
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023 1

Learning to Play Trajectory Games Against
Opponents with Unknown Objectives

Xinjie Liu⋆, Lasse Peters⋆, and Javier Alonso-Mora

Abstract—Many autonomous agents, such as intelligent ve-
hicles, are inherently required to interact with one another.
Game theory provides a natural mathematical tool for robot
motion planning in such interactive settings. However, tractable
algorithms for such problems usually rely on a strong assumption,
namely that the objectives of all players in the scene are known.
To make such tools applicable for ego-centric planning with only
local information, we propose an adaptive model-predictive game
solver, which jointly infers other players’ objectives online and
computes a corresponding generalized Nash equilibrium (GNE)
strategy. The adaptivity of our approach is enabled by a
differentiable trajectory game solver whose gradient signal is
used for maximum likelihood estimation (MLE) of opponents’
objectives. This differentiability of our pipeline facilitates direct
integration with other differentiable elements, such as neural
networks (NNs). Furthermore, in contrast to existing solvers for
cost inference in games, our method handles not only partial
state observations but also general inequality constraints. In two
simulated traffic scenarios, we find superior performance of our
approach over both existing game-theoretic methods and non-
game-theoretic model-predictive control (MPC) approaches. We
also demonstrate our approach’s real-time planning capabilities
and robustness in two-player hardware experiments.

Index Terms—Trajectory games, multi-robot systems, inte-
grated planning and learning, human-aware motion planning.

I. INTRODUCTION

MANY robot planning problems, such as robot naviga-
tion in a crowded environment, involve rich interactions

with other agents. Classic “predict-then-plan” frameworks
neglect the fact that other agents in the scene are respon-
sive to the ego-agent’s actions. This simplification can result
in inefficient or even unsafe behavior [1]. Dynamic game
theory explicitly models the interactions as coupled trajec-
tory optimization problems from a multi-agent perspective.
A noncooperative equilibrium solution of this game-theoretic
model then provides strategies for all players that account
for the strategic coupling of plans. Beyond that, general
constraints between players, such as collision avoidance, can

Manuscript received: December, 16, 2022; Revised March, 22, 2023;
Accepted April, 17, 2023.

This paper was recommended for publication by Editor G. Venture upon
evaluation of the Associate Editor and Reviewers’ comments.

This work is funded in part by the European Union (ERC, INTERACT,
101041863). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them.

All authors are with the Department of Cognitive Robotics (CoR),
Delft University of Technology, 2628 CD Delft, Netherlands.
x.liu-47@student.tudelft.nl; l.peters@tudelft.nl;
j.alonsomora@tudelft.nl.

⋆Equal contribution.
Digital Object Identifier (DOI): see top of this page.

1

2 3 4

5 6 7

ob
se

rv
at

io
n

lik
el

ih
oo

d
lo

ss

Objective Inference

gradient steps on θ~

Fig. 1: An ego-agent (red) merging onto a busy road populated
by six surrounding vehicles whose preferences for travel
velocity and lane are initially unknown. Our approach adapts
the ego agent’s strategy by inferring opponents’ intention
parameters θ̃ from partial state observations.

also be handled explicitly. All of these features render game-
theoretic reasoning an attractive approach to interactive motion
planning.

In order to apply game-theoretic methods for interactive
motion planning from an ego-centric rather than omniscient
perspective, such methods must be capable of operating only
based on local information. For instance, in driving scenarios
as shown in Fig. 1, the red ego-vehicle may only have partial-
state observations of the surrounding vehicles and incomplete
knowledge of their objectives due to unknown preferences for
travel velocity, target lane, or driving style. Since vanilla game-
theoretic methods require an objective model of all players [2],
[3], this requirement constitutes a key obstacle in applying
such techniques for autonomous strategic decision-making.

To address this challenge, we introduce our main contri-
bution: a model-predictive game solver, which adapts to un-
known opponents’ objectives and solves for generalized Nash
equilibrium (GNE) strategies. The adaptivity of our approach
is enabled by a differentiable trajectory game solver whose
gradient signal is used for MLE of opponents’ objectives.

We perform thorough experiments in simulation and on
hardware to support the following three key claims: our solver
(i) outperforms both game-theoretic and non-game-theoretic
baselines in highly interactive scenarios, (ii) can be combined
with other differentiable components such as NNs, and (iii) is
fast and robust enough for real-time planning on a hardware
platform.

II. RELATED WORK

To put our contribution into context, this section discusses
four main bodies of related work. First, we discuss works
on trajectory games which assume access to the objectives

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023

of all players in the scene. Then, we introduce works on
inverse dynamic games that infer unknown objectives from
data. Thereafter, we also relate our work to non-game-theoretic
interaction-aware planning-techniques. Finally, we survey re-
cent advances in differentiable optimization, which provide the
underpinning for our proposed differentiable game solver.

A. N-Player General-Sum Dynamic Games

Dynamic games are well-studied in the literature [4]. In
robotics, a particular focus is on multi-player general-sum
games in which players may have differing yet non-adversarial
objectives, and states and inputs are continuous.

Various equilibrium concepts exist in dynamic games.
The Stackelberg equilibrium concept [5] assumes a “leader-
follower” hierarchy, while the Nash equilibrium prob-
lem (NEP) [2], [5] does not presume such a hierarchy. Within
the scope of NEP, there exist open-loop NEPs [3] and feedback
NEPs [2], [6]. We refer the readers to [4] for more details about
the difference between the concepts. When shared constraints
exist between players, such as collision avoidance constraints,
one player’s feasible set may depend on other players’ deci-
sions. In that case, the problem becomes a generalized Nash
equilibrium problem (GNEP) [7]. In this work, we focus on
GNEPs under an open-loop information pattern which we
solve by converting to an equivalent Mixed Complementarity
Problem (MCP) [8].

