐸 w/ competition,
[

𝑊
𝑉 + 𝑐1𝜌𝑘

√

(

1 + 𝑊
𝑐 𝑉

)−1
]

𝛿 + 𝛼𝑎𝐷𝑎𝛿 , 𝑘 = 𝑊 𝐸 w/ competition.

(7)
⎩

𝑉 2
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Fig. 3. Comparison of passenger waiting time between street-hailing and e-hailing without competition.

Fig. 4. Impact of passenger competition in e-hailing.

Several observations are made from Eq. (7):

• If there is no distinction between major and local streets (i.e., 𝛼𝑙 = 1), the passenger waiting time in 𝐷 𝑆 is in line with (Douglas,
1972) (i.e., 𝑤𝑘 ∝ 1∕𝑉 ) while that in 𝐷 𝐸 reduces to the result in Arnott (1996) (i.e., 𝑤𝑘 ∝ 1∕

√

𝑉 ) when 𝐴𝑘 is sufficiently large.
• In street-hailing, walking brings two effects. On the one hand, it influences the matching time as it introduces vehicle

concentration reflected in the parameter 𝜃𝑘. On the other hand, it replaces part of the pickup time (𝛼𝑙 − 1)𝛿∕2 on local streets
into walking time 𝛼𝑎𝐷𝑎𝛿. In e-hailing, however, only the second effect persists, which is captured in 𝜌𝑘.

• The impact of passenger competition in e-hailing is also two-fold. On the one hand, it extends the matching time as 𝑊 ≫ 1∕𝐴𝑘.
On the other hand, it reduces the pickup time due to the factor

(

1 + 𝑊
𝑐2𝑉

)−1
. In the extreme case where the market is crowded

by waiting passengers, the pickup distance would approach zero. Such a phenomenon is also discussed in Besbes et al. (2022),
though only for extreme cases. While Zhang et al. (2019) only recognizes and studies the joint influence using historical
e-hailing data.

Fig. 3 plots the total waiting time in 𝐷 𝑆 and 𝐷 𝐸 without passenger competition against the vacant vehicle density (with default
parameter values in Table A.1). As per Eq. (7), street-hailing waiting time decreases with 𝑉 faster than e-hailing, though it is unable
to surpass. On the other hand, e-hailing shows a much stronger robustness in its level of service when the vehicle supply is scarce.

Fig. 4 illustrates the passenger waiting time in 𝐷 𝐸 under different levels of passenger competition. As shown in Fig. 4(a), the
total waiting time increases with 𝑊 but the gap is not significant unless 𝑉 drops below 0.2 veh/arc. Yet, it does not mean passenger
competition has no impact on waiting time. Instead, its two opposite influences on matching and pickup times cancel each out; see
7 
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Fig. 4(b). When the vehicle supply is depleted, the negative impact of passenger competition on matching is dominant, which yields
an extensively long wait. Such a phenomenon has already been observed in the e-hailing market during a demand peak (Castillo
et al., 2017).

5. Aggregated economic model

In this section, we derive the closed-form expressions of scale economies in the four service schemes. To this end, we solve the
ptimal fleet size 𝑁∗ that ensures a desired demand rate 𝑄 is served. Accordingly, the system cost can be evaluated as a function
f 𝑄 and, as usual, the degree of scale economies (DSE) is derived as

𝐷 𝑆 𝐸(𝑄) = 𝐴𝐶(𝑄)
𝑀 𝐶(𝑄)

, (8)

where 𝐴𝐶 and 𝑀 𝐶 denote the average and marginal costs, respectively.
In general, a system enjoys scale economies if its DSE is greater than 1, and the greater the DSE, the stronger the scale effect. For

a thorough discussion about DSE in transport theory, we refer the reader to the paper by Jara-Diaz and Cortes (1996). In Section 5.1,
we will first describe the optimal fleet sizing problem and its solution procedure. The key impacts of the matching mechanism and
walking on scale economies will then be summarized in Sections 5.2 and 5.3, respectively. Besides scale economies at the system
level, we are also interested in the results of the matching process, which is often discussed in literature (e.g., Yang and Yang, 2011;
Zhang et al., 2019). Therefore, we also derive the DSE in the endogenous matching process for each service scheme and denote it
s 𝐷 𝑆 𝐸en hereafter.

5.1. Optimal fleet sizing

The optimal fleet sizing problem for a given demand rate 𝑄 is formulated as follows:

min
𝑁

𝑇 𝐶(𝑁 , 𝑄), (9a)

𝑠.𝑡. 𝑁 = 𝑉 +𝑄(𝑤𝑝
𝑘 + 𝜏𝑘), (9b)

𝑊 = 𝑄𝑤𝑚
𝑘 , (9c)

𝑤𝑝
𝑘 = 𝑓 𝑝

𝑘 (𝑉 , 𝑊 ), (9d)

𝑤𝑚
𝑘 = 𝑓𝑚

𝑘 (𝑉 , 𝑊 ), (9e)

where Constraint (9b) describes the vehicle flow conservation, Constraint (9c) adopts Little’s law to connect the waiting passenger
density 𝑊 and the matching time 𝑤𝑚

𝑘 , and functions 𝑓 𝑝
𝑘 (⋅) and 𝑓𝑚

𝑘 (⋅) in Constraints (9d) and (9e) are simplified expressions of the
matching model derived in Section 4. The objective of (9) is defined as the sum of vehicle operating cost and passenger travel cost:

𝑇 𝐶(𝑁 , 𝑄) = 𝑐0𝑁 +𝑄(𝛽𝑚𝑤𝑚
𝑘 + 𝛽𝑝𝑤𝑝

𝑘 + 2𝛽𝑎𝑤𝑎
𝑘 + 𝛽𝑡𝜏𝑘), (10)

where 𝑐0 is the operation cost of each vehicle and 𝛽𝑗 , 𝑗 ∈ {𝑚, 𝑝, 𝑎, 𝑡} is the value of time specified for different legs of a trip. Such
n objective is usually adopted in the analysis of public transport (e.g., Fielbaum et al., 2020) and has also been used to analyze

the taxi market (Arnott, 1996). It essentially addresses the problem of finding the least costly way to serve a certain demand.
As preliminaries, we first derive the necessary conditions under which the steady state exists, i.e., Problem (9) is feasible.

Lemma 1. Given the fleet size 𝑁 and demand rate 𝑄 such that 𝑁 −𝑄(𝜏 + 𝜀𝑘) > 0, where

𝜀𝑘 =

⎧

⎪

⎨

⎪

⎩

𝜌𝑝𝑘
2 𝑅𝑘𝛿 , 𝑘 ∈ {𝐷 𝑆 , 𝑊 𝑆},
𝛿𝑘, 𝑘 ∈ {𝐷 𝐸 , 𝑊 𝐸},

(11)

there must exist 𝑉 , 𝑊 > 0 that satisfy Eqs. (9b)–(9e).

Proof. See Appendix E.3. □

Due to Lemma 1, we can express 𝑉 and 𝑊 as solutions to the following implicit functions:

𝑊 = 𝑄𝑓𝑚
𝑘 (𝑉 , 𝑊 ) ⇒ 𝑊 = ℎ𝑊𝑘 (𝑉 , 𝑄), (12)

𝑁 = 𝑉 +𝑄(𝑓 𝑝
𝑘 (𝑉 , 𝑓𝑊

𝑘 (𝑉 , 𝑄)) + 𝜏𝑘) ⇒ 𝑉 = ℎ𝑉𝑘 (𝑁 , 𝑄). (13)

Accordingly, Problem (9) turns into an unconstrained optimization problem and its first-order condition reads

0 = 𝜕 𝑇 𝐶
𝜕 𝑁 = 𝑐0 +𝑄

[

𝛽𝑚
(

𝜕𝑉 𝑓
𝑚
𝑘 + 𝜕𝑊 𝑓𝑚

𝑘 𝜕𝑉 ℎ
𝑊
𝑘
)

+ 𝛽𝑝
(

𝜕𝑉 𝑓
𝑝
𝑘 + 𝜕𝑊 𝑓 𝑝

𝑘 𝜕𝑉 ℎ
𝑊
𝑘
)]

𝜕𝑁ℎ𝑉𝑘 . (14)
8 
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For street-hailing, it can be easily proved that there is a unique solution to Eq. (14) that coincides with the optimal fleet size 𝑁∗.
or e-hailing, this result is not guaranteed, though our extensive numerical analyses show it indeed holds in general. All results
resented in the following implicitly assume Eq. (14) to have a unique solution.

Note that Problem (9) leads to the system-optimal fleet size that does not necessarily yield the maximum profit, which is,
owever, the common objective of on-demand mobility services in practice. Yet, as shown in Appendix D, Problem (9) can also

be transformed into a fleet-sizing problem for a profit-driven operator. Therefore, the analytical results presented in the following
ffer general implications for ride-hailing services.

5.2. Impacts of the matching mechanism on scale economies

Recall that the four schemes result from combining two matching mechanisms and the binary chance of walking. While the
nfluences of walking are well captured in several model parameters (e.g., 𝜌𝑘 and 𝜏𝑘), the matching mechanism leads to different

expressions of passenger waiting time. Consequently, the degree of scale economies (DSE) is largely shaped by matching. The main
results are presented in the following propositions, categorized by the existence of passenger competition.

5.2.1. Without passenger competition

Proposition 3 (Scale Economies in Street-hailing Without Passenger Competition). The system-level DSE in street-hailing without passenger
ompetition is expressed as

𝐷 𝑆 𝐸 =
2𝐵1 + 𝐵2𝑄

1
2

𝐵1 + 𝐵2𝑄
1
2

, (15)

where 𝐵1 =
√

𝑐0𝛽𝑚𝛿𝑘
𝜃𝑘𝑅𝑘

, and 𝐵2 =
𝛽𝑚𝛿𝑘
2 + 𝜌𝑘𝑅𝑘𝛿

2 (𝑐0+𝛽𝑝) + 2𝛽𝑎𝑤𝑎
𝑘+ (𝑐0+𝛽𝑡)𝜏𝑘. Hence, its value falls in the range of (1,2], monotonically decreases

with demand 𝑄, and finally converges to 1. Besides, the DSE in the endogenous matching process is constant and equals 2, i.e., 𝐷 𝑆 𝐸en = 2.

Proof. See Appendix E.4. □

Proposition 4 (Scale Economies in E-hailing Without Passenger Competition). With mild approximation, the system-level DSE in e-hailing
ithout passenger competition is expressed as

𝐷 𝑆 𝐸≈
3𝐵1 + 𝐵2𝑄

1
3

2𝐵1 + 𝐵2𝑄
1
3

, (16)

where 𝐵1 = 𝑐0
[

𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)]
2
3 , and 𝐵2 = 𝛽𝑚𝛿𝑘

2 + 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘. Hence, its value falls in the range of (1,1.5], monotonically

decreases with demand 𝑄, and finally converges to 1. Besides, the DSE in the endogenous matching process is constant and equals 1.5,
i.e., 𝐷 𝑆 𝐸en = 1.5.

Proof. See Appendix E.5. □

5.2.2. With passenger competition

Proposition 5 (Scale Economies in Street-hailing with Passenger Competition). With mild approximation, the system-level DSE in
treet-hailing with passenger competition is expressed as

𝐷 𝑆 𝐸≈1 + 𝐵1
(𝐵2 + 𝐵3)𝑄

, (17)

and the DSE in the endogenous matching process is

𝐷 𝑆 𝐸en≈1 + 𝐵1
𝐵3𝑄

, (18)

where 𝐵1 =
𝜌𝑘𝑅𝑘𝛿
𝛿𝑘𝐴𝑘

(𝑐0 + 𝛽𝑝)
(

1 +
√

2𝑐0
𝛽𝑚𝜃𝑘

)−1

, 𝐵2 =
𝛽𝑚𝛿𝑘
2 + 𝜌𝑘𝑅𝑘𝛿

2 (𝑐0 + 𝛽𝑝) + 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘, and 𝐵3 =

𝑐0𝛿𝑘
𝜃𝑘

(

1 +
√

2𝛽𝑚𝜃𝑘
𝑐0

)

. Hence, both

values are greater than 1, monotonically decrease with demand 𝑄, and finally converge to 1.

Proof. See Appendix E.6. □
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Table 1
Impacts of walking on DSE.

Factor 𝐷 𝑆 → 𝑊 𝑆 𝐷 𝐸 → 𝑊 𝐸 Cause of change

Reduced matching time – NA Accumulation of vacant vehicles on major streets in street-hailing
results in an increase in 𝜃𝑘.

Reduced pickup time + + The reduced pickup distance and/or increased vehicle speed results
in a decrease in 𝜌𝑘.

Extra walking time – − The additional walking time yields a positive 𝑤𝑎
𝑘.

Reduced in-vehicle time + + The reduced in-vehicle trip distance and increased travel speed
result in a decrease in 𝜏𝑘.

Proposition 6 (Scale Economies in E-hailing with Passenger Competition). With mild approximation, the system-level DSE in e-hailing with
passenger competition is expressed as

𝐷 𝑆 𝐸≈
2𝐵1 + (𝐵2 + 𝐵3)𝑄

1
2

𝐵1 + (𝐵2 + 𝐵3)𝑄
1
2

, (19)

and the DSE in the endogenous matching process is

𝐷 𝑆 𝐸en≈
2𝐵1 + 𝐵3𝑄

1
2

𝐵1 + 𝐵3𝑄
1
2

, (20)

where 𝐵1 = 𝑐1𝜌𝑘𝛿 𝜑∗

2 (𝑐0 + 𝛽𝑝)
[

𝛿𝑘
(

1 +
√

𝛽𝑚
2𝑐0

)]− 1
2 , 𝐵2 = 𝛽𝑚𝛿𝑘

2 + 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘, 𝐵3 = 𝑐0𝛿𝑘

(

1 +
√

2𝛽𝑚
𝑐0

)

, and 𝜑∗ =
(

1 + 1
𝑐1

√

𝑐0
2𝛽𝑚

)−1
.

