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Abstract—Robots often grasp with observations that are
delayed, noisy, or stale. We present U-LAG, a mid-execution
goal-retargeting layer that leaves the low-level controller un-
changed while re-aiming task goals (pre-grasp hover, grasp,
post-lift) as fresh observations arrive. Unlike visual servoing
or online re-planning that redesign control or regenerate tra-
jectories, U-LAG treats in-flight goal re-aiming as a pluggable
module between perception and control. Qur main technical
contribution is UAR-PF, an uncertainty-aware retargeter that
maintains a belief over object pose under sensing lag and
selects goals that maximize expected capture, evaluated against
ICP and nearest-geometry baselines within the same interface.
We instantiate a reproducible ShiftxLag stress test in PyBul-
let/PandaGym for pick and place, where the object undergoes
abrupt in-plane shifts while synthetic perception lag is injected
during approach. Across 0-10cm shifts and 0-400 ms lags,
UAR-PF degrades gracefully relative to a no-retarget baseline
and achieves higher success with modest end-effector travel
and few aborts; simple operational safeguards further improve
stability.

I. INTRODUCTION

Perception delay and scene changes routinely invalidate
contact goals during manipulation. Setpoints that were safe
at plan time can be out of date by the time the end effector
reaches them, yielding missed grasps and wasted motion.
Classical visual servoing closes the loop directly on image
or deep features [1]-[3]. Task and motion planning commits
to goal waypoints and relies on replanning when disruptions
are large [4], [5].

We advocate a simple separation of concerns: treat mid-
execution goal re-aiming as a distinct module between
perception and control. Rather than redesigning controllers,
a retargeting layer updates pre-grasp, grasp, and post-lift
goals whenever new observations arrive, and an unchanged
Cartesian servo executes those goals. This viewpoint is
complementary to visual servoing and planning.

We instantiate this idea as U-LAG (Fig. 1), a lag-
adaptive, uncertainty-aware goal-retargeting layer that con-
sumes RGB-D point clouds and outputs refreshed task goals
for pick and place. The layer admits multiple realizations
within a common interface, including deterministic nearest-
geometry updates, point-to-point ICP alignment for register-
ing earlier and current clouds [6], and a particle-filtered vari-
ant that maintains a belief over object pose under delay [7],
[8]. To probe delay and disturbance in a controlled way, we
introduce a ShiftxLag stressor in PyBullet and PandaGym
[9]. At the approach trigger, we apply an in-plane object shift
and hold actions to a lagged target for a fixed duration; the
camera then re-captures and the retargeter refreshes goals.
Over 0-10 cm shifts and 0-400 ms lags, U-LAG variants

degrade gracefully versus a no-retarget baseline, with PF and
ICP remaining robust in harder cells. Though evaluated on a
fixed arm, the formulation transfers to mobile manipulation
where ego motion amplifies perception delay [10], [11].

A. Related Work

Robotic systems have long closed the perception—action
loop with visual servoing (VS), where image measurements
directly drive velocity or pose commands [1]-[3]. Clas-
sic IBVS/PBVS continuously regulate feature errors, while
learning variants replace hand-crafted features with deep
descriptors or keypoints to improve generalization (e.g.,
DFVS/KOVIS) [3]. Predictive VS explicitly handles mov-
ing targets or delays by forecasting image features over a
short horizon [5], [12]. These threads adapt the control law
itself to changing observations. We keep the controller fixed
and refresh pre, grasp, and post-contact goals via a mid-
execution retargeter. A second strand updates goals by re-
planning. Reactive grasping often re-optimize grasps or short
trajectories online as new state estimates arrive, recovering
from perturbations and clutter interactions (e.g., real-time
grasp re-planning in clutter; fast online grasp synthesis)
[13], [14]. Task-and-motion planning with feedback similarly
interleaves planning and execution, periodically re-solving
for waypoints as the world changes [4], [5]. These systems
typically regenerate motion plans or grasps, which can be
costly under tight control loops. U-LAG targets a lighter-
weight middle ground: keep the motion primitive, but re-
aim its goals immediately using a pluggable map from
observations to updated setpoints.