B. Inverse Games

There are three main paradigms for solving inverse
games: (i) Bayesian inference, (ii) minimization of
Karush–Kuhn–Tucker (KKT) residuals, and (iii) equilibrium-
constrained maximum-likelihood estimation. In type (i)
methods, Le Cleac’h et al. [9] employ an Unscented Kalman
Filter (UKF). This sigma-point sampling scheme drastically
reduces the sampling complexity compared to vanilla
particle filtering. However, a UKF is only applicable for
uni-modal distributions, and extra care needs to be taken
when uncertainty is multi-modal, e.g., due to multiple Nash
equilibria. Type (ii) methods require full demonstration
trajectories, i.e., including noise-free states and inputs,
to cast the N -player inverse game as N independent
unconstrained optimization problems [10], [11]. However,
they assume full constraint satisfaction at the demonstration
and have limited scalability with noisy data [12]. The
type (iii) methods use KKT conditions of an open-loop Nash
equilibrium (OLNE) as constraints to formulate a constrained
optimization problem [12]. This type of method finds the
same solution as type (ii) methods in the noise-free cases but
can additionally handle partial and noisy state observations.
However, encoding the equilibrium constraints is challenging,
as it typically yields a non-convex problem, even in relatively
simple linear-quadratic game settings. This challenge is even
more pronounced when considering inequality constraints
of the observed game, as this results in complementarity
constraints in the inverse problem.

Our solution approach also matches the observed trajectory
data in an MLE framework. In contrast to all methods above,

we do so by making a GNE solver differentiable. This ap-
proach yields two important benefits over existing methods:
(i) general (coupled) inequality constraints can be handled
explicitly, and (ii) the entire pipeline supports direct integration
with other differentiable elements, such as NNs. This latter
benefit is a key motivation for our approach that is not enabled
by the formulations in [9] and [12].

Note that Geiger et al. [13] explore a similar differentiable
pipeline for inference of game parameters. In contrast to their
work, however, our method is not limited to the special class
of potential games and applies to general GNEPs.

C. Non-Game-Theoretic Interaction Models

Besides game-theoretic methods, two categories of
interaction-aware decision-making techniques have been
studied extensively in the context of collision avoidance and
autonomous driving: (i) approaches that learn a navigation
policy for the ego-agent directly without explicitly modeling
the responses of others [14], [15], [16], and (ii) techniques
that explicitly predict the opponents’ actions to inform the
ego-agent’s decisions [17], [18], [19], [20], [21]. This latter
category may be further split by the granularity of coupling
between the ego-agent’s decision-making process and the
predictions of others. In the simplest case, prediction depends
only upon the current physical state of other agents [22].
More advanced interaction models condition the behavior
prediction on additional information such as the interaction
history [17], the ego-agent’s goal [19], [20], or even the
ego-agent’s future trajectory [18], [21].

Our approach is most closely related to this latter body
of work: by solving a trajectory game, our method captures
the interdependence of future decisions of all agents; and
by additionally inferring the objectives of others, predictions
are conditioned on the interaction history. However, a key
difference of our method is that it explicitly models others
as rational agents unilaterally optimizing their own cost. This
assumption provides additional structure and offers a level of
interpretability of the inferred behavior.

D. Differentiable Optimization

Our work is enabled by differentiating through a GNE
solver. Several works have explored the idea of propagating
gradient information through optimization algorithms [23],
[24], [25], enabling more expressive neural architectures.
However, these works focus on optimization problems and
thus only apply to special cases of games, such as potential
games studied by Geiger et al. [13]. By contrast, differentiating
through a GNEP involves N coupled optimization problems.
We address this challenge in section IV-B.

III. PRELIMINARIES

This section introduces two key concepts underpinning
our work: forward and inverse dynamic games. In forward
games, the objectives of players are known, and the task is
to find players’ strategies. By contrast, inverse games take

LIU et al.: LEARNING TO PLAY TRAJECTORY GAMES AGAINST OPPONENTS WITH UNKNOWN OBJECTIVES 3

(partial) observations of strategies as inputs to recover initially
unknown objectives. In Section IV, we combine these two
approaches into an adaptive solver that computes forward
game solutions while estimating player objectives.

A. General-Sum Trajectory Games

Consider an N -player discrete-time general-sum trajectory
game with horizon of T . In this setting, each player i has a
control input uit ∈ Rmi

which they may use to influence the
their state xit ∈ Rni

at each discrete time t ∈ [T]. In this work,
we assume that the evolution of each player’s state is charac-
terized by an individual dynamical system xit+1 = f i(xit, u

i
t).

For brevity throughout the remainder of the paper, we shall use
boldface to indicate aggregation over players and capitalization
for aggregation over time, e.g., xt := (x1t , . . . , x

N
t), U i :=

(ui1, . . . , u
i
T), X := (x1, . . . ,xT). With a joint trajectory

starting at a given initial state x̂1 := (x̂11, . . . , x̂
N
1), each

player seeks to find a control sequence U i to minimize
their own cost function J i(X, U i; θi), which depends upon
the joint state trajectory X as well as the player’s control
input sequence U i and, additionally, takes in a parameter
vector θi.1 Each player must additionally consider private
inequality constraints pgi(Xi, U i) ≥ 0 as well as shared
constraints sg(X,U) ≥ 0. This latter type of constraint
is characterized by the fact that all players have a shared
responsibility to satisfy it, with a common example being
collision avoidance constraints between players. In summary,
this noncooperative trajectory game can be cast as a tuple of N
coupled trajectory optimization problems:

∀i ∈ [N]



min
Xi,Ui

J i(X, U i; θi)

s.t. xit+1 = f i(xit, u
i
t),∀t ∈ [T − 1]

xi1 = x̂i1
pgi(Xi, U i) ≥ 0
sg(X,U) ≥ 0.