Hence, both values are greater than 1, upper bounded by 2, monotonically decrease with demand 𝑄, and finally converge to 1.

Proof. See Appendix E.7. □

5.2.3. Summary
By definition, a service system with DSE greater than 1 exhibits increasing returns to scale while it shows constant (decreasing)

eturns to scale if its DSE equals (less than) 1 (Tone and Sahoo, 2004). Therefore, the propositions presented in this section can be
summarized as follows:

• The on-demand mobility market exhibits increasing returns to scale in every scheme, but the scale effects eventually vanish
as DSE converges to 1.

• The scale effects in the matching process are strongly dependent on the hailing mechanism and the eventual existence of
competition. Specifically, without passenger competition, the DSE in street-hailing matching is constant and equals 2 while
that in e-hailing matching is also constant but reduces to 1.5.

• When there exists passenger competition, the DSE in matching for both services diminishes to 1 with the demand rate.

Although the impact of passenger competition affects both street-hailing and e-hailing, competition can only occur in street-
hailing at extremely large demand rates whereas it is rather common in e-hailing. The key reason is that street-hailing has a much
smaller matching radius so waiting passengers are unlikely to have overlapping matching areas with others. Suppose the matching
radius is 𝑅𝑘 = 1, then competition only happens when there is another passenger waiting at the same or adjacent intersection. In
contrast, e-hailing waiting passengers are likely to have overlapping matching areas due to the much larger matching radius. This
difference in the existence of passenger competition is numerically demonstrated in Appendix B.4. Due to the third point, in what
follows, we only present the analysis for the case without passenger competition for street-hailing.

5.3. Impacts of walking on scale economies

Although walking does not change the fundamental properties of scale economies, it does affect the values of DSE in both
street-hailing and e-hailing. In particular, walking affects scale economies via two opposing forces. Besides, most factors are shared
between e-hailing and street-hailing except for one that occurs specifically in street-hailing. These factors and their impacts on DSE
are formally stated below.

Proposition 7. Walking influences the system-level DSE in both street-hailing and e-hailing, while only affecting DSE in the street-hailing
atching process. The sources of change in DSE along with the directions are summarized in Table 1.

Proof. See Appendix E.8. □

We further observe that, under certain conditions, walking brings a common negative scale effect, as formally stated in the
following proposition.
10 
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Proposition 8. Walking leads to a lower system-level DSE in both street-hailing and e-hailing when 𝛼𝑙 = 1 and 𝛼𝑎 > (𝑐0 + 𝛽𝑡)∕𝛽𝑎.

Proof. See Appendix E.9. □

The result of Proposition 8 may be counter-intuitive at first glance because it seems to suggest walking does not benefit the
system. Yet, we note that DSE quantifies the potential for improving system efficiency by scaling up the market. Since walking
pushes passengers and vehicles to the major streets (particularly in street-hailing), it helps increase demand and supply densities

ithout scaling up the market. As a result, the benefit of scale becomes less significant, leading to a lower DSE.
As detailed in Appendix E.9, besides the negative scale effect due to the conditions introduced in Proposition 8, walking

introduces another negative effect to street-hailing due to the change in parameter 𝜃𝑘, as detailed in the first row of Table 1.
Therefore, walking is in general more likely to lower the DSE in street-hailing compared to e-hailing. This is also observed in the
simulation results reported in Section 6.

Additionally, as the vehicle travel speed is usually much higher than walking speed, even if on local streets, it is safe to assume
𝛼𝑎 ≥ 2. Then, the second condition further reduces to 𝛽𝑎 > (𝑐0+𝛽𝑡)∕2 and the main trade-off comes to be among the values of walking
time, in-vehicle time, and unit vehicle operation time. Specifically, walking is more likely to reduce the market scale economies if

alking is more costly to passengers.

6. Simulation experiments

In this section, we run simulations over a subnetwork of Manhattan, New York, based on historical demand profiles. For each
setting of passenger demand and vehicle supply, we simulate a one-hour operation for the four studied schemes {𝐷 𝑆 , 𝑊 𝑆 , 𝐷 𝐸 , 𝑊 𝐸}.
The main purpose of this section is to assess the robustness of our conclusions under more realistic circumstances, both network
and demand present heterogeneity that is not captured in the model. While we report results for a number of relevant indices, the
most important ones are those in Section 6.3.5, where we compare the DSE obtained in the simulations and the ones predicted by
ur analytical model.

6.1. Network and demand

We leverage the publicly available taxi data in Manhattan, New York, and consider the peak period 7–8 AM on 15/01/2013. We
selected the data from 2013 because they include detailed coordinates of trip origins and destinations, along with the trip starting
and ending times. To be consistent with our model, the origin and destination of each trip are assigned to the closest intersection.
Such a mapping has also been done in previous studies (e.g., Alonso-Mora et al., 2017; Simonetto et al., 2019; Fielbaum et al., 2022).
It is worth noting that the observed trip origin is essentially the pickup location, not necessarily the true origin of the passenger
(e.g., the passenger might have walked a bit before hailing the taxi). Nevertheless, as the exact trip origins are not traceable, we
irectly use the observed trip origins, acknowledging that our results might underestimate the amount of walking.

Since the taxi demand in Manhattan is strongly unbalanced, with most trips starting and ending in the midtown and downtown
reas, we crop the Manhattan network developed in Fielbaum et al. (2021) and only consider the subnetwork to the south of Central

Park, which contains 1966 nodes (intersections) and 4253 edges (road arcs). This provides us with a more uniform demand pattern,
which is assumed in our analytical model. We prune unreasonable trips whose in-vehicle times are shorter than 5 min and finally
end up with a demand reference with a total of 14,213 trips. For each simulation, we sample trips from the demand reference at
different demand rates. Each scheme is simulated five times to reduce the impact of randomness. All results reported in this section
are the average values.

To analyze the 𝑊 𝑆 schemes, we further identify ‘‘major streets’’ that form a skeleton of the cropped Manhattan network. The
procedure to construct this connected subnetwork is described in Appendix F. Fig. 5 plots the network used for simulations, where
the blue nodes represent intersections where passengers are picked up and dropped off in 𝑊 𝑆.

6.2. Implementation details

6.2.1. Matching and vehicle cruising in e-hailing
In the simulations of e-hailing, we apply the matching algorithm developed by Fielbaum et al. (2021). While the algorithm was

designed for on-demand ride-pooling, it is easily adapted to our case by setting the vehicle capacity equal to 1. In all simulations, we
set the matching interval as 𝛿𝐷 𝐸 = 𝛿𝑊 𝐸 = 1 min. By the end of each matching interval, all feasible passenger–vehicle assignments
re first found that do not violate an upper bound of total waiting time (5 min). An integer-linear program is then solved to obtain

the assignments that optimize a customized objective (e.g., service rate). In the case of 𝑊 𝐸, the pickup-dropoff (PUDO) points are
ointly selected in the first step that minimizes a weighted sum of walking time and in-vehicle time. Specifically, the weights are set
ccording to the model parameters reported in Table A.1. Besides, a maximum walking time of 4 min is included as a constraint.

Same as in Fielbaum et al. (2021), trips with different lengths are treated equally in the assignment. If a passenger fails to be picked
p and starts the trip within the maximum waiting time (5 min), it will leave the system, and the trip is marked as unserved.

Similar to matching, vehicles are rebalanced in a centralized way in e-hailing. Specifically, vacant vehicles will be dispatched to
ndersupplied areas following the same procedure as Alonso-Mora et al. (2017) and Fielbaum et al. (2021).
11 
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Fig. 5. Network used in simulations. Blue nodes are kept in the subnetwork for 𝑊 𝑆. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

6.2.2. Matching and vehicle cruising in street-hailing
The simulations of 𝐷 𝑆 and 𝑊 𝑆 are the same except that they run on different networks. For 𝑊 𝑆, we first map trip origins and

destinations from the full network to the subnetwork of major streets, ensuring the maximum walking time (4 min) is not violated
meanwhile minimizing the in-vehicle time. In all simulations of street-hailing, the matching interval is set to be 𝛿𝐷 𝑆 = 𝛿𝑊 𝑆 = 20
seconds. By the end of each matching interval, we check, for each waiting passenger, whether there is a vacant vehicle that can
reach the passenger’s location within 20 s (approximately the time to traverse one street segment). If there are multiple vehicles,
we assign the closest vehicle to the passenger. Same as e-hailing, a passenger would leave the system if it is not engaged with any
vehicle within 5 min.

In line with the matching model, we simulate vehicle cruising behaviors differently with and without walking. In 𝑊 𝑆, vehicles
only cruise on major streets. Thus we simply run simulations on the subnetwork. As for 𝐷 𝑆, vehicles cruise on all streets, instead of
only on local streets as assumed in the matching model, because trips originate from any type of intersection. To implement random
cruising, we assign trips to vacant vehicles with randomly generated artificial destinations, and vehicles take the shortest path to
their destinations. Each vehicle travels along its paths for 20 s (at the same frequency as street-hailing matching), after which either
it is matched with a passenger or continues its cruising by selecting a new artificial destination.

6.2.3. Choice of fleet size
For each scheme and demand rate, we run simulations with two fleet sizes. The first one is the optimal fleet size derived in

Propositions 3–6, where the model parameters are calibrated according to the simulation environment (see Table F.1). Because this
fleet size is solved as a function of trip demand, we call it the endogenous fleet. The resulting fleet sizes are depicted in Fig. 6. It
can be observed from Fig. 6(a) that the fleet size increases almost linearly with demand in all schemes. This is expected as the
in-vehicle time, which is linear with demand, contributes most of the vehicle time. The nonlinear part, on the other hand, is better
illustrated in Fig. 6(b). For all schemes, the number of vehicles per passenger decreases with demand. Another expected finding is
that the schemes with walking (𝑊 𝑆 and 𝑊 𝐸) require fewer vehicles compared to their non-walking counterparts. At a relatively
low demand level, e-hailing requires more vehicles than street-hailing. The difference gradually expands as demand increases. As
the trip number goes beyond a certain threshold, however, the e-hailing fleet size suddenly drops and then remains slightly lower
than street-hailing. A closer look at the model outputs reveals that the sudden change corresponds to the emergence of passenger
competition in e-hailing.

If the analytical model were perfect, the endogenous fleet would lead to a 100% service rate (i.e., all trips are served with the
maximum waiting time constraint). This is, however, never the case in simulations. In fact, several model assumptions can hardly
hold in simulations, including (i) the network is not a perfect grid network with alternative local and major streets, (ii) travel demand
12 
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Fig. 6. Vehicle fleet for each scheme and demand set.

is not homogeneous over space, and (iii) the simulation may not reach a stationary state. Hence, we introduce a second set of fleet
sizes that are computed as a fraction of the total trip numbers (15% in this study), which is called exogenous fleet hereafter. We wish
to note that the simulation results from both types of fleet size are insightful. While results of exogenous fleets can better indicate
the economies of scale, those of endogenous fleets provide insight into whether or not the model prediction error is consistent over
demand rates and across schemes.

6.2.4. Performance metrics
We use the following four metrics to identify and compare scale economies in different schemes:
• Waiting time: Average passenger waiting time that includes matching and pickup times (walking time is not counted).
• Service rate: The fraction of trips served under the service quality constraint (i.e., maximum waiting time is 5 min).
• Utilization rate: The fraction of occupied vehicle time.
• Degree of scale economies (DSE): The average system cost divided by a numerical marginal cost.

6.3. Results

Recall that one factor that has been largely ignored in e-hailing matching is the competition among waiting passengers. We have
analytically shown that it can fundamentally change the scale economies of e-hailing matching, as well as that of the whole market.
Therefore, in what follows, we will first discuss the existence of passenger competition and then present the simulation results of
each metric.

6.3.1. Passenger competition
To evaluate the intensity of passenger competition, we investigate how a passenger’s dominance in the matching area evolves as

demand increases. Specifically, at each e-hailing matching instance, we randomly draw several requests and compute the following:
(i) the number of arcs within the matching area, and (ii) among the arcs identified in (i), the number of arcs to which the target
request is the closest one, compared to all other unmatched requests. The former provides an estimate of the matching area, while
the latter is considered a surrogate of the effective matching area. We define their ratio as the fraction of the dominance area
preserved and plot the results against the demand rate in Fig. 7. It can be clearly seen that, with both fleet sizes, e-hailing matching
is always subject to passenger competition—the effective matching area is far from 100% and plunges with demand.

It is worth noting that street-hailing is almost free from passenger competition in the simulations due to the matching mechanism
described in Section 6.2.2. Specifically, each passenger can only hail vacant vehicles moving towards the intersection at which it is
waiting. Hence, there is no competition unless some other passengers are waiting at the same intersection, which is rarely observed
in the simulations.

6.3.2. Waiting time
Passenger waiting time is a widely used indicator of economies of scale in public transportation systems (e.g., Mohring, 1972;

Zhang et al., 2019). If the average waiting time is observed to decrease with demand, then the system is likely to possess economies
of scale. As shown in Fig. 8, in all schemes, the average waiting time indeed decreases with demand. As per Fig. 6, the vehicle
supply increases almost proportionally with passenger demand. Hence, the observation in Fig. 8 can be translated into a statement
that waiting time decreases as the market scales up, which directly implies economies of scale. Another observation from Fig. 8
13 
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Fig. 7. Fraction of the dominance area preserved.

