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Abstract— Open-vocabulary 3D functionality segmentation
enables robots to localize functional object components in 3D
scenes. It is a challenging task that requires spatial understand-
ing and task interpretation. Current open-vocabulary 3D seg-
mentation methods primarily focus on object-level recognition,
while scene-wide part segmentation methods attempt to segment
the entire scene exhaustively, making them highly resource-
intensive. However, such significant computational and storage
capacities are typically not accessible on the majority of mobile
robots. To address this challenge, we introduce T-FunS3D,
a task-driven hierarchical open-vocabulary 3D functionality
segmentation method that provides actionable perception for
robotic applications. Given a task description, T-FunS3D iden-
tifies the most relevant instances in an open-vocabulary scene
graph and extracts their functional components. Experiments
on SceneFun3D demonstrate that T-FunS3D outperforms base-
line methods in open-vocabulary 3D functionality segmentation,
while achieving faster runtime and reduced memory usage.

I. INTRODUCTION

Open-vocabulary (OV) 3D functionality segmentation
aims to extract the semantic meaning of functional object
components in 3D scenes without relying on a fixed set of
predefined annotations. This capability provides robots with
both concrete objects and their functional parts, enabling
them to execute the assigned tasks. Conventional 3D seg-
mentation methods are primarily trained on labeled datasets
and thus struggle to generalize to novel object classes. In
contrast, open-vocabulary methods leverage large language
models to infer scene semantics, supporting 3D exploration
guided by free-form text descriptions.

While most existing methods focus on segmenting object-
level instances, relatively few address finer-grained segmen-
tation, such as functional object parts within scenes. How-
ever, such fine-grained entities are crucial for downstream
tasks like scene interaction. For example, assistive robots
must recognize not only objects in an open-set world but
also their components, such as the chair arm and door of
a washing machine, in order to execute general interactive
tasks. Existing methods for this problem often perform fine-
grained segmentation across nearly the entire scene without
task-specific distinctions [1], [2], which imposes high com-
putational overhead and memory costs. Therefore, there is
a pressing need for more efficient designs that extract fine-
grained segmentation in a task-dedicated manner.

To tackle this challenge, we propose a novel pipeline for
hierarchical scene understanding and functionality segmen-
tation based on task descriptions, using an open-vocabulary
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scene graph. Previous hierarchical methods typically extract
semantics from image crops of every instance in the scene to
obtain 3D part segmentation [1]. However, in practice, only a
small subset of objects in the scene is relevant to the assigned
task, making scene-wide over-segmentation an unnecessary
burden on computation and storage. In contrast, our method
identifies task-relevant areas and performs functional object
part segmentation exclusively for selected objects. This de-
sign enables efficient online segmentation without demand-
ing high computational power or large memory, making it
well-suited for real-world robotic applications.
In summary, our main contributions are as follows:

o We introduce a training-free method for OV 3D func-
tionality segmentation that leverages an actionable 3D
scene graph containing OV semantics.

o We present a task-driven approach that hierarchically
segments scenes from high-level instances into low-
level functional parts, thereby facilitating efficient de-
ployment in real-world robotic applications.

¢ Our method outperforms the baseline methods on the
SceneFun3D [3] dataset in OV 3D segmentation of
functional object components with faster runtime and
lower memory consumption.

II. RELATED WORK

A. Open-Vocabulary 3D Instance and Part Segmentation

Recent works [9], [10], [11], [12] explore OV 3D scene
understanding, but few provide a unified solution that sup-
ports both fine-grained segmentation and explicit hierarchical
representations. Object-centric approaches [1], [10] achieve
object-level segmentation but lack fine granularity, while
point-level methods [11], [12] capture fine detail but lack
hierarchical structure. [2] introduces a versatile mechanism,
although it does not incorporate semantic information.

3D part segmentation has made some progress in OV-
based frameworks thanks to recent efforts in [13], [14], [1].
A common strategy, as in [14]), is to lift 2D features from
vision foundation models into 3D. However, these methods
remain limited to single-object point clouds, restricting their
applicability to full-scene understanding.