(1)

Note that each player’s feasible set in this problem may
depend upon the decision variables of others, which makes it
a GNEP rather than a standard NEP [7].

A solution of this problem is a tuple of GNE strate-
gies U∗ := (U1∗, . . . , UN∗) that satisfies the inequali-
ties J i(X∗, U i∗; θi) ≤ J i((Xi,X¬i∗), U i; θi) for any feasible
deviation (Xi, U i) of any player i, with X¬i denoting all but
player i’s states. Since identifying a global GNE is generally
intractable, we require these conditions only to hold locally.
At a local GNE, then, no player has a unilateral incentive to
deviate locally in feasible directions to reduce their cost.

Running example: We introduce a simple running ex-
ample2 which we shall use throughout the presentation to
concretize the key concepts. Consider a tracking game played
between N = 2 players. Let each agent’s dynamics be
characterized by those of a planar double-integrator, where
states xit = (pix,t, p

i
y,t, v

i
x,t, v

i
y,t) are position and velocity, and

1The role of the parameters will become clear later in the paper when we
move on to inverse dynamic games.

2Our final evaluation in Section V features denser interaction such as the
7-player ramp-merging scenario shown in Fig. 1.

control inputs uit = (aix,t, a
i
y,t) are acceleration in horizontal

and vertical axes in a Cartesian frame. We define the game’s
state as the concatenation of the two players’ individual
states xt := (x1t , x

2
t). Each player’s objective is characterized

by an individual cost

J i =

T−1∑
t=1

∥pit+1 − pigoal∥22 + 0.1∥uit∥22

+ 50max(0, dmin − ∥pit+1 − p−i
t+1∥2)3, (2)

where we set p1goal = p2t so that player 1, the tracking robot,
is tasked to track player 2, the target robot. Player 2 has a
fixed goal point p2goal. Both agents wish to get to their goal
position efficiently while avoiding proximity beyond a minimal
distance dmin. Players also have shared collision avoidance
constraints sgt+1(xt+1,ut+1) = ∥p1t+1 − p2t+1∥2 − dmin ≥
0,∀t ∈ [T − 1] and private bounds on state and controls
pgi(Xi, U i). Agents need to negotiate and find an underlying
equilibrium strategy in this noncooperative game, as no one
wants to deviate from the direct path to their goal.

B. Inverse Games

We now switch context to the inverse dynamic game setting.
Let θ := (x̂1, θ

2, ..., θN) denote the aggregated tuple of param-
eters initially unknown to the ego-agent with index 1. Note that
we explicitly infer the initial state of a game x̂1 to account for
the potential sensing noise and partial state observations. To
model the inference task over these parameters, we assume that
the ego-agent observes behavior originating from an unknown
Nash game Γ(θ) := (x̂1,

sg, {f i,p gi, J i(·; θi)}i∈[N]), with
objective functions and constraints parameterized by initially
unknown values θi and x̂1, respectively.

Similar to the existing method [12], we employ an MLE
formulation to allow observations to be partial and noise-
corrupted. In contrast to that method, however, we also allow
for inequality constraints in the hidden game. That is, we
propose to solve

max
θ,X,U

p(Y | X,U)

s.t. (X,U) is a GNE of Γ(θ)
(3)

where p(Y | X,U) denotes the likelihood of obser-
vations Y := (y1, ...,yT) given the estimated game tra-
jectory (X,U) induced by parameters θ. This formula-
tion yields an mathematical program with equilibrium con-
straints (MPEC) [26], where the outer problem is an esti-
mation problem while the inner problem involves solving a
dynamic game. When the observed game includes inequality
constraints, the resulting inverse problem necessarily contains
complementarity constraints and only few tools are available to
solve the resulting problem. In the next section, we show how
to transform Eq. (3) into an unconstrained problem by making
the inner game differentiable, which also enables combination
with other differentiable components.

Running example: We assign the tracker (player 1) to be
the ego-agent and parameterize the game with the goal position
of the target robot θ2 = p2goal. That is, the tracker does not

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023

know the target agent’s goal and tries to infer this parameter
from position observations. To ensure that Eq. (3) remains
tractable, the ego-agent maintains only a fixed-length buffer of
observed opponent’s positions. Note that solving the inverse
game requires solving games rather than optimal control
problems at the inner level to account for the noncooperative
nature of observed interactions, which is different from inverse
optimal control (IOC) even in the 2-player case. We employ
a Gaussian observation model, which we represent with an
equivalent negative log-likelihood objective ∥Y − r(X,U)∥22
in Eq. (3), where r(X,U) maps (X,U) to the corresponding
sequence of expected positions.

IV. ADAPTIVE MODEL-PREDICTIVE GAME PLAY

We wish to solve the problem of model-predictive game
play (MPGP) from an ego-centric perspective, i.e., without
prior knowledge of other players’ objectives. To this end,
we present an adaptive model-predictive game solver that
combines the tools of Section III: first, we perform MLE of un-
known objectives by solving an inverse game (Section III-B);
then, we solve a forward game using this estimate to recover
a strategic motion plan (Section III-A).

A. Forward Games as MCPs

We first discuss the conversion of the GNEP in Eq. (1)
to an equivalent MCP. There are three main advantages of
taking this view. First, there exists a wide range of off-the-
shelf solvers for this problem class [27]. Furthermore, MCP
solvers directly recover strategies for all players simultane-
ously. Finally, this formulation makes it easier to reason about
derivatives of the solution w.r.t. to problem data. As we shall
discuss in Section IV-C, this derivative information can be
leveraged to solve the inverse game problem of Eq. (3).