Fig. 8. Average waiting time.

is that the decreasing rate of waiting time reduces as demand grows. Such a diminishing scale effect is in line with our analytical
results presented in Section 5.

Additionally, it is found the benefit of walking is less significant in the simulations with endogenous fleets compared to those
with exogenous fleets. This is also expected because the impact of walking has already been incorporated into the model when
optimizing the fleet size. As a result, 𝑊 𝑆 (𝑊 𝐸) achieves a similar service quality as 𝐷 𝑆 (𝐷 𝐸) with a smaller fleet size (see Fig. 6).
On the other hand, with exogenous fleets, street-hailing is found to benefit a lot from walking in terms of reducing the waiting time,
whereas e-hailing observes an increase in waiting time when walking is allowed. We note that the longer waiting time in 𝑊 𝐸 is
due to the specialized matching algorithm that prioritizes maximizing the service rate (i.e., the number of matched trips) in our
simulations. This is also confirmed by Fig. 9(b), where the service rate of WE is 10% higher than DE.

6.3.3. Service rate
The service rate is another indicator of scale economies as it links between the system inputs and outputs. In particular, if the

service rate remains stable as the market scales up, a property of constant returns to scale is expected. Instead, the market is likely
to exhibit increasing returns to scale if one observes an increasing service rate.

As discussed above, the theoretical service rate with endogenous fleets is 100%. The gap between this ideal outcome and
the realized service rate in simulations thus reflects on the prediction error due to the violation of model assumptions. Several
conclusions are drawn from Fig. 9(a). First, the model in general overestimates the matching efficiency in street-hailing, which
leads to a much lower service rate (lower than 75%). On the other hand, the model tends to underestimate the scale effect in
14 
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Fig. 9. Service rate.

street-hailing, which explains the fast growth in service rate as demand first increases. In contrast, our model correctly predicts
the matching efficiency and scale economies of e-hailing as the trip loss is well-bounded and stable (consistently below 10%). The
model also correctly captures the influence of walking as the gap between walking and non-walking schemes is also consistent across
demand levels.

Fig. 9(b) further demonstrates our theoretical findings of scale economies. Compared to e-hailing, street-hailing shows a strong
scale effect with a faster-increasing service rate. On the contrary, the growth of service rate in e-hailing is rather minor, which implies
the market is prone to constant returns to scale. Walking significantly improves the service rate in both street-hailing and e-hailing,
but the improvement varies little with the market scale. This finding confirms our analysis that walking does not fundamentally
change the property of scale economies but only affects its exact value. Finally, in all schemes, the service rate gradually converges
as the trip number continues to increase, which is in line with our conclusion that the scale effect diminishes with demand.

It is worth noting that the service rate of 𝑊 𝐸 is slightly lower than 𝐷 𝐸 with the endogenous fleet, in contrast to the substantial
improvement with the exogenous fleet. The reason is two-fold. On the one hand, walking is the most beneficial when there is
insufficient vehicle supply. As per Fig. 6(b), the endogenous fleet size is greater than 20% of demand while the exogenous fleet size
is 15% of demand. Hence, the improvement generated by walking is less in the case of endogenous fleets. On the other hand, as
also shown in Fig. 6(b), the endogenous fleet in WE is smaller than that in 𝐷 𝐸. As a result, the benefit of walking is not sufficient
to offset the negative influence due to the loss of supply and finally, yields a decline in service rate.

6.3.4. Utilization rate
The utilization rate measures the fraction of occupied time per vehicle and thus indicates the system performance from the

driver’s perspective. As shown in Fig. 10, vehicle utilization in general increases with demand but gradually saturates. This result
again confirms the scale effect exists but diminishes with demand. Regardless of the type of fleet, e-hailing drivers always enjoy a
higher utilization rate meanwhile walking is always beneficial. Nevertheless, the gap between street-hailing and e-hailing decreases
with the demand rate whereas that between walking and non-walking remains stable and even slightly expands in the case of
street-hailing.

6.3.5. Degree of scale economies
Finally, we numerically evaluate the DSE of each scheme and compare the results with our theoretical findings (Propositions 3–

6). However, there remains a gap in the computing of total cost. While the economic model assumes all trips are well served, in
simulations some trips are not. Hence, we need to define the penalty for each unserved trip and include the cost of unserved trips in
the total cost. Specifically, we set the penalty to be the passenger cost for the maximum walking and walking times (because they
are the constraints corresponding to trip rejections).

DSE is defined as the ratio of average cost to marginal cost. While the former can be easily obtained from the simulations, the
latter is not directly available. We compute the marginal costs via a linear approximation. Let 𝑄𝑖, 𝑄𝑖+1 be two consecutive demand
rate and 𝑇 𝐶𝑖, 𝑇 𝐶𝑖+1 be their corresponding total system cost. The marginal cost at 𝑄𝑖 is then computed as 𝑀 𝐶(𝑄𝑖) = 𝑇 𝐶𝑖−𝑇 𝐶𝑖+1

𝑄𝑖−𝑄𝑖+1
.

The numerical DSE values in different schemes are plotted in Fig. 11. While oscillating a lot due to the limited simulation rounds,
several general patterns can be recognized:

• DSE in all combinations of matching mechanism and fleet size decreases with demand while remaining in the range of (1,2)
except for the case of 𝐷 𝐸 with the endogenous fleet, which drops to around 0.9. We expect such an exception is largely due
to the randomness in the simulations.
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Fig. 10. Vehicle utilization rate.

Fig. 11. Numerical degree of scale economies (DSE).

• Street-hailing always archives a higher DSE compared to its e-hailing counterpart (e.g., 𝐷 𝑆 vs. 𝐷 𝐸).
• The difference in DSE between walking and non-walking schemes is ambiguous and does not vary with demand. Yet, walking

is shown to have a negative impact on the DSE of street-hailing.

All these observations are consistent with the theoretical results presented in Propositions 3–6 and thus provide strong support to
our proposed model. It is worth noting that the demand profile used in the simulations is constructed from historical taxi demand in
New York City and shows a high spatial heterogeneity (e.g., hotspots). Therefore, the simulation outcomes also suggest the analytical
model built upon a uniform market is sufficient to capture the key trade-off in scale economies and produce reliable estimates.

7. Practical implications

Our findings offer important implications for the practice of on-demand mobility that go beyond a monopoly market with a single
operator. In general, with DSE greater than one, a market is prone to a natural monopoly that exploits the scale economies as much as
16 
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possible. However, monopoly does not necessarily lead to system efficiency and thus regulation becomes justifiable (Douglas, 1972;
Tirachini, 2020). Particularly, a monopoly market can be risky in the case of e-hailing, where the central platform can manipulate
ehicle supply and create artificial scarcity in order to raise prices (Joskow, 2007).

Regulation in an on-demand mobility market can be either introducing competition or enforcing constraints on operations
(e.g., pricing). While the specific instruments go beyond the scope of this paper, the greater DSE in low-demand areas suggests
hat introducing competition is less beneficial or even infeasible. On the other hand, competition is preferable in high-demand areas
here the DSE of e-hailing converges to one. In other words, little loss in service quality would be induced when demand is divided
nd served by several e-hailing platforms.

In the following, we summarize the practical implications of our findings for several other frequently discussed problems in
on-demand mobility:

• Matching friction between supply and demand: The existence of matching friction and its variations with demand and supply
partially determine DSE. In real practice, the overall matching friction could be lower than the model prediction based on the
assumption of uniform distribution of supply and demand along with random vehicle cruising. The two main reasons are: (i)
the existence of hotspots with a higher concentration of trip origins and destinations (Liu et al., 2010), and (ii) the strategic
cruising of experienced drivers (Urata et al., 2021; Zhang et al., 2023). These factors would push the market closer to the
scenario with higher demand, which is more efficient but has fewer gains from a demand increase due to the lower DSE.
Besides, we have also assumed the trip origin and destination follow the same distribution, which is not necessarily satisfied
in real-world practice either. When demand is highly imbalanced, much of the vehicle operation time would be dedicated
to repositioning instead of cruising. Hence, the optimal fleet size would be larger than the one derived in this paper. These
phenomena are expected to share among all four schemes studied. Since the ratio of repositioning time to travel demand is
likely to be constant, it would not decrease as the market scales up. As a result, the DSE value would also decrease and become
closer to 1.

• Platform competition and multi-homing drivers: Although the model established in this paper considers a single operator in
the market, the results provide some insights into a market with competing operators, which is the case of e-hailing in most
cities. Specifically, the scale economies highly depend on the market structure. If the market is fully segmented, i.e., each
passenger or driver participates in just one platform, then all of our analyses remain valid for each platform separately. Yet, in
real practice, drivers often join several platforms. Such a so-called multi-homing behavior essentially pools waiting passengers
and vacant vehicles in the matching process (Zhang and Nie, 2021; Jiao and Ramezani, 2024). According to our findings, it
leads to higher efficiency in low-demand areas but hardly brings additional benefits to a high-demand market. Nevertheless,
other factors, such as the wage structure (Guo et al., 2023), could also largely affect the total vehicle supply, and accordingly,
DSE.

• Service integration: Recently, platform integrator that consolidates trip requests and assigns them to different e-hailing platforms
emerges to be a hot research topic (e.g., Li et al., 2024a; Zhou et al., 2024). We note that, when no matching priority or price
adjustment is introduced into the matching process, the integration tends to have a similar impact on DSE as multi-homing.
In other words, the benefit of integrating small platforms is much larger than that of integrating large platforms. This result
also well explains why in real practice, the platforms joining in the integrator are mostly rather small (e.g., Gaode Map in
China). However, matching and pricing are the primary operational strategies of the integrator and they both have significant
influences on the market. Hence, the overall impact on DSE is not conclusive and this is indeed an intriguing direction for
future research.

• Ride-pooling: Another matching mechanism that has not been characterized in the model is pooling, i.e., two or more
passengers served by a single vehicle. Yet, our findings provide hints on how DSE would change when pooling is integrated.
In essence, effective pooling reduces the necessary fleet for a given demand. Hence, the market is expected to exhibit a higher
DSE. Besides, pooling is expected to reduce passenger competition as some passengers can now share the same vehicle. Since
passenger competition is a major cause of the compromised scale effect in e-hailing, pooling may further strengthens the
scale economies in e-hailing. However, pooling also induces extra detours in the pickup and dropoff phases, which potentially
compromise the scale economies. Accordingly, the pooling and routing algorithms might become more influential factors (Liu
et al., 2023; Fielbaum et al., 2023; Lehe et al., 2021). Yet, obtaining a closed-form expression of detours in ride-pooling has
proved to be particularly challenging unless strong assumptions and simplification are introduced (Wang et al., 2021; Mühle,
2023; Fielbaum and Pudāne, 2024). Therefore, extending this study to a reliable approximation of DSE for ride-pooling requires
further research efforts.

8. Conclusions

This study investigates the impact of walking and e-hailing on the scale economies of on-demand mobility services. To this end,
we develop a physical matching model that characterizes the detailed matching process between waiting passengers and cruising
vehicles in a grid network. The expected matching time, pickup time, and walking time when applicable at the stationary state
are derived for four particular service schemes: street-hailing without walking (𝐷 𝑆), street-hailing with walking (𝑊 𝑆), e-hailing
without walking (𝐷 𝐸), and e-hailing with walking (𝑊 𝐸). These results are then plugged into a system-optimum fleet sizing problem
to derive the optimal fleet as a function of demand rate. Accordingly, the scale economies in each scheme are evaluated as the degree
of scale economies (DSE) under the optimal fleet size.
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We analytically prove that the system exhibits economies of scale in all studied schemes with DSE falling in the range of (1,2) and
onotonically decreasing with demand. The DSE in the endogenous matching process, however, is distinct between street-hailing

nd e-hailing, and further, highly related to the existence of passenger competition. In particular, if there is no passenger competition,
he DSE of the matching process is constant and equals 2 in street-hailing and 1.5 in e-hailing, respectively. These findings are
onsistent with the findings of previous studies (Douglas, 1972; Arnott, 1996). While passengers are unlikely to compete with each
ther in street-hailing, it is quite often the case in e-hailing. We show that the DSE of e-hailing matching with passenger competition
s no longer a constant but also decreases with demand. This finding is also in line with existing empirical evidence (Zhang et al.,

2019) but has never been proved analytically. Finally, we show that, although walking does not fundamentally change the property
of DSE, it does affect its value with opposing forces. On the one hand, the reduced pickup and in-vehicle time improve the scale
effect. On the other hand, the extra walking time compromises the scale economies. Additionally, the vehicle concentration induced
by the passenger walking behaviors in street-hailing tends to further lower its DSE.

To validate these theoretical findings, we conduct a series of simulations on a subnetwork of Manhattan based on historical taxi
rip demand. The results demonstrate the economics of scale in on-demand mobility, showcase the benefits of walking, prove the
xistence of passenger competition in e-hailing, and generally agree with the DSE values predicted in our theory. It is worth noting
hat several assumptions introduced to the model (e.g., uniform demand distribution, regular network structure, and no rejections)
re relaxed in the simulation, which thus further verifies that our proposed model successfully captures the main trade-off and key
actors of scale economies.