Conceptually, our work is most closely related to
Search3D [1] and Fun3DU [15]. Whereas Search3D ex-
haustively embeds all objects and their parts, our method
selectively segments objects and retrieves their correspond-
ing functional component according to task requirements.
Fun3DU, in turn, detects objects of interest across all images
and lifts 2D segmentation masks of their functional parts into



A. Open-vocabulary instance segmentation

3D point cloud

Rl 2 ear

Posed RGB-D images

FG-CLIP

C. Task description understanding

"Control the temperature using the Contextual object: "radiator"
® radiator dial under the gnomes." Quen3 + "gnomes"
 "radiator is under the gnomes”
‘Task description
Functional component: "radiator dial"

Fig. 1.

Construct scene
graph

—

B. Open-vocabulary scene graph / E. Functional component \

segmentation

=

Mo\mo«,SAMl

Scene graph

D. Contextual object grounding via scene graph

‘ 2D to 3D Lifting

1. Search for candidate
2. Search for candidate

3. Select the node with a

T-FunS3D overview: The input of T-FunS3D are posed RBG-images and 3D point clouds of an indoor scene. (A) performs open-vocabulary

instance segmentation by associating FG-CLIP [4] visual embeddings to class-agnostic instance segmentation from Mask3D [5]. We construct a scene graph
of the featurized instances (B). Once a task is assigned, we decompose the description into ontologies using Qwen3 [6] (C) and identify the contextual
object in the scene graph (D) by computing the text-visual embedding similarity. Lastly, (E) aggregates 2D masks extracted by combining Molmo [7] with

SAM [8] to obtain 3D segmentation of functional parts.

3D. However, upon receiving a new query, Fun3DU needs
to re-run the detection process for the object specified in
the query, which is not efficient. In contrast, our approach
constructs an actionable OV 3D scene graph for the entire
scene, eliminating repeated instance detection and enabling
efficient handling of complex 3D grounding tasks.

B. 3D Scene Graph

3D scene graphs encode objects and spatial concepts (e.g.,
rooms and floors) as nodes and their relations as edges,
offering compact, object-centric representations well suited
for robotics [16]. This decomposition facilitates higher-level
reasoning and planning in object-centric tasks. Early works
like [17] integrate SLAM with annotated data but remain lim-
ited to closed sets of objects. ConceptGraphs [18] advanced
this line by combining 3D scene graphs with OV vision-
language features, enabling queries in natural language.
HOV-SG [19] extends this direction with hierarchical OV
graphs, though they focus primarily on coarse semantics.
Nevertheless, their graph encodes only parent-child rela-
tions(e.g., floor-rooms, room-objects), which is sufficient for
navigation but inadequate for interactive tasks. Instead, T-
FunS3D constructs an OV scene graph with inter-object
relations to enable referential object grounding.

III. METHOD

This work proposes an efficient approach for segmenting
OV functionality in robotic applications, utilizing RGB-D
observations, ground-truth camera poses, and the 3D point
cloud of an indoor environment. To this end, we intro-
duce T-FunS3D, a novel method for task-driven hierarchical
OV functionality segmentation in 3D scenes. The overall
pipeline, illustrated in Fig. [T} consists of four modules
organized into two stages. In the first stage, we perform
3D instance-level OV segmentation by extracting semantic
embeddings for class-agnostic 3D instance segmentation (I11-
[A). Then, an open-vocabulary scene graph is constructed

based on the featurized 3D instance segments (III-B). In
the second stage, the description of an assigned task is
parsed using a large language model (LLM) to extract the
task ontology ([II-C). Afterwards, we identify the relevant
contextual instances in the scene graph (III-D) and segment
their functional parts required for task execution (III-E).

A. Open-vocabulary 3D instance segmentation

For OV 3D instance segmentation, we adapt the approach
introduced in OpenMask3D [9]. To achieve this, we first ap-
ply Mask3D [5] to generate object-level mask proposals and
decompose the scene. Unlike OpenMask3D, we compute the
visual embeddings of the object with more pixel information
to associate richer semantics with each proposal. For each
proposed instance P,, where n € [1, N], we crop the top
k € [1, K] views with the highest visibility of the instance
at multiple scales. The I-th (I € [1,L]) scale crop of the
k-th view for the n-th instance is denoted as I;!;. K is set
to 5 and L to 3 in our experiments. Next, we computed
the OV semantics for the instances from both the full
images and the crops of selected views using FG-CLIP [4],
a multimodal vision-language model. However, the target
object in the cropped images may be occluded or visible only
through transparent materials (e.g., windows), introducing
a foreground-background bias that reduces the accuracy of
visual embeddings. To mitigate this, we additionally generate
masked crops, denoted as M, ,’; ;» Where irrelevant pixels are
masked out. These masked crops are used as complementary
cues for the visual encoder. This combination retains contex-
tual information while emphasizing the target instance. The
final visual embedding for P, is obtained by averaging across
views and scales:

1 & 1 &
f(P) = K Z [f(IE) + 3T Zf(‘[l?,l) + f(MI?l)] (D
k

l

where f(-) denotes the visual embedding computation.