Reliable retargeting needs uncertainty-aware state esti-
mation; particle-filter/RBPF trackers maintain 6-DoF pose
beliefs and smooth delayed/noisy measurements [7], [8].
Alignment methods such as point-to-point ICP (and its
robust variants) remain a strong baseline for reconciling stale
and fresh clouds after discrete shifts [6]. Those methods
internalize lag within the controller design. Our method is
orthogonal: keep the controller fixed; update goals using
lagged, uncertainty-aware cues. Prior work does not, to
our knowledge, elevate goal retargeting to a modular mid-
execution layer or compare ICP, nearest-geometry, and PF
realizations under controlled shift-lag perturbations.

B. Contributions

(1) U-LAG: a modular goal-retargeting layer between
perception and control that re-aims pre/grasp/post waypoints
under delay. (2) UAR-PF: an uncertainty-aware retargeter
using a particle-filter belief to maximize expected capture
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under lag. (3) ShiftxLag benchmark: a reproducible pick-
and-place stress test in PyBullet/PandaGym where UAR-PF
reliably outperforms ICP/Nearest with low compute over-
head.

II. METHODOLOGY
A. Problem Formulation

We consider a fixed-base manipulator interacting with a
rigid object whose center at time t is oy = [z, s, 2¢) |
in world frame W. A task specifies a grasp goal g (po-
sition+orientation). Low-level control is an unchanged first-
order Cartesian position servo at 100 Hz. Perception provides
a depth image and segmented point cloud C; = {ps}, but
with latency L ms (freshest usable cloud is C;_y). During
the approach phase the object may shift abruptly in-plane,
making precomputed goals stale. We insert a pluggable
retargeting map

R: (Ct,L,Ct,state) — (gpre,ggraSp,gp‘”t), (D

and keep control, kinematics, and gripper FSM fixed. We
assume a calibrated camera and a reliable object segment
(available in sim; any detector can provide it on hardware).

B. Sensing & State Estimation

A calibrated RGB-D camera provides a segmented point
cloud C; = {py € R3} at control time ¢, subject to latency
L (the freshest usable cloud is C;_1). When C; has not yet
arrived, we fall back to the most recent cloud.

1) Pose proxy & cloud quality:

o Pose proxy: From C, we trim depth outliers by per-
centile clipping (1st/99th) to get C,, form an axis-
aligned bounding box with corners £;,h;, and set the
center ¢; = %(Et + h;). For a cube of edge a, the
vertical coordinate uses the top face: 2, = hj — 3, giving
0; = [¢¥,¢),2]" with a top-down grasp orientation. If
|Cy| is too small, the proxy is marked invalid.
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o Latency use: Retargeters consume both the delayed
cloud C;_, and the freshest available cloud C} (or the
last received cloud if C} is missing).

o Quality metrics: We summarize reliability with n;
|C’t| and lateral dispersion o3y = \/Amax(Xzy) Where
Sy = cov({[pf,p!]" : P € C¢}); depth noise is o,
std({p; : px € C}) (or a task-fixed constant when
unstable). These drive UAR/UAR-PF margin inflation
and the PF observation covariance.

o Vision guard: The proxy and quality metrics feed a
simple guard that rejects gross outliers; see Sec. II-E.

C. Goal Geometry

Pick (pre-grasp, grasp, post-lift).: Let the sensed proxy
be 6; = [#, 9, 2] ' (Sec. II-B), and let a be the cube edge.
Define the top plane as z, = 2; + 5. Let offsets be a hover
clearance dpover, an approach depth ypproach (into the object
from top plane toward its center), and a lift height &y.