This study has several limitations that also open directions for future research. First, the fleet sizing problem has assumed a
onstant cost per unit vehicle. When the labor supply is elastic, it shall be replaced with an inverse function of fleet size, which could

yield a different optimal fleet size and accordingly, a different DSE. We leave the study on DSE under various labor elasticities to
future research. On the other hand, we have assumed all passengers either walk or not, though, in reality, they may be heterogeneous.
The vehicle cruising may also adapt to passengers’ walking behaviors. Hence, another future direction is to extend the current
model to capture scenarios with mixed walking behaviors. Other heterogeneity among passengers and drivers (e.g., trip origin and
estination, cruising strategies, willingness to wait) also potentially affects DSE. A comprehensive sensitivity analysis of various
actors is regarded as a relevant direction for future work. Besides, when the demand is large enough, taxis and e-hailing can
ontribute significantly to congestion (Erhardt et al., 2019; Yang et al., 2005), which is a source of scale diseconomies. Such an
mpact, however, has not been captured in the current model as the vehicle speeds are assumed to be constant. Therefore, a future
irection is to investigate the congestion effect on the system scale economies. Finally, the simulations conducted in this study only
rovide a preliminary validation. More sophisticated numerical analyses are still needed to verify whether or not and in which
ondition our theories hold.
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Appendix A. Notations

See Table A.1.

Appendix B. Key parameters in the matching model

B.1. Matching area

As shown in Fig. B.1, there are 4 arcs at a distance 𝑖 from the passenger in street-hailing and 4(2𝑖− 1) arcs in e-hailing. Hence, the
matching area, i.e., the number of arcs within the matching radius 𝑅, is 𝐴 =

∑𝑅
𝑖=1 4 = 4𝑅 for street-hailing and 𝐴 =

∑𝑅
𝑖=1 4(2𝑖− 1) = 4𝑅2

for e-hailing.
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Table A.1
Notations and default values.

Variable Description Unit Value

𝐿 Number of local streets between every two major streets 3
𝑠 Length of each street segment m 120
𝑣 Vehicle travel speed on major street km/h 25
𝛼𝑙 Speed scaling factor for local street 1.67
𝛼𝑎 Speed scaling factor for walking 5
𝑉 (𝑉 ) (effective) idle vehicle density veh/arc
𝑊 Waiting passenger density pax/arc
𝑄 Demand rate pax/arc/s
𝑤𝑚 Matching time s
𝑤𝑝 Pickup time s
𝑤𝑎 Walking time s
𝐴𝑘 (𝐴𝑘) (effective) matching area in scheme 𝑘 arc
𝛾𝑘 Passengers competition in scheme 𝑘
𝜃𝐷 𝑆 (𝜃𝑊 𝑆 ) Vehicle density correction factor in street-hailing 1.33 (2)
𝑅𝐷 𝑆 , 𝑅𝑊 𝑆 Matching radius in street-hailing arc 1
𝑅𝐷 𝐸 , 𝑅𝑊 𝐸 Matching radius in e-hailing arc 14
𝛿𝐷 𝑆 , 𝛿𝑊 𝑆 Matching interval in street-hailing s 20
𝛿𝐷 𝐸 , 𝛿𝑊 𝐸 Matching interval in e-hailing s 20
𝛿 Time to drive through one segment of major street s 17.28
𝜌𝑘 Pickup time correction factor in scheme 𝑘
𝐷𝑝 (𝑑𝑝) Expected (approximated) e-hailing pickup distance arc
𝐷𝑎 Expected walking distance arc

𝑐1 Approximation parameters in e-hailing pickup distance
√

𝜋∕4
𝑐2 𝑒

√

𝜋

𝜏 Average door-to-door trip duration s 656.5
𝜏𝑘 Average trip duration in scheme 𝑘 s
𝑤𝑘 Total waiting time in scheme 𝑘 s
𝑐0 Operation cost per human-driven vehicle $/h 20
𝛽𝑚 Value of time for matching $/h 15.00
𝛽𝑝 Value of time for pickup $/h 12.51
𝛽𝑎 Value of time for walking $/h 14.51
𝛽𝑡 Value of time for in-vehicle time $/h 10.00

Fig. B.1. Illustration of matching radius and area.

B.2. Vacant vehicle density factor

As per Assumption 3, the distribution of vacant vehicles in street-hailing depends on the existence of walking. Specifically,
vehicles only cruise on local streets in 𝐷 𝑆 whereas only on major streets in 𝑊 𝑆. To derive 𝜃𝑘 in 𝐷 𝑆 and 𝑊 𝑆, we first consider the
network shown in Fig. 1 with 𝐾 major streets per side and 𝐿 local streets between every two major streets. In this case, the number
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Fig. B.2. Density correction factor against the number of major streets per side (with 𝐿 = 3).

of local and major arcs can be derived as

𝑁local = 2𝐿(𝐾 − 1)2(𝐿 + 1), (B.1)

𝑁major = 2𝐾(𝐾 − 1)(𝐿 + 1). (B.2)

The density factors are then computed as

𝜃𝐷 𝑆 =
𝑁local +𝑁major

𝑁local
= 1 + 1

𝐿(1 − 1∕𝐾)
, (B.3)

𝜃𝑊 𝑆 =
𝑁local +𝑁major

2𝑁major
= 1 + 𝐿

2
− 𝐿

2𝐾
. (B.4)

In Eq. (B.4), 𝜃𝑊 𝑆 is further divided by two because the passenger is waiting at a Type-3 intersection (see Fig. 1). As the study
region scales up, i.e., 𝐾 → ∞, the factors have limits 𝜃𝐷 𝑆 → 1 + 1

𝐿 and 𝜃𝑊 𝑆 = 1+𝐿
2 , as illustrated in Fig. B.2 with 𝐿 = 3. These limits

are then used as the default values in the numerical experiments.

B.3. Walking distance

Recall there are 𝐿 local streets between every two major streets. Hence, the number of Type-2 intersections inside each major
block is 𝐿2. The derivation of expected walking distance depends on whether 𝐿 is odd or even, though it leads to the same result.

When 𝐿 is even, there are 4 local intersections with walking distance 𝐿∕2, 12 local intersections with walking distance 𝐿∕2 − 1,
and so on. The general expression of expected walking distance is derived as

𝐷𝑎 = 1
𝐿2

[𝐿∕2
∑

𝑖=1
(8𝑖 − 4)

(𝐿
2
− 𝑖 + 1

)

]

= 1
𝐿2

[

4
(𝐿
2
+ 1

)

𝐿∕2
∑

𝑖=1
(2𝑖 − 1) − 8

𝐿∕2
∑

𝑖=1
𝑖2 + 4

𝐿∕2
∑

𝑖=1
𝑖

]

(B.5)

=
(𝐿 + 1)(𝐿 + 2)

6𝐿
.

On the other hand, when 𝐿 is odd, the central local intersection has walking distance (𝐿+ 1)∕2, surrounded by 8 local intersections
with walking distance (𝐿 + 1)∕2 − 1, and so on. In this case, the expected walking distance is given by

𝐷𝑎 = 1
𝐿2

⎡

⎢

⎢

⎢

⎣

𝐿 + 1
2

+

𝐿+1
2
∑

𝑖=2
8(𝑖 − 1)

(𝐿 + 1
2

+ 1 − 𝑖
)

⎤

⎥

⎥

⎥

⎦

(B.6)

= 1
𝐿2

⎡

⎢

⎢

⎢

⎣

𝐿 + 1
2

+ 4(𝐿 + 1)
𝐿+1
2
∑

𝑖=2
(𝑖 − 1) − 8

𝐿+1
2
∑

𝑖=2
(𝑖 − 1)2

⎤

⎥

⎥

⎥

⎦

=
(𝐿 + 1)(𝐿 + 2)

6𝐿
.
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Fig. B.3. Existence of passenger competition in 𝐷 𝑆 and 𝐷 𝐸 (with default parameter values in Table A.1).

B.4. Passenger competition in the analytical model

In Section 4, we introduce 𝛾𝑘 = max(𝐴𝑘𝑊 , 1) to capture passenger competition in the matching process. Later in the analysis,
we argue it has a negligible impact on street-hailing due to the limited matching radius. Here, we validate this state meanwhile
demonstrating the prevalence of passenger competition in e-hailing. Specifically, we solve the steady-state waiting passenger density
𝑊 using the matching models of street-hailing and e-hailing without passenger competition (without presuming the existence of
assenger competition). Fig. B.3 plots the number of waiting passengers within a matching area 𝐴𝑘𝑊 against the demand rate 𝑄. It
an be observed that the assumption of no passenger competition is violated in e-hailing at a fairly low demand rate, whereas it is
enerally satisfied in street-hailing. While the increased matching radius in e-hailing substantially reduces the matching friction
etween passengers and vehicles, it also induces considerable competition among passengers. This phenomenon has also been
ecognized in some previous work (e.g., Zhang et al., 2019), but unfortunately not yet been widely adopted in recent studies on

e-hailing services.

Appendix C. Remarks on Assumption 4

To simplify the derivation of matching and pickup times, we have assumed 𝛿𝑘 ≥ 𝛿 (see Assumption 4). One could argue that in
treet-hailing, this assumption does not hold as passengers are constantly looking for vacant vehicles and thus the matching interval
𝑘 is infinitesimal. As discussed below, such a deviation, however, does not cause much error in the analysis of passenger waiting
ime.

Suppose the matching interval is infinitesimal. Then the pickup time is 𝑅𝑘𝛿 for all passengers and the matching time corresponds
to the moment when the first vacant vehicle enters the matching area. Let 𝑤̃𝑚

𝑘 denote the matching time in this case, then the total
aiting time is 𝑤̃𝑚

𝑘 + 𝑅𝑘𝛿.
Now let us consider the case with 𝛿𝑘 ≥ 𝛿 and suppose the pickup vehicle is 𝑅𝑘𝑠 − 𝑟 from the passenger when matched with the

assenger with 𝑟 ≤ 𝛿𝑘𝑣. Accordingly, the matching time in this case is 𝑤𝑚
𝑘 = 𝑤̃𝑚

𝑘 + 𝑟∕𝑣 and the pickup time is 𝑤𝑝
𝑘 = (𝑅𝑘𝑠 − 𝑟)∕𝑣 =

𝑅𝑘𝛿 − 𝑟∕𝑣. Therefore, the total waiting time remains the same as the true scenario despite that the matching (pickup) time is
overestimated (underestimated) by 𝑟∕𝑣 ≤ 𝛿𝑘 (less than 20 s in the simulation experiments).

Appendix D. Profit-maximizing fleet size

The general pricing and fleet sizing problem of a profit-driven ride-hailing platform is formulated as follows:

max
𝑝,𝑁

𝛱(𝑝, 𝑁) = 𝑝𝑄 − 𝑐0𝑁 , (D.1a)

𝑠.𝑡. 𝑢 = 𝑝 + 𝛽𝑚𝑤𝑚 + 𝛽𝑝𝑤𝑝 + 2𝛽𝑎𝑤𝑎 + 𝛽𝑡𝜏 , (D.1b)

𝑄 = 𝑞(𝑢), (D.1c)

𝑁 = 𝑉 +𝑄(𝑤𝑝
𝑘 + 𝜏𝑘), (D.1d)

𝑊 = 𝑄𝑤𝑚, (D.1e)
𝑘
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𝑤𝑝
𝑘 = 𝑓 𝑝

𝑘 (𝑉 , 𝑊 ), (D.1f)

𝑤𝑚
𝑘 = 𝑓𝑚

𝑘 (𝑉 , 𝑊 ), (D.1g)

where 𝑢 is the generalized cost that consists of trip fare 𝑝 and the monetary cost of total travel time 𝛽𝑚𝑤𝑚 + 𝛽𝑝𝑤𝑝 + 2𝛽𝑎𝑤𝑎 + 𝛽𝑡𝜏,
𝑞(⋅) is the demand function that decreases with the generalized cost, and all other constraints remained the same as per (9). The
ubscript of service scheme 𝑘 is dropped for notation simplicity.

The formulation (D.1) has been widely used in the literature (e.g., Douglas, 1972). Now consider the platform aims to serve
a desired demand level 𝑄 as per the setting in Section 5. This is achieved by sustaining a reasonable service quality measure by
endogenous travel times 𝑤̌𝑚, 𝑤̌𝑝, 𝑤̌𝑎 for each price 𝑝̌ within a certain range. Accordingly, Problem (D.1) is reduced to

max
𝑁≥0

𝛱(𝑞 , 𝑁) = 𝑝̌𝑄 − 𝑐0𝑁 , (D.2a)

𝑠.𝑡. 𝛽𝑚𝑤𝑚 + 𝛽𝑝𝑤𝑝 + 2𝛽𝑎𝑤𝑎 + 𝛽𝑡𝜏 = 𝑞−1(𝑄) − 𝑝̌, (D.2b)

𝑁 = 𝑉 +𝑄(𝑤𝑝
𝑘 + 𝜏𝑘), (D.2c)

𝑊 = 𝑄𝑤𝑚
𝑘 , (D.2d)

𝑤𝑝
𝑘 = 𝑓 𝑝

𝑘 (𝑉 , 𝑊 ), (D.2e)

𝑤𝑚
𝑘 = 𝑓𝑚

𝑘 (𝑉 , 𝑊 ), (D.2f)

where 𝑞−1(⋅) denotes the inverse demand function.
Problem (D.2) is equivalent to the following with additional dual variable 𝜆:

max
𝜆≥0

min
𝑁≥0

(𝑁 , 𝜆) = 𝑐0𝑁 + 𝜆(𝛽𝑚𝑤𝑚 + 𝛽𝑝𝑤𝑝 + 2𝛽𝑎𝑤𝑎 + 𝛽𝑡𝜏), (D.3a)

𝑠.𝑡. 𝑁 = 𝑉 +𝑄(𝑤𝑝
𝑘 + 𝜏𝑘), (D.3b)

𝑊 = 𝑄𝑤𝑚
𝑘 , (D.3c)

𝑤𝑝
𝑘 = 𝑓 𝑝

𝑘 (𝑉 , 𝑊 ), (D.3d)

𝑤𝑚
𝑘 = 𝑓𝑚

𝑘 (𝑉 , 𝑊 ). (D.3e)

Accordingly, for each feasible price 𝑝, we can solve a pair of optimal solutions 𝑁 , 𝜆. Let 𝜆∗ be the dual solution at the profit-
maximizing price 𝑝∗. Then, the profit-maximizing fleet size is the same as the solution to the optimal fleet sizing problem with a
evised objective:

𝑇 𝐶(𝑁 , 𝑄) = 𝑐0𝑁 + 𝜇∗𝑄(𝛽𝑚𝑤𝑚 + 𝛽𝑝𝑤𝑝 + 2𝛽𝑎𝑤𝑎 + 𝛽𝑡𝜏), (D.4)

where the scale factor 𝜇∗ = 𝜆∗∕𝑄.
It can be easily verified that the properties of DSE derived from this revised system-optimal fleet sizing problem remain the same

as per those presented in Sections 5.2 and 5.3, though its absolute value changes due to the scaled user cost.