B. Open-vocabulary scene graph

A scene graph is defined as G = (W, ), where V = {v;}
for ¢ € [1, N] denotes the set of vertices and £ = {e;j|e;; =
(vi,vj), for v;,v; € V where ¢ # j} the set of edges.
In an OV scene graph, we store visual embeddings rather
than explicit class labels in the nodes. To establish edges
between two nodes, we average the visual embedding of
the full-size images associated with the two vertices. In this
way, we encode the area around the instances along with
their spatial relations captured from multiple views. The
resulting embedding features are stored on the edge, enabling

downstream querying (see Sec. [[II-D).
C. Task understanding via LLM

The task description provided in the query Q may involve
varying levels of complexity. For example, in the query
“Control the temperature using the radiator dial under the
gnomes”, there is a spatial expression that specifies the
position of the radiator, the contextual object O, relative to
the gnomes, the referent object R. In this case, the functional
component F, radiator dial, is also explicitly mentioned in
this example. However, in many cases J is not expressed
directly in the query Q. For instance, when the task is “Open
the door”, the agent must infer that handle or knob on the
door is the functional component to manipulate.

In this work, we focus on task descriptions that explicitly
or implicitly include space contexts, ,

, contextual object C, and functional
component 7. We employ an LLM to extract this informa-
tion from the task descriptions. The standalone output when
querying individual categories can be ambiguous. E.g., the
functional part “handle” can be part of a “door” or a “cup”.
The contextual object is also unclear when multiple instances
of the same class exist in the environment. Hence, inspired
by [15], we prompt the LLM to jointly provide all categories
in a single JSON-format output via multi-turn conversations.

D. Contextual object grounding

The contextual object is retrieved by querying the scene
graph based on the task description. We denote the visual and
textual embedding functions by f(-) and g(-), respectively.
tr, tc, and ts indicate the text description for referent,
contextual object, and spatial relations respectively. First,
we convert the text descriptions of the contextual object O
and the referent object R to textual embeddings using FG-
CLIP [4]. Then, we select candidate nodes for both referent
and contextual objects based on embedding similarity. For
the referent object R, we retrieve candidate nodes { R; } from
the vertices V whose visual embeddings are most similar to
the textual embedding of R (see Eq. [2). where sim(- ,-)
computes cosine similarity of two embedding vectors. Anal-
ogously, we select candidate nodes {C;} associated to the
contextual object C, formulated in Eq. 3]

Once we obtain the candidates, we examine the edges
between all pairs {S;;} = {(C;, R;)} to identify those
that have high embedding similarity scores with the spatial
relations S described in the query (see Eq. ). The nodes in

the corresponding candidate pairs are then anchored as the
contextual object and referent objects.

R; = argmax sim(f(v;), g(t)) )
Ci = argmax sim(f(vi), g(tc)) 3)
S = arg max sim(f(s),g(ts)) )

E. Functional component segmentation

We segment the functional components of the contextual
object by combining the VLM Molmo [7] with SAM [8].
Once the contextual-referent object pair is identified, we
retrieve its corresponding views with the top-K highest-
ranked visibility scores and input them into Molmo. To guide
detection, the VLM is prompted with the ontology extracted
from the task description (see [[lI-C). Molmo outputs pixel
coordinates corresponding to the functional component of
interest. After that, we generate the 2D segmentation masks
by prompting SAM with these pixels. The resulting 2D
masks are then back-projected into corresponding 3D spaces.
Finally, we obtain the 3D functionality segmentation by
aggregating the lifted masks across multiple views.

IV. EXPERIMENTS
A. Experiment setup

We evaluated our method on SceneFun3D [3], the only
available dataset that supports functionality segmentation in
3D scenes by providing annotations for functional compo-
nents together with a diverse set of tasks in indoor scenes.