In order to solve the GNEP presented in Eq. (1) we derive
its first-order necessary conditions. We collect all equality
constraints for player i in Eq. (1) into a vector-valued function
hi(Xi, U i; x̂i1), introduce Lagrange multipliers µi, pλi and sλ
for constraints hi(Xi, U i; x̂i1),

pgi(Xi, U i), and sg(X,U) and
write the Lagrangian for player i as

Li(X,U, µi, pλi, sλ; θ) = J i(X,U; θi) (4)

+ µi⊤hi(Xi, U i; x̂i1)− sλ⊤sg(X,U)− pλi⊤pgi(Xi, U i).

Note that we share the multipliers associated with shared
constraints between the players to encode equal constraint sat-
isfaction responsibility [28]. Under mild regularity conditions,
e.g., linear independence constraint qualification (LICQ), a
solution of Eq. (1) must satisfy the following joint KKT
conditions:

∀i ∈ [N]

{
∇(Xi,Ui)Li(X,U, µi, pλi, sλ; θ) = 0

0 ≤ pgi(Xi, U i) ⊥ pλi ≥ 0

h(X,U; x̂1) = 0

0 ≤ sg(X,U) ⊥ sλ ≥ 0,

(5)

where, for brevity, we denote by h(X,U; x̂1) the aggregation
of all equality constraints. If the second directional derivative
of the Lagrangian is positive along all feasible directions at

a solution of Eq. (5)—a condition that can be checked a
posteriori—this point is also a solution of the original game.
In this work, we solve trajectory games by viewing their KKT
conditions through the lens of MCPs [8, Section 1.4.2].

Definition 1: A Mixed Complementarity Problem (MCP)
is defined by the following problem data: a function F (z) :
Rd 7→ Rd, lower bounds ℓj ∈ R ∪ {−∞} and upper bounds
uj ∈ R∪{∞}, each for j ∈ [d]. The solution of an MCP is a
vector z∗ ∈ Rn, such that for each element with index j ∈ [d]
one of the following equations holds:

z∗j = ℓj , Fj(z
∗) ≥ 0 (6a)

ℓj < z∗j < uj , Fj(z
∗) = 0 (6b)

z∗j = uj , Fj(z
∗) ≤ 0. (6c)

The parameterized KKT system of Eq. (5) can be expressed
as a parameterized family of MCPs with decision variables
corresponding to the primal and dual variables of Eq. (5),

z =
[
X⊤,U⊤,µ⊤, pλ1⊤, . . . , pλN⊤, sλ⊤

]⊤
,

and problem data

F (z; θ) =



∇(X1,U1)Li

...
∇(XN ,UN)LN

h
pg1

...
pgN
sg


, ℓ =



−∞
...
−∞
−∞
0
...
0
0


, u =



∞
...
∞
∞
∞
...
∞
∞


,

(7)
where, by slight abuse of notation, we overload F to be
parametrized by θ via Li and use ∞ to denote elements for
which upper or lower bounds are dropped.

B. Differentiation of an MCP solver

An MCP solver may be viewed as a function, mapping
problem data to a solution vector. Taking this perspective,
for a parameterized family of MCPs as in Eq. (7), we wish
to compute the function’s derivatives to answer the following
question: How does the solution z∗ respond to local changes
of the problem parameters θ?

1) The Nominal Case: Let Ψ(θ) := (F (·; θ), ℓ, u) denote
an MCP parameterized by θ ∈ Rp and let z∗ ∈ Rn denote
a solution of that MCP, which is implicitly a function of θ.
For this nominal case, we consider only solutions at which
strict complementarity holds. We shall relax this assumption
later. If F is smooth, i.e., F (·; θ), F (z∗; ·) ∈ C1, we can
recover the Jacobian matrix ∇θz

∗ =
(

∂z∗
j

∂θk

)
∈ Rn×p by

distinguishing two possible cases. For brevity, below, gradients
are understood to be evaluated at z∗ and θ.

a) Active bounds: Consider first the elements z∗j that
are either at their lower or upper bound, i.e., z∗j satisfies
Eq. (6a) or Eq. (6c). Since strict complementarity holds at
the solution, Fj(z

∗; θ) must be bounded away from zero with
a finite margin. Hence, the smoothness of F guarantees that
a local perturbation of θ will retain the sign of Fj(z

∗; θ). As

LIU et al.: LEARNING TO PLAY TRAJECTORY GAMES AGAINST OPPONENTS WITH UNKNOWN OBJECTIVES 5

a result, z∗j remains at its bound and, locally, is identically
zero. Let Ĩ := {k ∈ [n] | z∗k = ℓk ∨ z∗k = uk} denote the index
set of all elements matching this condition and z̃∗ := [z∗]Ĩ
denote the solution vector reduced to that set. Trivially, then,
the Jacobian of this vector vanishes, i.e., ∇θ z̃

∗ = 0.
b) Inactive bounds: The second case comprises elements

that are strictly between the bounds, i.e., z∗j satisfying Eq. (6b).
In this case, under mild assumptions on F , for any local
perturbation of θ there exists a perturbed solution such that
F remains at its root. Therefore, the gradient ∇θz

∗
j for these

elements is generally non-zero, and we can compute it via
the implicit function theorem (IFT). Let Ī := {k ∈ [n] |
Fk(z

∗; θ) = 0, ℓk < z∗k < uk} be the index set of all elements
satisfying case (b) and let

z̄∗ := [z∗]Ī , F̄ (z∗, θ) := [F (z∗; θ)]Ī (8)

denote the solution vector and its complement reduced to said
index set. By the IFT, the relationship between parameters θ
and solution z∗(θ) is characterized by the stationarity of F̄ :

0 = ∇θ

[
F̄ (z∗(θ), θ)

]
=

∇θF̄ + (∇z̄∗ F̄)(∇θ z̄
∗) + (∇z̃∗ F̄) (∇θ z̃

∗)︸ ︷︷ ︸
≡0

(9)

Note that, as per the discussion in case (a), the last term in
this equation is identically zero. Hence, if the Jacobian ∇z̄∗ F̄
is invertible, we recover the derivatives as the unique solution
of the above system of equations,

∇θ z̄
∗ = −

(
∇z̄∗ F̄

)−1
(∇θF̄). (10)

Note that Eq. (9) may not always have a unique solution, in
which case Eq. (10) cannot be evaluated. We discuss practical
considerations for this special case below.