~ ~ T
ghe = [Cbt, Yt, Zop T 5hover} ) (2)
~ ~ T
ggrasp = [xtv Yty Ztop — 5appmach] ) (3)
. ~ ~ T
8P = [&¢, Dt, Ziop + Ouirt 4)

Uncertainty-aware scaling.:  When cloud quality
(n¢,04y) is available, inflate Ohover and dapproach as &' =
0o + Aoy (clamped to task bounds) to reduce collision risk
under noise.

D. Retargeters R

Each retargeter maps the delayed/fresh clouds
(Ci—,Cy) and controller state to updated waypoints
(gPre, g8rasP gPost) - and is wrapped by the same vision
guard and two-stage waypointing (Sec. II-E).

1) Nearest: Recompute all three waypoints directly from
the latest pose proxy 0; via the closed-form construction in
Sec. II-C. Complexity O(1); negligible latency. Strong when
segmentation is clean and lag is modest. Limitations: after
large teleports or transient proxy bias, it can aim off-center.



2) ICP Retargeting (ICP): Register C;_1 to C; with
point-to-point ICP (standard outlier rejection and early stop-
ping). Transport the stale pre-grasp through the estimated
rigid transform; recompute grasp/post from the latest proxy
(Sec. II-C). Complexity O(I m) with a small cap on ICP
iterations I and cloud size m; adds noticeable latency only
at high L. Strengths: robust when cloud overlap is high.
Limitations: large teleports reduce overlap and can degrade
alignment.

3) Uncertainty-Aware Retargeting (UAR): Inflate ap-
proach margins using the cloud dispersion o, from Sec. II-
B.1. For & € {Shover; dapproach } use 0’ = clip(dg + A o4y) (and
optionally & = clip(dit,0 + 3A04y)), With clamps from
Table I. Complexity O(1); improves capture by reducing side
contact and under-reach under noisy clouds. Limits: without
temporal smoothing it can still react to transient bias.

4) UAR with Particle Filter (UAR-PF): Maintain N parti-
cles over the object center with small Gaussian process noise;
weight by a Gaussian likelihood whose covariance uses
(02,,0%,,02) (Sec. II-B.1); low-variance resample when
ESS < N/2. Instantiate Sec. II-C at the belief mean and
apply the same UAR margin inflation. Complexity O(N)
with N € [64,128]; adds only tens of milliseconds in our
setting. Strengths: smooths guarded/noisy measurements and
remains stable under large lags and intermittent dropouts.

E. Reliability mechanisms

We add two lightweight, implementation-agnostic safe-
guards; they do not change the low-level controller and are
not claimed as contributions.

a) Vision guard.: Compare the fresh proxy 0; to a
trusted reference (e.g., previous estimate); if ||AGyy|| > Tuy
or |AZ| > 7., discard the frame and fall back. Thresholds
are set large to catch only gross outliers.

b) Two-stage waypointing (UP—XY—DOWN).: Retar-
geted grasps are executed via a safe height zg,e before lateral
motion and descent, reducing side contact. We enable the
two-stage sequence when the sensed correction is large or
near side surfaces; otherwise we go direct-to-center-Z. We
perform exactly one retarget update immediately after the
injected lag.

F. Control Interface

At each control tick ¢ (period At), with EE pose x; and
active target g, the Cartesian servo commands

A
Ax; =clipy  (gi—x%¢), clipy  (v)= min(L ” m”ax)m
max max V 2

and updates x; 11 = x; +Ax; (Apax in Table I). We advance
to the next waypoint when ||X¢ 5y — 8¢,z |2 < €5y and |zf —
97| < €. (Table I). Latency L is simulated by holding the
stale goal for N = | L/At] ticks, then performing a single
retarget update via R (Sec. II-D). The gripper opens at pre-
grasp, closes at grasp, and opens at post-lift.

TABLE I
PARAMETERS AND DEFAULTS (PICK).