For comparison, we use Fun3DU [15] as the main baseline
methods on functionality segmentation tasks. In addition,
T-FunS3D is compared against selected open-vocabulary
3D segmentation methods, including OpenMask3D [9],
Openlns3D [20], and LeRF [11]. To ensure consistency, we
do not re-run the baseline methods on SceneFun3D, but
instead report their results as presented in Fun3DU [15].

B. Results

We evaluated our method’s ability to segment functional
parts according to task descriptions on the validation split
of the SceneFun3D[3] dataset. Table |I| presents the Average
Precision (AP) and Average Recall (AR) at different Intersec-
tion over Union (IoU) thresholds for successful predictions.
As shown, T-FunS3D outperforms all baselines, including
Fun3DU [15], which requires an additional VLM to detect
contextual objects across all views.

TABLE I
PERFORMANCE COMPARISON ON SCNEFUN3D DATASET.

Methods mAP AP50 AP25] mAR AR50 AR25
OpenMask3D [9]| 0.0 0.0 0.0 1.2 1.4 2.6 0.1
Openlns3D [20] 00 0.0 00 | 323 371 399 | 00

LERF [11] 00 00 00| 239 246 251 0.0
Fun3DU [15] 6.1 126 23.1| 239 329 405 | 115
T-FunS3D (ours) | 8.1 17.8 34.5| 23.8 358 469 | 15.7

TABLE compares the runtime performance of T-
FunS3D against two baselines for instance (D and func-
tionality segmentation (2). Considering the full pipeline, T-
FunS3D achieves better accuracy than the state-of-the-art



Fun3DU [15] in a much shorter time. Unlike Fun3DU, which
segments instances of interest across all images, T-FunS3D
and OpenMask3D generate class-agnostic instance proposals
from point clouds (@ and compute embeddings only from
views where each instance is most visible ®. Moreover,
Fun3DU must repeat the complete segmentation pipeline
for every new query, whereas T-FunS3D further reduces
runtime at stage @ by caching object visual embeddings
with top-ranked views obtained at (D). T-FunS3D is faster
than OpenMask3D at ® because T-FunS3D retains only
high-confidence proposals. A comparison with OpenMask3D
at @ is not applicable, as OpenMask3D does not perform
functionality segmentation.

TABLE 11

RUNTIME COMPARISON AT INSTANCE AND FUNCTIONALITY
SEGMENTATION
@ OV Inst. Segm.
(per-scene average)

30s + ® 720s -
1920s 300s
@ 30s + ® 580s 150s

Methods @PFunc. Segm.

(per-query average)

OpenMask3D [9]
Fun3DU [15]
T-FunS3D (ours)

Fig. 2] illustrates qualitative results of functionality seg-
mentation with T-FunS3D. Our method aggregates 2D seg-
mentation masks from views selected based on the visibility
of the contextual object and projects them onto the 3D point
cloud. However, images captured from large oblique viewing
angles can lead to less accurate segmentation, as indicated by
either low precision or low recall values in the two examples
on the left in Fig. 2] In addition, T-FunS3D struggles to
identify functional elements that are not physically attached
to contextual objects, obtaining zero IoU for the ceiling light
switch in the most right example.

Close the door Open the right cabinet door §

g with the picture frames on top;

Open the right closet doos Turn on the ceiling light
;.

¢ M . e
WPro: 30.70 Rec: 81.40 ToU: 28.69) [Prc: 66.67 Rec: 31.28 IoU: 27.05) Jrc: 75.25 Rec: 98.06 IoU: 74.15] fPrc: 00.00 Rec: 0.0 IoU: 60.003

Fig. 2. Qualitative examples of T-FunS3D. We visualize point clouds
around the functional components: red points indicate predictions, blue
points denote ground truth, and green points represent overlaps.

V. CONCLUSION AND DISCUSSION

We propose T-FunS3D, a novel training-free method for
referential functionality segmentation in 3D scenes using an
open-vocabulary (OV) scene graph. As its main component,
the OV scene graph represents nodes and edges with seman-
tic embeddings, enabling T-FunS3D to localize task-relevant
objects based on referential expressions and achieve accurate
functionality segmentation. However, T-FunS3D can fail to
detect functional parts from oblique views, leading to errors
in functionality segmentation. Moreover, functional elements
that are spatially separated from contextual objects, such as
the switch of a ceiling light, remain particularly challeng-
ing. As future work, one may investigate more generalized
approaches for contextual object proposals and address the
recognition of spatially separated functional parts.
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