2) Remarks on Special Cases and Practical Realization:
The above derivation of gradients for the nominal case involves
several assumptions on the structure of the problem. We
discuss considerations to improve numerical robustness for
practical realization of this approach below. We note that both
special cases discussed hereafter are rare in practice. In fact,
across 100 simulations of the running example with varying
initial states and objectives, neither of them occurred.

a) Weak Complementarity: The nominal case discussed
above assumes strict complementarity at the solution. If this
assumption does not hold, the derivative of the MCP is not
defined. Nevertheless, we can still compute subderivatives at θ.
Let the set of all indices for which this condition holds be
denoted by Î := {k ∈ [n] | Fk(z

∗; θ) = 0 ∧ z∗k ∈ {ℓk, uk}}.
Then by selecting a subset of Î and including it in Ī for
evaluation of Eq. (10), we recover a subderivative.

b) Invertibility: The evaluation Eq. (10) requires invert-
ibility of ∇z̄∗ F̄ . To this end, we compute the least-squares
solution of Eq. (9) rather than explicitly inverting ∇z̄F̄ .

C. Model-Predictive Game Play with Gradient Descent

Finally, we present our pipeline for adaptive game-play
against opponents with unknown objectives. Our adap-
tive MPGP scheme is summarized in Algorithm 1. At each

Algorithm 1: Adaptive MPGP
Hyper-parameters: stopping tolerance: stop tol, learning

rate: lr
Input: initial θ̃, current observation buffer Y, new

observation y
Y ← updateBuffer(Y,y)
/* inverse game approximation */
while not stop tol and not max steps reached do

(z∗,∇θz
∗)← solveDiffMCP(θ̃) ▷ sec. IV-B

∇θp← composeGradient(z∗,∇θz
∗,Y) ▷ eq. (12)

θ̃ ← θ̃ −∇θp · lr
end
z∗ ← solveMCP(θ̃) ▷ forward game, eq. (7)
applyFirstEgoInput(z∗)

return θ̃,Y

time step, we first update our estimate of the parameters
by approximating the inverse game in Eq. (3) via gradient
descent. To obtain an unconstrained optimization problem, we
substitute the constraints in Eq. (3) with our differentiable
game solver. Following the discussion of Eq. (7), we denote
by z∗(θ) the solution of the MCP formulation of the game
parameterized by θ. Furthermore, by slight abuse of notation,
we overload X(z∗),U(z∗) to denote functions that extract
the state and input vectors from z∗. Then, the inverse game
of Eq. (3) can be written as unconstrained optimization,

max
θ

p(Y | X(z∗(θ)),U(z∗(θ))). (11)

Online, we approximate solutions of this problem by tak-
ing gradient descent steps on the negative logarithm of this
objective, with gradients computed by chain rule,

∇θ [p(Y | X(z∗(θ)),U(z∗(θ))] =

(∇Xp)(∇z∗X)(∇θz
∗) + (∇Up)(∇z∗U)(∇θz

∗).
(12)

Here, the only non-trivial term is ∇θz
∗, whose computation

we discussed in Section IV-B. To reduce the computational
cost, we warm-start using the estimate of the previous time
step and terminate early if a maximum number of steps is
reached. Then, we solve a forward game parametrized by the
estimated θ̃ to compute control commands. We execute the
first control input for the ego agent and repeat the procedure.

V. EXPERIMENTS

To evaluate our method, we compare against two baselines
in Monte Carlo studies of simulated interaction. Beyond these
quantitative results, we showcase our method deployed on
Jackal ground robots in two hardware experiments.

The experiments below are designed to support the key
claims that our method (i) outperforms both game-theoretic
and non-game-theoretic baselines in highly interactive sce-
narios, (ii) can be combined with other differentiable com-
ponents such as NNs, and (iii) is sufficiently fast and
robust for real-time planning on a hardware platform. A
supplementary video of qualitative results can be found at
https://xinjie-liu.github.io/projects/game. Upon publication of
this manuscript, the code for our method and experiments will
be available at the same link.

https://xinjie-liu.github.io/projects/game

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023

A. Experiment Setup
1) Scenarios: We evaluate our method in two scenarios.

a) 2-player running example: To test the inference ac-
curacy and convergence of our method in an intuitive setting,
we first consider the 2-player running example. For evaluation
in simulation, we sample the opponent’s intent—i.e., their
unknown goal position in Eq. (2)— uniformly from the en-
vironment. Partial observations comprise the position of each
agent.

b) Ramp merging: To demonstrate the scalability of our
approach and support the claim that our solver outperforms
the baselines in highly interactive settings, we also test our
method on a ramp merging scenario with varying numbers
of players. This experiment is inspired by the setup used
in [3] and is schematically visualized in Fig. 1. We model
each player’s dynamics by a discrete-time kinematic bicycle
with the state comprising position, velocity and orientation,
i.e., xit = (pix,t, p

i
y,t, v

i
t, ψ

i
t), and controls comprising accel-

eration and steering angle, i.e., uit = (ait, ϕ). We capture
their individual behavior by a cost function that penalizes
deviation from a reference travel velocity and target lane; i.e.,
θi = (viref, p

i
y,lane). We add constraints for lane boundaries, for

limits on speed, steering, and acceleration, for the traffic light,
and for collision avoidance. To encourage rich interaction in
simulation, we sample each agent’s initial state by sampling
their speed and longitudinal positions uniformly at random
from the intervals from zero to maximum velocity vmax and
four times the vehicle length lcar, respectively. The ego-agent
always starts on the ramp and all agents are initially aligned
with their current lane. Finally, we sample each opponent’s
intent from the uniform distribution over the two lane centers
and the target speed interval [0.4vmax, vmax]. Partial observa-
tions comprise the position and orientation of each agent.