Appendix E. Proofs

E.1. Proposition 1

Due to Assumption 1, the number of vacant vehicles 𝑁𝑣
𝑘 within the effective matching area follows a spatial Poisson distribution,

where the effective vehicle density 𝑉𝑘 is the rate parameter and the effective matching area 𝐴𝑘 gives the area of the bounded
egion.3 Hence, at one matching instance, the probability that at least one vehicle appears in the effective matching area is given
y 𝑝𝑚𝑘 = 1 − 𝑃 𝑟(𝑁𝑣

𝑘 = 0) = 1 − exp(−𝐴𝑘𝑉𝑘). Thanks to Assumption 4, the consecutive matching instances are independent Bernoulli
trials with a success rate 𝑝𝑚𝑘 . Hence, the expected number of matching instances until a successful match is 1∕𝑝𝑚𝑘 , which yields the
expected matching time

𝑤𝑚
𝑘 =

(

1
𝑝𝑚𝑘

− 1
2

)

𝛿𝑘 =

[

1
1 − exp(−𝐴𝑘𝑉𝑘)

− 1
2

]

𝛿𝑘 ≈

(

1
𝐴𝑘𝑉𝑘

+ 1
2

)

𝛿𝑘. (E.1)

In Eq. (E.1), the first term in the parentheses gives the expected number of matching instances while the second accounts for the
passenger arrival time within the first matching interval. Here we introduce an approximate 1

1−exp (−𝑥) ≈ 1
𝑥 + 1 as illustrated in

Fig. E.1, where the error is computed as the approximation minus the exact value. Accordingly, Eq. (E.1) overestimates matching
ime with an approximate error bounded by 0.5𝛿𝑘 when 𝐴𝑘𝑉𝑘 → 0.

3 See https://web.mit.edu/urban_or_book/www/book/chapter3/3.8.html.
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Fig. E.1. Approximation introduced in Eq. (E.1).

E.2. Proposition 2

For both street-hailing and e-hailing, we first derive the pickup distance and then compute the pickup time according to the
fraction of the pickup route on local streets.

Suppose there are 𝑁 vacant vehicles inside the effective matching area and each vehicle 𝑣 is at a distance 𝑑𝑣 from the passenger.
Hence, the pickup distance is given by 𝑑min = min𝑣 𝑑𝑣, i.e., the passenger is picked up by the closest vehicle within the effective
matching area. Then, the expected pickup distance is given by 𝐷𝑝 = E[E[𝑑min|𝑁]].

For street-hailing, it is safe to assume at most one vacant vehicle enters the effective matching area in each matching interval.
Therefore, the expected pickup distance is reduced to

𝑑𝑝𝑘 = E[𝑑𝑣] =
𝑅
∑

𝑖=1
𝑖Pr (𝑑𝑣 = 𝑖) =

𝑅
∑

𝑖=1

𝑖
𝑅

= 1 + 𝑅
2

, 𝑘 ∈ {𝐷 𝑆 , 𝑊 𝑆}, (E.2)

where 𝑅 is the effective matching radius corresponding to 𝐴. Eq. (E.2) finally yields the expression in Proposition 2 by replacing 𝑅
with 𝑅𝑘∕𝛾𝑘 and subtracting the overestimated half arc.

As for e-hailing, we first introduce the approximation 𝐷𝑝 = E[E[𝑑min|𝑁]] ≈ E[𝑑min|E[𝑁]] and replace E[𝑁] = 𝑉 𝐴. It then yields
the approximate pickup distance

𝑑𝑝𝑘 = E[𝑑min|𝑉 𝐴] =
𝑅
∑

𝑖=1
Pr (𝑑min ≥ 𝑖|𝑉 𝐴) (E.3)

=
𝑅
∑

𝑖=1

(

Pr (𝑑𝑣 > 𝑖)
)𝑉 𝐴

=
𝑅
∑

𝑖=1

⎛

⎜

⎜

⎝

𝑅
∑

𝑘=𝑖+1
Pr (𝑑𝑣 = 𝑘)

⎞

⎟

⎟

⎠

4𝑉 𝑅2

=
𝑅
∑

𝑖=1

(

1 − 𝑖2

𝑅2

)4𝑉 𝑅2

, 𝑘 ∈ {𝐷 𝐸 , 𝑊 𝐸},

which can be further approximated as follows:
𝑅
∑

𝑖=1

(

1 − 𝑖2

𝑅2

)4𝑉 𝑅2

≈
𝑅
∑

𝑖=1
exp(−4𝑉 𝑖2) ≈ ∫

𝑅

0
exp(−4𝑉 𝑥2)d𝑥 = 1

4

√

𝜋
𝑉
er f (2

√

𝑉 𝑅), (E.4)

where the first approximation is due to the product limit formula of 𝑒𝑥 and the second smooths the sum over 𝑅 with an integral
over range [0, 𝑅].

The performance of approximation Eq. (E.4) is illustrated in Fig. E.2. Specifically, we plot the approximation error computed as
the approximation minus the exact value. In general, the approximation tends to overestimate the effective matching radius, though
the error is well bounded by 0.5 arc except when the vehicle supply is scarce (𝑉 < 0.1 veh/arc) and the effective matching radius
is small (e.g., 𝑅 = 5 arc).
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Fig. E.2. Approximation error of Eq. (E.4) at different effective matching radius.

Fig. E.3. Approximation error of pickup distance at different passenger competition levels.

In practice, the matching radius in e-hailing is usually set sufficiently large, e.g., 𝑅 > 10. When there is no passenger competition,
we have 𝑅 = 𝑅 and er f (2

√

𝑉 𝑅) ≈ 1. When there exists passenger competition, the error function is further expanded as

er f (2
√

𝑉 𝑅) = 1 − 2
√

𝜋 ∫

∞

2
√

𝑉 𝑅
exp(−𝑥2)d𝑥 (E.5)

≈ 1 − 1
√

𝜋
exp(−4𝑉 𝑅2) = 1 − 1

√

𝜋
exp

(

− 𝑉
𝑊

)

≈ 1 − 1
√

𝜋
(1 + 𝑒𝑉 ∕𝑊 )−1 =

(
√

𝜋 − 1)𝑊 + 𝑒
√

𝜋 𝑉
(
√

𝜋 − 1)𝑊 + (𝑊 + 𝑒
√

𝜋 𝑉 )

≈
𝑒
√

𝜋 𝑉
𝑊 + 𝑒

√

𝜋 𝑉
=

(

1 + 𝑊
𝑒
√

𝜋 𝑉

)−1

,

where the first approximation is due to linear interpolation, the second is due to Taylor approximation, and the third is due to the
much smaller value of (

√

𝜋 − 1)𝑊 compared to the other terms. Plugging Eq. (E.5) back into Eq. (E.4) then yields the expression of
𝑝 in Eq. (4).

Fig. E.3 plots the error of pickup distance approximation Eq. (4), again, computed as the approximation minus the exact value.
imilar to Fig. E.2, it shows that the approximation tends to overestimate the pickup distance with an error consistently below 0.5

arc when 𝑉 > 0.1 veh/arc. Otherwise, it shows different behaviors, depending on the passenger competition levels.
Finally, we derive the factor 𝜌𝑘 that accounts for the pickup route on local streets. For street-hailing, it simply concludes 𝜌𝑘 = 𝛼𝑙

for 𝑘 = 𝐷 𝑆 and 𝜌 = 1 for 𝑘 = 𝑊 𝑆 as vacant vehicles are cruising on one type of streets in each scheme (see Assumption 3). In
𝑘
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contrast, in e-hailing, only part of the pickup route happens on local streets. Let 𝑑𝑝𝑘,local be the length of the pickup route on local
treets, then the pickup time is given by

𝑤𝑝 =
[

𝛼𝑙𝑑𝑝𝑘,local + (𝑑𝑝𝑘 − 𝑑𝑝𝑘,local)
]

𝛿 =

[

1 + (𝛼𝑙 − 1)
𝑑𝑝𝑘,local

𝑑𝑝𝑘

]

𝑑𝑝𝑘𝛿 = 𝜌𝑘𝑑
𝑝
𝑘𝛿 . (E.6)

When the pickup vehicle is very close to the passenger (𝑑𝑝𝑘 → 0), the pickup route is fully on the same type of street: 𝑑𝑝𝑘,local = 𝑑𝑝𝑘 in
 𝐸 and 𝑑𝑝𝑘,local = 0 in 𝑊 𝐸. Yet, the difference due to walking in this case is almost negligible. Hence, we focus on the approximation

of 𝜌𝑘 when the pickup distance is relatively large (𝑑𝑝𝑘 → 𝑅𝑘). In this case, it is reasonable to assume the vehicle makes the majority
f its pickup trip on major streets and the length of the pickup route on local streets equals the sum of distances from the vehicle

location and from the trip origin to the closest major street, respectively. Depending on where the vehicle is cruising, the first leg
s either zero (i.e., on a major street) or with an average of 𝐷𝑎 (i.e., on a local street). The probability of each case depends on the
atio of local and major street arcs in the network, i.e., 𝜃𝑘 derived in Appendix B.2. The second leg is simply 𝐷𝑎 for DE and zero

for WE. With these considerations, the correction factor is finally specified as

𝜌𝑘 =

⎧

⎪

⎨

⎪

⎩

1 + (𝛼𝑙 − 1)
(

1 + 1
𝜃𝐷 𝑆

)

𝐷𝑎

𝑅𝑘
, 𝑘 = 𝐷 𝐸 ,

1 + (𝛼𝑙 − 1) 𝐷𝑎

𝜃𝐷 𝑆𝑅𝑘
, 𝑘 = 𝑊 𝐸 .

(E.7)

In Eq. (E.7), 1∕𝜃𝐷 𝑆 gives the probability of the vehicle cruising on local streets and 𝑑𝑝𝑘 is replaced by 𝑅𝑘.

E.3. Lemma 1

For street-hailing, the market equilibrium constraints are reduced to
⎧

⎪

⎨

⎪

⎩

𝑁 = 𝑉 +𝑄
(

𝜌𝑝𝑘
2 𝑅𝑘𝛿 + 𝜏𝑘

)

,

𝑊 = 𝑄
(

1
𝜃𝑘𝐴𝑘𝑉

+ 1
2

)

𝛿 ,
⇒

⎧

⎪

⎨

⎪

⎩

𝑉 = 𝑁 −𝑄
(

𝜌𝑝𝑘
2 𝑅𝑘𝛿 + 𝜏𝑘

)

,

𝑊 =
(

𝑄𝛿
𝜃𝑘𝐴𝑘

)

1
𝑉 + 𝛿

2 .
(E.8)

Hence, a sufficient condition for positive solutions of 𝑉 and 𝑊 is 𝑁 −𝑄
(

𝜌𝑝𝑘
2 𝑅𝑘𝛿 + 𝜏

)

> 0.
For e-hailing without passenger competition, the market equilibrium constraints reduce to

⎧

⎪

⎨

⎪

⎩

𝑁 = 𝑉 +𝑄
(

𝑐1𝜌
𝑝
𝑘𝛿𝑘

√

𝑉
+ 𝜏𝑘

)

,

𝑊 = 𝑄
(

1
𝐴𝑘𝑉

+ 1
2

)

𝛿 ,
⇒

⎧

⎪

⎨

⎪

⎩

(𝑐1𝜌
𝑝
𝑘𝛿𝑘𝑄)2

𝑉 = [𝑉 − (𝑁 −𝑄𝜏𝑘)]2,

𝑊 =
(

𝑄𝛿
𝐴𝑘

)

1
𝑉 + 𝛿

2 .
(E.9)

In this case, the sufficient condition for positive 𝑉 and 𝑊 is 𝑁 −𝑄 ̄𝜏 > 0.
Finally, for e-hailing with passenger competition, we first solve the implicit function Eq. (9e) to derive 𝑊 as a function of 𝑉 :

𝑊 =
(𝑊
𝑉

+ 1
2

)

𝛿𝑘𝑄 ⇒ 𝑊 =
𝛿𝑘𝑄𝑉

2(𝑉 − 𝛿𝑘𝑄)
. (E.10)

Thus, a necessary and sufficient condition for 𝑊 > 0 is 𝑉 > 𝛿𝑘𝑄.
On the other hand, Eq. (9b) is evaluated as

𝑁 = 𝑉 +𝑄

[

𝑐1𝜌
𝑝
𝑘𝛿𝑘

√

𝑉

(

1 + 𝑊
𝑐2𝑉

)−1
+ 𝜏𝑘

]

⇒
(𝑐1𝜌

𝑝
𝑘𝛿𝑘𝑄)2

𝑉
= [𝑉 − (𝑁 −𝑄𝜏𝑘)]2

(

1 + 𝑊
𝑐2𝑉

)2
(E.11)

From Eq. (E.10), we can further derive d𝑊 ∕d𝑉 = −2(𝑊 ∕𝑉 )2 < 0. Therefore,
(

1 + 𝑊
𝑐2𝑉

)

decreases with 𝑉 but remains larger than 1.
Accordingly, the solution of 𝑉 falls in the range of (𝑁 −𝑄𝜏𝑘,∞) and a sufficient condition for positive 𝑉 and 𝑊 is 𝑁 −𝑄(𝜏+𝛿𝑘) > 0.