2) Baselines: We consider the following three baselines.
a) KKT-Constrained Solver: In contrast to our method,

the solver by Peters et al. [12] has no support for either private
or shared inequality constraints. Consequently, this baseline
can be viewed as solving a simplified version of the problem
in Eq. (3) where the inequality constraints associated with
the inner-level GNEP are dropped. Nonetheless, we still use
a cubic penalty term as in Eq. (2) to encode soft collision
avoidance. Furthermore, for fair comparison, we only use
the baseline to estimate the objectives but compute control
commands from a GNEP considering all constraints.

b) MPC with Constant-Velocity Predictions: This base-
line assumes that opponents move with constant velocity as
observed at the latest time step. We use this baseline as a
representative method for predictive planning approaches that
do not explicitly model interaction.

c) Heuristic Estimation MPGP: To highlight the im-
portance of online intent inference, for the ramp merging
evaluation, we also compare against a game-theoretic baseline
that assumes a fixed intent for all opponents. This fixed intent
is recovered by taking each agent’s initial lane and velocity as
a heuristic preference estimate.

To ensure a fair comparison, we use the same MCP backend
[29] to solve all GNEPs and optimization problems with
a default convergence tolerance of 1e−6. Furthermore, all

Fig. 2: Monte Carlo study for the 2-player tracking game
for 100 trials. Solid lines and ribbons in (a) and (b) indicate
the mean and standard error of the mean. Cost distributions in
(c) are normalized by subtracting ground truth costs.

planners utilize the same planning horizon and history buffer
size of 10 time steps with a time-discretization of 0.1 s. For the
iterative MLE solve procedure in the 2-player running example
and the ramp merging scenario, we employ a learning rate
of 2e−2 for objective parameters and 1e−3 for initial states.
We terminate maximum likelihood estimation iteration when
the norm of the parameter update step is smaller than 1e−4,
or after a maximum of 30 steps. Finally, opponent behavior
is generated by solving a separate ground-truth game whose
parameters are hidden from the ego-agent.

B. Simulation Results

To compare the performance of our method to the baselines
described in Section V-A2, we conduct a Monte Carlo study
for the two scenarios described in Section V-A1.

1) 2-Player Running Example: Figure 2 summarizes the
results for the 2-player running example. For this evaluation,
we filter out any runs for which a solver resulted in a collision.
For our solver, the KKT-constrained baseline, and the MPC
baseline this amounts to 2, 2 and 13 out of 100 episodes,
respectively.

Figures 2(a-b) show the prediction error of the goal position
and opponent’s trajectory, each of which is measured by ℓ2-
norm. Since the MPC baseline does not explicitly reason about
costs of others, we do not report parameter inference error for
it in Fig. 2a. As evident from this visualization, both game-
theoretic methods give relatively accurate parameter estimates
and trajectory predictions. Among these methods, our solver
converges more quickly and consistently yields a lower error.
By contrast, MPC gives inferior prediction performance with
reduced errors only in trivial cases, when the target robot is
already at the goal. Figure 2c shows the distribution of costs
incurred by the ego-agent for the same set of experiments.
Again, game-theoretic methods yield better performance and
our method outperforms the baselines with more consistent
and robust behaviors, indicated by fewer outliers and lower
variance in performance.

2) Ramp Merging: Table I summarizes the results of for
the simulated ramp-merging scenario for 3, 5, and 7 players.

a) Task Performance: To quantify the task performance,
we report costs as an indicator for interaction efficiency, the
number of collisions as a measure of safety, number of infea-
sible solves as an indicator of robustness, and trajectory and

LIU et al.: LEARNING TO PLAY TRAJECTORY GAMES AGAINST OPPONENTS WITH UNKNOWN OBJECTIVES 7

Set. Method
Ego
cost

Opp.
cost

Coll. Inf.
Traj.

err. [m]
Param.

err.
Time [s]

3
pl

ay
er

Ours
0.64

± 0.36
0.06

± 0.03
0 0

1.29
± 0.05

0.41
± 0.03

0.081
± 0.002

KKT-con
1.85

± 1.21
0.05

± 0.02
0 1

1.32
± 0.06

2.39
± 0.11

0.060
± 0.002

Heuristic
6.73

± 2.40
0.09

± 0.07
0 11

7.89
± 0.26

3.96
± 0.13

0.008
± 0.001

MPC
1.50

± 0.45
0.33

± 0.07
28 218

2.40
± 0.11

n/a
0.009

± 0.002

5
pl

ay
er

Ours
0.56

± 0.43
0.16

± 0.06
0 2

1.66
± 0.07

0.47
± 0.03

0.29
± 0.02

KKT-con
0.07

± 0.32
0.06

± 0.02
1 4

1.70
± 0.06

2.15
± 0.06

0.28
± 0.02

Heuristic
2.06

± 0.44
0.35

± 0.10
5 25

8.05
± 0.19

2.91
± 0.07

0.015
± 0.001

MPC
5.73

± 2.91
0.42

± 0.13
44 552

2.87
± 0.13

n/a
0.014

± 0.002

7
pl

ay
er

Ours
1.60

± 1.19
0.06

± 0.02
1 1

1.89
± 0.05

0.46
± 0.02

0.68
± 0.02

KKT-con
3.11

± 1.72
0.09

± 0.04
7 22

2.01
± 0.06

1.93
± 0.03

0.63
± 0.06

Heuristic
6.60

± 1.67
0.27

± 0.06
8 8

8.18
± 0.15

2.44
± 0.05

0.031
± 0.002

MPC
8.41

± 1.45
0.59

± 0.09
43 848

3.07
± 0.08

n/a
0.0274
± 0.004

TABLE I: Monte Carlo study for the ramp merging scenario
depicted in Fig. 1 with 100 trials for settings with 3, 5, and
7 players. Except for collision and infeasible solve times, all
metrics are reported by mean and standard error of the mean.