E.4. Proposition 3

In street-hailing, the matching time is independent of 𝑊 while the pickup time is independent of both 𝑉 and 𝑊 . Then, plugging
= 𝑁 −

(

𝜌𝑘
2 𝑅𝑘𝛿 + 𝜏𝑘

)

𝑄 into Eq. (14) yields

0 = 𝑐0 −
𝛽𝑚𝛿𝑘𝑄
𝜃𝑘𝐴𝑘𝑉 2

𝑘

⇒ 𝑉 ∗ =

√

𝛽𝑚𝛿𝑘𝑄
𝑐0𝜃𝑘𝐴𝑘

. (E.12)

Let 𝐵0 =
√

𝛽𝑚𝛿𝑘
𝑐0𝜃𝑘𝐴𝑘

, then we have 𝑉 ∗ = 𝐵0
√

𝑄 and the optimal fleet size is

𝑁∗ = 𝐵0
√

𝑄 +
(

𝜌𝑘𝑅𝑘𝛿
2

+ 𝜏𝑘

)

𝑄, (E.13)
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which further yields the system cost as

𝑇 𝐶∗ =
(

𝑐0𝐵0 +
𝛽𝑚𝛿𝑘

𝜃𝑘𝐴𝑘𝐵0

)

𝑄
1
2 +

[

𝛽𝑚𝛿𝑘
2

+
𝜌𝑘𝑅𝑘𝛿

2
(𝑐0 + 𝛽𝑝) + 2𝛽𝑎𝑤𝑎

𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

𝑄 (E.14)

= 2
√

𝑐0𝛽𝑚𝛿𝑘
𝜃𝑘𝐴𝑘

𝑄
1
2 +

[

𝛽𝑚𝛿𝑘
2

+
𝜌𝑘𝑅𝑘𝛿

2
(𝑐0 + 𝛽𝑝) + 2𝛽𝑎𝑤𝑎

𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

𝑄

The average and marginal costs are then given by

𝐴𝐶∗ =

(

2

√

𝑐0𝛽𝑚𝛿𝑘
𝜃𝑘𝐴𝑘

)

𝑄− 1
2 +

[

𝛽𝑚𝛿𝑘
2

+
𝜌𝑘𝑅𝑘𝛿

2
(𝑐0 + 𝛽𝑝) + 2𝛽𝑎𝑤𝑎

𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

(E.15)

𝑀 𝐶∗ =

(
√

𝑐0𝛽𝑚𝛿𝑘
𝜃𝑘𝐴𝑘

)

𝑄− 1
2 +

[

𝛽𝑚𝛿𝑘
2

+
𝜌𝑘𝑅𝑘𝛿

2
(𝑐0 + 𝛽𝑝) + 2𝛽𝑎𝑤𝑎

𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

(E.16)

Note that Eqs. (E.15) and (E.16) can be expressed as

𝐴𝐶∗ = 2𝐵1𝑄
− 1

2 + 𝐵2, (E.17)

𝑀 𝐶∗ = 𝐵1𝑄
− 1

2 + 𝐵2, (E.18)

where 𝐵1 =
√

𝑐0𝛽𝑚𝛿𝑘
𝜃𝑘𝐴𝑘

and 𝐵2 = 𝛽𝑚𝛿𝑘
2 + 𝜌𝑘𝑅𝑘𝛿

2 (𝑐0 + 𝛽𝑝) + 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘 are both positive and only depend on model parameters.

ccordingly, we have

𝐷 𝑆 𝐸 = 𝐴𝐶∗

𝑀 𝐶∗ =
2𝐵1 + 𝐵2𝑄

1
2

𝐵1 + 𝐵2𝑄
1
2

(E.19)

which falls in the range of (1,2] with the maximum value of 2 at 𝑄 = 0 and decreases with 𝑄. Note that all the costs associated
with the endogenous matching process are included in the factor 𝐵1. It thus concludes that

𝐷 𝑆 𝐸en =
2𝐵1𝑄

− 1
2

𝐵1𝑄
− 1

2

= 2. (E.20)

E.5. Proposition 4

In e-hailing without passenger competition, the matching and pickup times are still independent of 𝑊 while the pickup time
becomes a function of 𝑉 . Their partial derivatives in this case are

𝑓𝑚
𝑘 =

(

1
𝐴𝑘𝑉

+ 1
2

)

𝛿𝑘 ⇒

{

𝜕𝑉 𝑓𝑚
𝑘 = − 𝛿𝑘

𝐴𝑘𝑉 2

𝜕𝑊 𝑓𝑚
𝑘 = 0

(E.21)

𝑓 𝑝
𝑘 =

𝑐1𝜌𝑘𝛿
√

𝑉
⇒

⎧

⎪

⎨

⎪

⎩

𝜕𝑉 𝑓
𝑝
𝑘 = − 𝑐1𝜌𝑘𝛿

2𝑉
3
2

𝜕𝑊 𝑓 𝑝
𝑘 = 0

(E.22)

To derive 𝜕𝑁ℎ𝑉𝑘 , we take derivative with respect to 𝑁 on both sides of Eq. (9b), which yields

1 = 𝜕𝑁ℎ𝑉𝑘 +𝑄

(

−
𝑐1𝜌𝑘𝛿

2𝑉
3
2

)

𝜕𝑁ℎ𝑉𝑘 , ⇒ 𝜕𝑁ℎ𝑉𝑘 = 𝑉
3
2

𝑉
3
2 − 𝑐1𝜌𝑘𝛿 𝑄

2

. (E.23)

Plugging Eqs. (E.21), (E.22) and (E.23) into Eq. (14) yields

0 = 𝑐0 +𝑄

[

𝛽𝑚
(

−
𝛿𝑘

𝐴𝑘𝑉 2
+ 0

)

+ 𝛽𝑝
(

−
𝑐1𝜌𝑘𝛿

2𝑉
3
2

+ 0
)]

𝑉
3
2

𝑉
3
2 − 𝑐1𝜌𝑘𝛿 𝑄

2

(E.24)

⇒ 𝑉 2 =
[

𝛽𝑚𝛿𝑘
𝑐0𝐴𝑘

+
𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)

√

𝑉
]

𝑄 (E.25)

𝑉 ∗ can be solved numerically by searching the intersection of both sides of Eq. (E.25) at different demand levels, as illustrated in
Fig. E.4(a). Further, as the first term in the right-hand-side (RHS) of Eq. (E.25) is close to zero due to the large value of 𝐴𝑘 (≫ 100
arc), we can drop it and introduce the approximation

𝑉 ∗ ≈
[

𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)

𝑄
]

2
3
= (𝐵0𝑄)

2
3 , (E.26)

where 𝐵0 = 𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)

. The approximation performance is demonstrated in Fig. E.4(b). It can be seen that the approximation
in general underestimates 𝑉 ∗ but the error can be safely ignored.
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Fig. E.4. 𝑉 ∗ in 𝐷 𝐸 without passenger competition (with default parameter values in Table A.1).

We then derive the matching and pickup times as

𝑤𝑚∗
𝑘 =

⎡

⎢

⎢

⎣

(𝐵0𝑄)−
2
3

𝐴𝑘
+ 1

2

⎤

⎥

⎥

⎦

𝛿𝑘, (E.27)

𝑤𝑝∗
𝑘 = 𝑐1𝜌𝑘𝛿(𝑉 ∗)−

1
2 = 𝑐1𝜌𝑘𝛿(𝐵0𝑄)−

1
3 , (E.28)

Plugging them into the fleet size formula gives

𝑁∗ = 𝐵
2
3
0

(

1 + 𝑐1𝜌𝑘𝛿
𝐵0

)

𝑄
2
3 + 𝜏𝑘𝑄. (E.29)

It finally gives the system cost as

𝑇 𝐶∗ = 𝐵
2
3
0

[

𝑐0 +
𝑐1𝜌𝑘𝛿
𝐵0

(𝑐0 + 𝛽𝑝)
]

𝑄
2
3 +

𝛽𝑚𝛿𝑘
𝐴𝑘

𝐵
− 2

3
0 𝑄

1
3 +

[

𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

𝑄, (E.30)

= 3𝑐0
[

𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)]
2
3
𝑄

2
3 +

𝛽𝑚𝛿𝑘
𝐴𝑘

[

𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)]− 2
3
𝑄

1
3 +

[

𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

𝑄.

Note that the first two terms in Eq. (E.30) have a lower bound 2
√

3𝑐0𝛽𝑚𝛿𝑘
𝐴𝑘

𝑄
1
2 due to Cauchy inequality, which shares the similar

form as street-hailing as per Eq. (E.14). It thus implies that, without passenger competition, the matching process in e-hailing
potentially has DSE equal to 2. However, this only happens when 𝐴𝑘 is small, i.e., the matching radius is small. In the more general
case with large 𝐴𝑘, the second term in Eq. (E.30) is close to zero and thus the system cost can be approximated as

𝑇 𝐶∗ ≈ 3𝑐0
[

𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)]
2
3
𝑄

2
3 +

[

𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

𝑄. (E.31)

Accordingly, the average and marginal costs are given by

𝐴𝐶∗ = 3𝑐0
[

𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)]
2
3
𝑄− 1

3 +
[

𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

, (E.32)

𝑀 𝐶∗ = 2𝑐0
[

𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)]
2
3
𝑄− 1

3 +
[

𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

. (E.33)

These can be similarly expressed as

𝐴𝐶∗ = 3𝐵1𝑄
− 1

3 + 𝐵2, (E.34)

𝑀 𝐶∗ = 2𝐵1𝑄
− 1

3 + 𝐵2, (E.35)

where 𝐵1 = 𝑐0
[

𝑐1𝜌𝑘𝛿
2

(

1 + 𝛽𝑝

𝑐0

)]
2
3 and 𝐵2 =

𝛽𝑚𝛿𝑘
2 + 2𝛽𝑎𝑤𝑎

𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘. It then yields

𝐷 𝑆 𝐸 = 𝐴𝐶∗

∗ =
3𝐵1 + 𝐵2𝑄

1
3

1
. (E.36)
𝑀 𝐶 2𝐵1 + 𝐵2𝑄 3
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The conclusions are drawn similarly to Proposition 3.

E.6. Proposition 5

In street-hailing with passenger competition, the matching time depends on both 𝑉 and 𝑊 , while the pickup time only depends
n 𝑊 . The partial derivatives are derived as

𝑓𝑚
𝑘 =

(

𝑊
𝜃𝑘𝑉

+ 1
2

)

𝛿𝑘 ⇒

⎧

⎪

⎨

⎪

⎩

𝜕𝑉 𝑓𝑚
𝑘 = − 𝛿𝑘𝑊

𝜃𝑘𝑉 2 ,

𝜕𝑊 𝑓𝑚
𝑘 = 𝛿𝑘

𝜃𝑘𝑉
,

(E.37)

𝑓 𝑝
𝑘 =

𝜌𝑘𝑅𝑘𝛿
2𝑊 𝐴𝑘

⇒

{

𝜕𝑉 𝑓𝑚
𝑝 = 0,

𝜕𝑊 𝑓𝑚
𝑝 = − 𝜌𝑘𝑅𝑘𝛿

2𝐴𝑘𝑊 2 .
(E.38)

From Eq. (9c), we can solve 𝑊 = 𝜃𝑘𝛿𝑘𝑄𝑉
2(𝜃𝑘𝑉 −𝛿𝑘𝑄) , which yields

𝜕𝑉 ℎ
𝑊
𝑘 = − 1

2𝜃𝑘

(

𝜃𝑘𝛿𝑘𝑄
𝜃𝑘𝑉 − 𝛿𝑘𝑄

)2
= − 2

𝜃𝑘

(𝑊
𝑉

)2
. (E.39)

We then take derivatives with respect to 𝑁 on both sides of Eq. (9b), which yields

1 = 𝜕𝑁ℎ𝑉𝑘 +𝑄
(

−
𝜌𝑘𝑅𝑘𝛿
2𝐴𝑘𝑊 2

) (
− 2𝑊 2

𝜃𝑘𝑉 2

)

𝜕𝑁ℎ𝑉𝑘 , (E.40)

⇒ 𝜕𝑁ℎ𝑉𝑘 = 𝑉 2

𝑉 2 + 𝜌𝑘𝑅𝑘𝛿
𝜃𝑘𝐴𝑘

𝑄
. (E.41)

Plugging all above equations into Eq. (14) yields

0 = 𝑐0 +𝑄
{

𝛽𝑚
[(

−
𝛿𝑘𝑊
𝑉 2

)

+
(

𝛿𝑘
𝜃𝑘𝑉

) (
− 2𝑊 2

𝜃𝑘𝑉 2

)]