(a) Qualitative performance.

Ego
cost

Opp.
cost

Coll. Inf.
Traj.

err. [m]
Param.

err.
Time [2]

2.19
± 1.21

0.17
± 0.07

3 5
2.34

± 0.08
0.91

± 0.08
0.274
± 0.01

(b) Quantitative performance.

Fig. 3: Performance of our solver in combination with an NN
for 100 trials of the 7-player ramp merging scenario.

parameter error as a measure of inference accuracy. On a high
level, we observe that the game-theoretic methods generally
outperform the other baselines; especially for the settings with
higher traffic density. While MPC achieves high efficiency
(ego-cost) in the 3-player case, it collides significantly more
often than the other methods across all settings. Among the
game-theoretic approaches, we observe that online inference
of opponent intents—as performed by our method and the
KKT-constrained baseline—yields better performance than a
game that uses a heuristic estimate of the intents. Within
the inference-based game solvers, a Manning-Whitney U-test
reveals that, across all settings, both methods achieve an ego-
cost that is significantly lower than all other baselines but
not significantly higher than solving the game with ground
truth opponent intents. Despite this tie in terms of interaction

(a) (b)

Fig. 4: Time lapse of the running-example in which a Jackal
tracks (a) another Jackal and (b) a human. Overlaid in (a) are
the position of target robot (red) its true goal (red star), the
tracker (blue), and its goal estimate (blue star).

efficiency, we observe a statistically significant improvement
of our method over the KKT-constrained baseline in terms
of safety: in the highly interactive 7-player case, the KKT-
constrained baseline collides seven times more often than our
method. This advantage is enabled by our method’s ability to
model inequality constraints within the inverse game.

b) Computation Time: We also measure the computation
time of each approach. The inference-based game solvers have
generally a higher runtime than the remaining methods due
to the added complexity. Within the inference methods, our
method is only marginally slower than the KKT-constrained
baseline, despite solving a more complex problem that in-
cludes inequality constraints. The average number of MLE
updates for our method was 11.0, 19.2, and 22.7 for the
3, 5, and 7-player setting, respectively. While our current
implementation achieves real-time planning rates only for up
to three players, we note that additional optimizations may
further reduce the runtime of our approach. Among such
optimizations are low-level changes such as sharing memory
between MLE updates as well as algorithmic changes to per-
form intent inference asynchronously at an update rate lower
than the control rate. We briefly explore another algorithmic
optimization in the next section.

3) Combination with an NN: To support the claim that our
method can be combined with other differentiable modules,
we demonstrate the integration with an NN. For this proof of
concept, we use a two-layer feed-forward NN, which takes the
buffer of recent partial state observations as input and predicts
other players’ objectives. Training of this module is enabled
by propagating the gradient of the observation likelihood
loss of Eq. (11) through the differentiable game solver to
the parameters of the NN. Online, we use the network’s
prediction as an initial guess to reduce the number gradient
steps. As summarized in Fig. 3, this combination reduces the
computation time by more than 60% while incurring only a
marginal loss in performance.

C. Hardware Experiments

To support the claim that our method is sufficiently fast and
robust for hardware deployment, we demonstrate the tracking
game in the running example in Section III-A with a Jackal

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2023

ground robot tracking (i) another Jackal robot (Fig. 4a) and (ii)
a human player (Fig. 4b), each with initially unknown goals.
Plans are computed online on a mobile i7 CPU. We generate
plans using the point mass dynamics with a velocity constraint
of 0.8m s−1 and realize low-level control via the feedback
controller of [30]. A video of these hardware demonstrations
is included in the supplementary material. In both experiments,
we observe that our adaptive MPGP planner enables the robot
to infer the unknown goal position to track the target while
avoiding collisions. The average computation time in both
experiments was 0.035 s.

VI. CONCLUSION

In this paper, we presented a model-predictive game solver
that adapts strategic motion plans to initially unknown oppo-
nents’ objectives. The adaptivity of our approach is enabled
by a differentiable trajectory game solver whose gradient
signal is used for MLE of unknown game parameters. As a
result, our adaptive MPGP planner allows for safe and efficient
interaction with other strategic agents without assuming prior
knowledge of their objectives or observations of full states.
We evaluated our method in two simulated interaction sce-
narios and demonstrated superior performance over a state-
of-the-art game-theoretic planner and a non-interactive MPC
baseline. Beyond that, we demonstrated the real-time planning
capability and robustness of our approach in two hardware
experiments.

In this work, we have limited inference to parameters
that appear in the objectives of other players. Since the
derivation of the gradient in Section IV-B can also handle
other parameterizations of F—so long as they are smooth—
future work may extend this framework to infer additional
parameters of constraints or aspects of the observation model.
Furthermore, encouraged by the improved scalability when
combining our method with learning modules such as NNs,
we seek to extend this learning pipeline in the future. One
such extension would be to operate directly on raw sensor
data, such as images, to exploit additional visual cues for
intent inference. Another extension is to move beyond MLE-
based point estimates to inference of potentially multi-modal
distributions over opponent intents, which may be achieved
by embedding our differentiable method within a variational
autoencoder. Finally, our framework could be tested on large-
scale datasets of real autonomous-driving behavior.

REFERENCES

[1] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense,
interacting crowds,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2010.

[2] D. Fridovich-Keil, E. Ratner, L. Peters, A. D. Dragan, and C. J.
Tomlin, “Efficient iterative linear-quadratic approximations for nonlinear
multi-player general-sum differential games,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2020.