(E.42)

+𝛽𝑝
[

0 +
(

−
𝜌𝑘𝑅𝑘𝛿
2𝐴𝑘𝑊 2

) (
− 2𝑊 2

𝜃𝑘𝑉 2

)]}

𝑉 2

𝑉 2 + 𝜌𝑘𝑅𝑘𝛿
𝜃𝑘𝐴𝑘

𝑄

⇒ 𝑉 2 =
[

𝛽𝑚𝛿𝑘
𝑐0𝜃𝑘

(

1 + 2𝑊
𝜃𝑘𝑉

)

𝑊 −
𝜌𝑘𝑅𝑘𝛿
𝜃𝑘𝐴𝑘

(

1 + 𝛽𝑝

𝑐0

)]

𝑄. (E.43)

Same as the cases without competition, 𝑉 ∗ can be solved numerically. Further, as shown in Fig. E.5(a), the first term in the
parentheses on RHS of Eq. (E.66) increases with 𝑄 while the second remains constant. To derive a close-formed solution to 𝑉 ∗,

e drop the second term and plug in the ratio 𝑊
𝑉 = 𝛿𝑘𝑄

2(𝜃𝑘𝑉 −𝛿𝑘𝑄) . This finally yields

𝑉 ∗ ≈
𝛿𝑘
𝜃𝑘

(

1 +
√

𝛽𝑚𝜃𝑘
2𝑐0

)

𝑄 (E.44)

As shown in Fig. E.5(b), the approximation is not perfect with a stable overestimate around 0.02 veh/arc. Nevertheless, it well
captures the linear relationship between 𝑄 and 𝑉 ∗, which is fundamentally different from the case without passenger competition,
i.e., 𝑉 ∗ ∝

√

𝑄 as per Eq. (E.12).
Let 𝐵0 =

√

𝛽𝑚𝜃𝑘
2𝑐0

, then the waiting passenger density can be represented as

𝑊 ∗ =
𝛿𝑘
2

(

1 + 1
𝐵0

)

𝑄, 𝑊 ∗

𝑉 ∗ =
𝜃𝑘
2𝐵0

. (E.45)

We then derive the matching and pickup times as

𝑤𝑚∗
𝑘 =

𝛿𝑘
2

(

1 + 1
𝐵0

)

, (E.46)

𝑤𝑝∗
𝑘 =

𝜌𝑘𝑅𝑘𝛿
𝛿𝑘𝐴𝑘

[(

1 + 1
𝐵0

)

𝑄
]−1

. (E.47)

These yield the optimal fleet size

𝑁∗ =
𝜌𝑘𝑅𝑘𝛿
𝛿𝑘𝐴𝑘

(

1 + 1
𝐵0

)−1
+
[

𝛿𝑘
𝜃𝑘

(1 + 𝐵0) + 𝜏𝑘

]

𝑄, (E.48)

and the system cost

𝑇 𝐶∗ =
𝜌𝑘𝑅𝑘𝛿 (𝑐0 + 𝛽𝑝)

(

1 + 1
)−1

+
[

𝑐0𝛿𝑘 (1 + 𝐵0) +
𝛽𝑚𝛿𝑘 +

𝛽𝑚𝛿𝑘 + 2𝛽𝑎𝑤𝑎 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

𝑄, (E.49)

𝛿𝑘𝐴𝑘 𝐵0 𝜃𝑘 2𝐵0 2 𝑘
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Fig. E.5. 𝑉 ∗ in 𝐷 𝑆 with passenger competition (with default parameter values in Table A.1).

=
𝜌𝑘𝑅𝑘𝛿
𝛿𝑘𝐴𝑘

(𝑐0 + 𝛽𝑝)
⎛

⎜

⎜

⎝

1 +
√

2𝑐0
𝛽𝑚𝜃𝑘

⎞

⎟

⎟

⎠

−1

+
⎡

⎢

⎢

⎣

𝑐0𝛿𝑘
𝜃𝑘

⎛

⎜

⎜

⎝

1 +
√

2𝛽𝑚𝜃𝑘
𝑐0

⎞

⎟

⎟

⎠

+
𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

⎤

⎥

⎥

⎦

𝑄.

The average and marginal costs in this case are

𝐴𝐶∗ =
𝜌𝑘𝑅𝑘𝛿
𝛿𝑘𝐴𝑘

(𝑐0 + 𝛽𝑝)
⎛

⎜

⎜

⎝

1 +
√

2𝑐0
𝛽𝑚𝜃𝑘

⎞

⎟

⎟

⎠

−1

𝑄−1 +
⎡

⎢

⎢

⎣

𝑐0𝛿𝑘
𝜃𝑘

⎛

⎜

⎜

⎝

1 +
√

2𝛽𝑚𝜃𝑘
𝑐0

⎞

⎟

⎟

⎠

+
𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

⎤

⎥

⎥

⎦

, (E.50)

𝑀 𝐶∗ =
𝑐0𝛿𝑘
𝜃𝑘

⎛

⎜

⎜

⎝

1 +
√

2𝛽𝑚𝜃𝑘
𝑐0

⎞

⎟

⎟

⎠

+
𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘, . (E.51)

The simplified expression is
𝐴𝐶∗ = 𝐵1𝑄

−1 + 𝐵2 + 𝐵3, (E.52)

𝑀 𝐶∗ = 𝐵2 + 𝐵3, (E.53)

where 𝐵1 =
𝜌𝑘𝑅𝑘𝛿
𝛿𝑘𝐴𝑘

(𝑐0 + 𝛽𝑝)
(

1 +
√

2𝑐0
𝛽𝑚𝜃𝑘

)−1

, 𝐵2 =
𝛽𝑚𝛿𝑘
2 + 2𝛽𝑎𝑤𝑎

𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘, and 𝐵3 =
𝑐0𝛿𝑘
𝜃𝑘

(

1 +
√

2𝛽𝑚𝜃𝑘
𝑐0

)

.

We then obtain the system-level DSE as

𝐷 𝑆 𝐸 = 𝐴𝐶∗

𝑀 𝐶∗ =
𝐵1

(𝐵2 + 𝐵3)𝑄
+ 1, (E.54)

and the DSE in the endogenous matching process is given by

𝐷 𝑆 𝐸en =
𝐵1𝑄−1 + 𝐵3

𝐵3
=

𝐵1
𝐵3𝑄

+ 1, (E.55)

due to the observation that all the associated costs are included in 𝐵1 and 𝐵3.
Both DSE monotonically decrease with 𝑄 and converge to 1, though their values are unbounded as per the formulas. Nevertheless,

we note that the demand rate 𝑄 has some lower bound to ensure the passenger competition indeed exists. Specifically, we have

𝛾𝑘 = 𝑊 ∗𝐴𝑘 =
𝛿𝑘𝐴𝑘
2

(

1 + 1
𝐵0

)

𝑄 > 1 (E.56)

⇒ 𝑄 > 2
𝛿𝑘𝐴𝑘

(

1 + 1
𝐵0

)−1
= 2

𝛿𝑘𝐴𝑘

⎛

⎜

⎜

⎝

1 +
√

2𝑐0
𝛽𝑚𝜃𝑘

⎞

⎟

⎟

⎠

−1

. (E.57)

Therefore, the DSE upper bounds are derived as

𝐷 𝑆 𝐸 < 1 + 𝐵1
𝐵2 + 𝐵3

⎡

⎢

⎢

𝛿𝑘𝐴𝑘
2

⎛

⎜

⎜

1 +
√

2𝑐0
𝛽𝑚𝜃𝑘

⎞

⎟

⎟

⎤

⎥

⎥

= 1 + 𝜌𝑘𝑅𝑘𝛿(𝑐0 + 𝛽𝑝)
2(𝐵2 + 𝐵3)

, (E.58)

⎣ ⎝ ⎠⎦
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𝐷 𝑆 𝐸en < 1 + 𝐵1
𝐵3

⎡

⎢

⎢

⎣

𝛿𝑘𝐴𝑘
2

⎛

⎜

⎜

⎝

1 +
√

2𝑐0
𝛽𝑚𝜃𝑘

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

= 1 + 𝜌𝑘𝑅𝑘𝛿(𝑐0 + 𝛽𝑝)
2𝐵3

. (E.59)

E.7. Proposition 6

In e-hailing with passenger competition, the matching and pickup times depend both on 𝑉 and 𝑊 , and the partial derivatives
re given by

𝑓𝑚
𝑘 =

(𝑊
𝑉

+ 1
2

)

𝛿𝑘 ⇒

{

𝜕𝑉 𝑓𝑚
𝑘 = − 𝛿𝑘𝑊

𝑉 2 ,
𝜕𝑊 𝑓𝑚

𝑘 = 𝛿𝑘
𝑉 ,

(E.60)

𝑓 𝑝
𝑘 =

𝑐1𝜌𝑘𝛿
√

𝑉

(

1 + 𝑊
𝑐2𝑉

)−1
⇒

⎧

⎪

⎨

⎪

⎩

𝜕𝑉 𝑓𝑚
𝑝 = − 𝑐1𝜌𝑘𝛿 𝜑

2𝑉
3
2

(

1 − 2𝜑𝑊
𝑐2𝑉

)

,

𝜕𝑊 𝑓𝑚
𝑝 = − 𝑐1𝜌𝑘𝛿 𝜑2

𝑐2𝑉
3
2

,
(E.61)

where 𝜑 =
(

1 + 𝑊
𝑐2𝑉

)−1
.

Similarly, we can solve 𝑊 from Eq. (9c) as 𝑊 = 𝛿𝑘𝑄𝑉
2(𝑉 −𝛿𝑘𝑄) , which yields

𝜕𝑉 ℎ
𝑊
𝑘 = −1

2

(

𝛿𝑘𝑄
𝑉 − 𝛿𝑘𝑄

)2
= −2

(𝑊
𝑉

)2
. (E.62)

Again, we take derivatives with respect to 𝑁 on both sides of Eq. (9b), which yields

1 = 𝜕𝑁ℎ𝑉𝑘 +𝑄

⎧

⎪

⎨

⎪

⎩

[

−
𝑐1𝜌𝑘𝛿 𝜑
2𝑉

3
2

(

1 − 2𝜑𝑊
𝑐2𝑉

)

]

+
⎛

⎜

⎜

⎝

−
𝑐1𝜌𝑘𝛿 𝜑2

𝑐2𝑉
3
2

⎞

⎟

⎟

⎠

[

−2
(𝑊
𝑉

)2]
⎫

⎪

⎬

⎪

⎭

𝜕𝑁ℎ𝑉𝑘 , (E.63)

⇒ 𝜕𝑁ℎ𝑉𝑘 = 𝑉
3
2

𝑉
3
2 − 𝑐1𝜌𝑘𝛿 𝜑𝑄

2

[

1 − 2𝜑𝑊
𝑐2𝑉

(

1 + 2𝑊
𝑉

)]
(E.64)

Plugging all above equations into Eq. (14) yields

0 = 𝑐0 +𝑄

{

𝛽𝑚
{(

−
𝛿𝑘𝑊
𝑉 2

)

+
[

−
2𝛿𝑘
𝑉

(𝑊
𝑉

)2]}

+ 𝛽𝑝
{[

−
𝑐1𝜌𝑘𝛿 𝜑
2𝑉

3
2

(

1 − 2𝜑𝑊
𝑐2𝑉

)

]

(E.65)

+
⎡

⎢

⎢

⎣

2𝑐1𝜌𝑘𝛿 𝜑2

𝑐2𝑉
3
2

(𝑊
𝑉

)2⎤
⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

⎫

⎪

⎬

⎪

⎭

𝑉
3
2

𝑉
3
2 − 𝑐1𝜌𝑘𝛿 𝜑𝑄

2

[

1 − 2𝜑𝑊
𝑐2𝑉

(

1 + 2𝑊
𝑉

)]

⇒ 𝑉 =

{

𝛽𝑚𝛿𝑘
𝑐0

(𝑊
𝑉

) (
1 + 2𝑊

𝑉

)

+
(

1 + 𝛽𝑝

𝑐0

)

𝑐1𝜌𝑘𝛿 𝜑
2
√

𝑉

[

1 − 2𝜑
𝑐2

(𝑊
𝑉

) (
1 + 2𝑊

𝑉

)

]

}

𝑄. (E.66)

Following the same procedure, we first solve 𝑉 ∗ numerically and then plot the two terms in the parentheses on RHS of Eq. (E.66)
in Fig. E.6(a). In this case, both terms converge to constants when 𝑄 is relatively large and the second is much closer to zero. Like
the case of street-hailing, we drop the second term and derive the following approximation by exploiting the ratio 𝑊

𝑉 = 𝛿𝑘𝑄
2(𝑉 −𝛿𝑘𝑄) :

𝑉 ∗ ≈ 𝛿𝑘

(

1 +
√

𝛽𝑚

2𝑐0

)

𝑄. (E.67)

The approximation performance is illustrated in Fig. E.6(b). Similar to the case without passenger competition, our approximation
tends to underestimate 𝑉 ∗ but the gap is almost negligible.

Note that 𝑉 ∗ above shares a similar form as per Eq. (E.44). Following the same procedure, we let 𝐵0 =
√

𝛽𝑚
2𝑐0

, then the waiting
passenger density and its ratio to the vacant vehicle density are obtained as

𝑊 ∗ = 1
2

(

1 + 1
𝐵0

)

𝛿𝑘𝑄, 𝑊 ∗

𝑉 ∗ = 1
2𝐵0

. (E.68)

Furthermore, the matching and pickup times are obtained as

𝑤𝑚∗
𝑘 =

𝛿𝑘
2

(

1 + 1
𝐵0

)

, (E.69)

𝑤𝑝∗
𝑘 = 𝑐1𝜌𝑘𝛿 𝜑∗ [𝛿𝑘(1 + 𝐵0)𝑄

]− 1
2 , (E.70)

where 𝜑∗ =
(

1 + 1
2𝑐1𝐵0

)−1
. We then derive the optimal fleet size

∗ ∗ [ ]− 1 1 [ ]
𝑁 = 𝑐1𝜌𝑘𝛿 𝜑 𝛿𝑘(1 + 𝐵0) 2 𝑄 2 + 𝛿𝑘(1 + 𝐵0) + 𝜏𝑘 𝑄, (E.71)
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Fig. E.6. 𝑉 ∗ in 𝐷 𝐸 with passenger competition (with default parameter values in Table A.1).

and the system cost

𝑇 𝐶∗ = 𝑐1𝜌𝑘𝛿 𝜑∗(𝑐0 + 𝛽𝑝)
[

𝛿𝑘(1 + 𝐵0)
]− 1

2 𝑄
1
2 (E.72)

+
[(

𝑐0𝛿𝑘(1 + 𝐵0) +
𝛽𝑚𝛿𝑘
2𝐵0

)

+
(

𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

)]

𝑄

= 𝑐1𝜌𝑘𝛿 𝜑∗(𝑐0 + 𝛽𝑝)

[

𝛿𝑘

(

1 +
√

𝛽𝑚

2𝑐0

)]− 1
2

𝑄
1
2 +

[

𝑐0𝛿𝑘

(

1 +
√

2𝛽𝑚
𝑐0

)

+
𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

𝑄.

Accordingly, the average and marginal costs are

𝐴𝐶∗ = 𝑐1𝜌𝑘𝛿 𝜑∗(𝑐0 + 𝛽𝑝)

[

𝛿𝑘

(

1 +
√

𝛽𝑚

2𝑐0

)]− 1
2

𝑄− 1
2 +

[

𝑐0𝛿𝑘

(

1 +
√

2𝛽𝑚
𝑐0

)

+
𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

, (E.73)

𝑀 𝐶∗ =
𝑐1𝜌𝑘𝛿 𝜑∗

2
(𝑐0 + 𝛽𝑝)

[

𝛿𝑘

(

1 +
√

𝛽𝑚

2𝑐0

)]− 1
2

𝑄− 1
2 +

[

𝑐0𝛿𝑘

(

1 +
√

2𝛽𝑚
𝑐0

)

+
𝛽𝑚𝛿𝑘
2

+ 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘

]

. (E.74)

The simplified expression is
𝐴𝐶∗ = 2𝐵1𝑄

− 1
2 + 𝐵2 + 𝐵3, (E.75)

𝑀 𝐶∗ = 𝐵1𝑄
− 1

2 + 𝐵2 + 𝐵3, (E.76)

where 𝐵1 =
𝑐1𝜌𝑘𝛿 𝜑∗

2 (𝑐0 + 𝛽𝑝)
[

𝛿𝑘
(

1 +
√

𝛽𝑚
2𝑐0

)]− 1
2 , 𝐵2 =

𝛽𝑚𝛿𝑘
2 + 2𝛽𝑎𝑤𝑎

𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘, and 𝐵3 = 𝑐0𝛿𝑘
(

1 +
√

2𝛽𝑚
𝑐0

)

.

This finally yields the system-level DSE

𝐷 𝑆 𝐸 = 𝐴𝐶∗

𝑀 𝐶∗ =
2𝐵1 + (𝐵2 + 𝐵3)𝑄

1
2

𝐵1 + (𝐵2 + 𝐵3)𝑄
1
2

, (E.77)

and the endogenous DSE

𝐷 𝑆 𝐸en =
2𝐵1 + 𝐵3𝑄

1
2

𝐵1 + 𝐵3𝑄
1
2

. (E.78)

Different from street-hailing, there is an explicit upper bound for both DSE as 2, though we can also derive a tighter upper bound
sing the minimum demand that induces passenger competition:

𝛾𝑘 = 𝑊 ∗𝐴𝑘 = 2𝛿𝑘𝑅2
𝑘

(

1 + 1
𝐵0

)

𝑄 > 1 (E.79)

⇒ 𝑄 > 1
2𝛿 𝑅2

(

1 + 1
𝐵0

)−1
= 1

2𝛿 𝑅2

⎛

⎜

⎜

1 +
√

2𝑐0
𝛽𝑚

⎞

⎟

⎟

−1

, (E.80)

𝑘 𝑘 𝑘 𝑘

⎝ ⎠
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which yields

𝐷 𝑆 𝐸 <
2𝐵1 + (𝐵2 + 𝐵3)

[

2𝛿𝑘𝑅2
𝑘

(

1 +
√

2𝑐0
𝛽𝑚

)]− 1
2

𝐵1 + (𝐵2 + 𝐵3)
[

2𝛿𝑘𝑅2
𝑘

(

1 +
√

2𝑐0
𝛽𝑚

)]− 1
2

= 1 + 𝑐1𝜌𝑘𝑅𝑘𝛿 𝜑∗(𝑐0 + 𝛽𝑝)

𝑐1𝜌𝑘𝑅𝑘𝛿 𝜑∗(𝑐0 + 𝛽𝑝) +
√

2(𝐵2 + 𝐵3)
, (E.81)

𝐷 𝑆 𝐸en <
2𝐵1 + 𝐵3

[

2𝛿𝑘𝑅2
𝑘

(

1 +
√

2𝑐0
𝛽𝑚

)]− 1
2

𝐵1 + 𝐵3

[

2𝛿𝑘𝑅2
𝑘

(

1 +
√

2𝑐0
𝛽𝑚

)]− 1
2

= 1 + 𝑐1𝜌𝑘𝑅𝑘𝛿 𝜑∗(𝑐0 + 𝛽𝑝)

𝑐1𝜌𝑘𝑅𝑘𝛿 𝜑∗(𝑐0 + 𝛽𝑝) +
√

2𝐵3

. (E.82)

E.8. Proposition 7

Recall that walking directly affects the parameter values in the following way:

• Increase vacant vehicle density factor 𝜃𝑘 in street-hailing if 𝐿(𝐾 − 1) > 𝐾, where 𝐿 is the number of local streets between each
pair of major streets and 𝐾 is the number of major streets along one side of the service region. See Appendix B.2 for more
details.

• Reduce the speed factor 𝜌𝑘; see Eqs. (3) and (4).
• Increase walking time 𝑤𝑎; see Eq. (5).
• Reduce average in-vehicle time 𝜏𝑘; see Eq. (6).

Recall that the DSE in street-hailing without passenger competition is given by

𝐷 𝑆 𝐸 =
2𝐵1 + 𝐵2𝑄

1
2

𝐵1 + 𝐵2𝑄
1
2

, (E.83)

where 𝐵1 =
√

𝑐0𝛽𝑚𝛿𝑘
𝜃𝑘𝐴𝑘

and 𝐵2 =
𝛽𝑚𝛿𝑘
2 + (𝑐0+𝛽𝑝)𝜌𝑘

2 𝑅𝑘𝛿 + 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘.

Accordingly, a larger 𝐵1 leads to a larger DSE while a larger 𝐵2 leads to a lower DSE. Note that 𝜃𝑘 only appears in 𝐵1 and a
arger 𝜃𝑘 yields a smaller 𝐵1. As the shift from 𝐷 𝑆 to 𝑊 𝑆 increases 𝜃𝑘, it thus concludes that the increased vacant vehicle density

due to walking compromises the DSE in street-hailing. On the other hand, 𝜌𝑘, 𝑤𝑎, 𝜏𝑘 only appear in 𝐵2 and an increase in their values
all leads to a larger 𝐵2. Since walking induces a smaller 𝜌𝑘, a positive 𝑤𝑎, and a reduced 𝜏𝑘, their corresponding impacts are as
reported in Table 1.

For e-hailing without passenger competition, we have

𝐷 𝑆 𝐸 =
3𝐵1 + 𝐵2𝑄

1
3

2𝐵1 + 𝐵2𝑄
1
3

, (E.84)

where 𝐵1 = 𝑐0
[(

1 + 𝛽𝑝

𝑐0

)

𝑐1𝜌𝑘𝛿
2

]
2
3 and 𝐵2 = 𝛽𝑚𝛿𝑘

2 + 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘. In this case, the impacts of 𝜌𝑘, 𝑤𝑎, 𝜏𝑘 are consistent with the

case of street-hailing.
Finally, e-hailing with passenger competition yields

𝐷 𝑆 𝐸 =
2𝐵1 + (𝐵2 + 𝐵3)𝑄

1
2

𝐵1 + (𝐵2 + 𝐵3)𝑄
1
2

, (E.85)

where 𝐵1 = 𝑐1𝜌𝑘𝛿 𝜑∗

2 (𝑐0 + 𝛽𝑝)
[

𝛿𝑘
(

1 +
√

𝛽𝑚
2𝑐0

)]− 1
2 , 𝐵2 = 𝛽𝑚𝛿𝑘

2 + 2𝛽𝑎𝑤𝑎
𝑘 + (𝑐0 + 𝛽𝑡)𝜏𝑘, 𝐵3 = 𝑐0𝛿𝑘

(

1 +
√

2𝛽𝑚
𝑐0

)

, and 𝜑∗ =
(

1 + 1
𝑐1

√

𝑐0
2𝛽𝑚

)−1
.

It is easy to verify that the same impacts of the three factors on DSE apply in this case.

E.9. Proposition 8

Following the results derived in Appendix E.8, we first compute the change in 𝐵2 in street-hailing due to walking:

𝐵2,𝑊 𝑆 − 𝐵2,𝐷 𝑆 = − 𝑐0 + 𝛽𝑝

2
(𝛼𝑙 − 1)𝑅𝑘𝛿 + 2𝐷𝑎𝛿

[

𝛽𝑎𝛼𝑎 − (𝑐0 + 𝛽𝑡)𝛼𝑙
]

. (E.86)

Plugging 𝛼𝑙 = 1 into Eq. (E.86), it thus yields 𝐵2,𝑊 𝑆 > 𝐵2,𝐷 𝑆 when 𝛽𝑎𝛼𝑎 > 𝑐0 + 𝛽𝑡. Additionally, as walking leads to a larger value
of 𝜃𝑊 𝑆 , we have 𝐵1,𝑊 𝑆 < 𝐵1,𝐷 𝑆 and it yields another negative scale effect. Therefore, the result in Proposition 8 for street-hailing
olds.

The result for e-hailing can be proved in a similar way. Specifically, under the condition 𝛼𝑙 = 1 and 𝛽𝑎𝛼𝑎 > 𝑐0+𝛽𝑡, one can easily
how 𝐵 > 𝐵 and 𝐵 = 𝐵 . It thus completes the proof.
2,𝑊 𝐸 2,𝐷 𝐸 1,𝑊 𝐸 2,𝐷 𝐸
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Table F.1
Main features of the network.
Feature Value Unit

Av. Door-to-door trip 11.3 min
Av. Arc length 44 s
Av. Major arc length 40 s
Av. Local arc length 50.3 s
Av. Walking time in WS 5.3 min
Av. WS in-vehicle trip 9.5 min

Appendix F. Network in simulations

The whole Manhattan dataset is strongly unbalanced, with most origins and destinations occurring south of Central Park (Fielbaum
et al., 2021). To obtain a setting that is closer to our analytical model, we crop the network to consider only the south of Central
ark. The resulting network contains 1966 nodes and 4253 edges.

As for travel demand, we first select trips with both origin and destination in the cropped network. We also prune all requests
with an in-vehicle distance between origin and destination shorter than 5 min. This finally gives a total of 14,213 requests. In the
simulations, we random subsets from this pool of requests. To reduce the impact of randomness, each scenario is simulated 5 times
and the average results are reported.

To simulate the WS scheme, we need to identify the connected subnetwork of the ‘‘major streets’’. Let us denote G = (V,E) the
riginal network, and 𝑑(𝑢1, 𝑢2) the length of the shortest walking path between any pair of nodes 𝑢1, 𝑢2. How to identify a continuous

street within a city graph is a complex task per se (Lin and Ban, 2013) and beyond the scope of this paper. Instead, we use a simple
method that consists of two steps:

1. Select a set of ‘‘major nodes’’ M ⊆ V. We first define distance threshold 𝑑𝑀 (e.g., maximum walking distance), then sort
all the edges in E in the descending order of travel speed and exclude those longer than 𝑑𝑀 . Starting from M = ∅, we
sequentially take 𝑒𝑖 = (𝑢𝑖, 𝑣𝑖) for 𝑖 = 1,… ,𝓁 and compute the distance of both edge nodes M. If there exist 𝑤1, 𝑤2 ∈ M such
that 𝑑(𝑢𝑖, 𝑤1) ≤ 𝑑𝑀 , 𝑑(𝑣𝑖, 𝑤2) ≤ 𝑑𝑀 , we regard nodes 𝑢𝑖, 𝑣𝑖 as already covered, i.e., they can be reached from some major nodes
within the threshold distance. Otherwise, we add 𝑢𝑖 in M and move to the next edge.

2. Define the set of major streets. An edge 𝑒 ∈ E is labeled as a major street if there exist 𝑢1, 𝑢2 ∈ M such that the shortest path
between 𝑢1 and 𝑢2 contains edge 𝑒.

In this study, we use the maximum walking time of 2 min to define the threshold distance 𝑑𝑀 , which yields a subnetwork with
991 arcs.
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