[3] L. Cleac’h, M. Schwager, and Z. Manchester, “ALGAMES: A fast aug-
mented lagrangian solver for constrained dynamic games,” Autonomous
Robots, vol. 46, no. 1, pp. 201–215, 2022.

[4] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory,
2nd ed. Society for Industrial and Applied Mathematics (SIAM), 1999.

[5] A. Liniger and J. Lygeros, “A noncooperative game approach to au-
tonomous racing,” IEEE Trans. on Control Systems Technology (TCST),
vol. 28, no. 3, pp. 884–897, 2019.

[6] F. Laine, D. Fridovich-Keil, C.-Y. Chiu, and C. Tomlin, “The com-
putation of approximate generalized feedback Nash equilibria,” arXiv
preprint arXiv:2101.02900, 2021.

[7] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,”
Annals of Operations Research, vol. 175, no. 1, pp. 177–211, 2010.

[8] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities
and Complementarity Problems. Springer Verlag, 2003.

[9] S. Le Cleac’h, M. Schwager, and Z. Manchester, “LUCIDGames: Online
unscented inverse dynamic games for adaptive trajectory prediction and
planning,” IEEE Robotics and Automation Letters (RA-L), vol. 6, no. 3,
pp. 5485–5492, 2021.

[10] C. Awasthi and A. Lamperski, “Inverse differential games with mixed
inequality constraints,” in Proc. of the IEEE American Control Confer-
ence (ACC), 2020.

[11] S. Rothfuß, J. Inga, F. Köpf, M. Flad, and S. Hohmann, “Inverse optimal
control for identification in non-cooperative differential games,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 14 909–14 915, 2017.

[12] L. Peters, D. Fridovich-Keil, V. R. Royo, C. J. Tomlin, and C. Stachniss,
“Inferring objectives in continuous dynamic games from noise-corrupted
partial state observations,” in Proc. of Robotics: Science and Systems
(RSS), 2021.

[13] P. Geiger and C.-N. Straehle, “Learning game-theoretic models of
multiagent trajectories using implicit layers,” in Proc. of the Conference
on Advancements of Artificial Intelligence (AAAI), vol. 35, no. 6, 2021.

[14] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[15] B. Brito, M. Everett, J. P. How, and J. Alonso-Mora, “Where to go next:
Learning a subgoal recommendation policy for navigation in dynamic
environments,” IEEE Robotics and Automation Letters (RA-L), vol. 6,
no. 3, pp. 4616–4623, 2021.

[16] V. Tolani, S. Bansal, A. Faust, and C. Tomlin, “Visual navigation
among humans with optimal control as a supervisor,” IEEE Robotics
and Automation Letters (RA-L), vol. 6, no. 2, pp. 2288–2295, 2021.

[17] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
Intl. Journal of Robotics Research (IJRR), vol. 35, no. 11, pp. 1289–
1307, 2016.

[18] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone, “Multimodal
probabilistic model-based planning for human-robot interaction,” in
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2018.

[19] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog: Predic-
tion conditioned on goals in visual multi-agent settings,” in Proc. of the
IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2019.

[20] J. Roh, C. Mavrogiannis, R. Madan, D. Fox, and S. Srinivasa, “Mul-
timodal trajectory prediction via topological invariance for navigation
at uncontrolled intersections,” in Proc. of the Conf. on Robot Learning
(CoRL), 2021.

[21] M. Sun, F. Baldini, P. Trautman, and T. Murphey, “Move beyond
trajectories: Distribution space coupling for crowd navigation,” Proc. of
Robotics: Science and Systems (RSS), 2021.

[22] C. Schöller, V. Aravantinos, F. Lay, and A. Knoll, “What the constant
velocity model can teach us about pedestrian motion prediction,” IEEE
Robotics and Automation Letters (RA-L), vol. 5, no. 2, pp. 1696–1703,
2020.

[23] D. Ralph and S. Dempe, “Directional derivatives of the solution of a
parametric nonlinear program,” Mathematical Programming, vol. 70,
no. 1, pp. 159–172, 1995.

[24] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer
in neural networks,” in Proc. of the Int. Conf. on Machine Learning
(ICML). PMLR, 2017.

[25] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter,
“Differentiable convex optimization layers,” Proc. of the Advances in
Neural Information Processing Systems (NIPS), 2019.

[26] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical programs with
equilibrium constraints. Cambridge University Press, 1996.

[27] S. C. Billups, S. P. Dirkse, and M. C. Ferris, “A comparison of large scale
mixed complementarity problem solvers,” Computational Optimization
and Applications, vol. 7, no. 1, pp. 3–25, 1997.

[28] A. A. Kulkarni and U. V. Shanbhag, “On the variational equilibrium as
a refinement of the generalized nash equilibrium,” Automatica, vol. 48,
no. 1, pp. 45–55, 2012.

[29] S. P. Dirkse and M. C. Ferris, “The PATH solver: A nommonotone sta-
bilization scheme for mixed complementarity problems,” Optimization
methods and software, vol. 5, no. 2, pp. 123–156, 1995.

[30] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable
tracking control method for an autonomous mobile robot,” in Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 1990.

	Introduction
	Related Work
	N-Player General-Sum Dynamic Games
	Inverse Games
	Non-Game-Theoretic Interaction Models
	Differentiable Optimization

	Preliminaries
	General-Sum Trajectory Games
	Inverse Games

	Adaptive Model-Predictive Game Play
	Forward Games as mcp
	Differentiation of an mcp solver
	The Nominal Case
	Remarks on Special Cases and Practical Realization

	Model-Predictive Game Play with Gradient Descent

	Experiments
	Experiment Setup
	Scenarios
	Baselines

	Simulation Results
	2-Player Running Example
	Ramp Merging
	Combination with an nn

	Hardware Experiments

	Conclusion
	References