Category Default / Description

Object & clearances Cube edge a = 0.04m; vertical clearance
lcm.

Waypoint offsets (pick) Ohover = 30mMm, GSypproach = 2mm, Jf =
80 mm.

Two-stage tolerances Arrival (ezy,€.) = (15,10) mm; direct-grasp
(5,6) mm.

Two-stage activation XY jump threshold 30 mm; side-band margin
2mm; side proximity margin 3mm; finger
radius 7.5 mm.

Large thresholds (e.g., Tzy = 0.45m, 7, =
0.45m) to act only on outliers.

Vision guard

UAR Margin slope A (tuned per task); optional
clamps 9, 9.

UAR-PF Particles NV € [64, 128]; low-variance resample
if ESS < N/2.

III. EXPERIMENTAL RESULTS
A. Setup and Protocol

a) Environment & Task: We use PyBullet/PandaGym
with a Franka Panda and a single fixed RGB-D pinhole
camera (known intrinsics/extrinsics, 60° FOV) providing
depth and point clouds. Control runs at 100 Hz using a first-
order Cartesian position servo (with a 3-DoF compatibility
shim). We evaluate top-down pick-and-place of a 4 cm cube,
where the retargeter updates pre-grasp, grasp, and post-lift
waypoints executed by the unchanged servo.

b) ShiftxLag stressor: When the end-effector (EE)
reaches the approach trigger, we (i) teleport the cube
by a random in-plane vector of fixed magnitude r €
{0,2,...,10}cm, then (ii) hold actions against the
stale target for a synthetic perception delay L €
{0, 100, 200, 300, 400} ms. After the lag elapses, the camera
re-captures and the retargeter updates the goals.

c) Baselines / Retargeters: We compare the four retar-
geters from Sec. II-D and a no-retarget baseline; all modes
share the same vision guard and two-stage waypointing.

d) Grid / Trials: We sweep 6 shifts x 5 lags with
50 random seeds per cell. Each run logs success, retarget
latency, end-effector (EE) travel, shift, lag, and mode to CSV.

e) Metrics: We report success rate with Wilson 95%
confidence intervals (per cell, n=50), mean retarget latency,
and mean EE travel.

f) Runtime: All retargeters run in a few milliseconds
at our cloud sizes: Nearest/UAR O(1), ICP O(I'm) with
a small fixed cap I < 30, and UAR-PF O(N). Compute
overhead is negligible relative to the injected perception lag
and the 100 Hz control loop.

B. Quantitative Results

a) Headline results.: UAR-PF maintains high suc-
cess across the grid, including the hardest cells. At
(r=10cm, L=400ms) it achieves 0.86 (95% CI 0.74-
0.93). At (8cm, 300 ms) it reaches 0.84 (0.71-0.92), while
geometry-only methods degrade. Average EE travel is similar
across modes, indicating robustness without longer paths.
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Fig. 3. Pick: retarget latency vs. injected L. Means with error bars (std).
ICP shows additional overhead at high L.

b) Mode comparison.: Nearest works for small shifts
but collapses after large teleports. ICP is competitive when
cloud overlap is high but struggles for big teleports. UAR
improves safety margins yet can overreact under the largest
shift+lag. UAR-PF is best or tied-best overall due to belief
smoothing.

C. Retarget Latency

Measured retarget latency closely tracks the injected
lag L (Fig. 3); for UAR-PF, means are approximately
29ms, 122ms, 215ms, 310ms and 397ms at L =
{0, 100, 200, 300, 400} ms. ICP adds extra cost at high L due
to correspondence search and rigid solve.

D. Failure Modes

Main failures: over-guarded resets at large L (under-
reach) and side contacts during XY correction; rarer: prema-
ture closure and fixture jams. Two-stage UP—XY—DOWN
curbs side/jam events, and UAR-PF smoothing mitigates
noisy/guarded updates.

IV. CONCLUSIONS

U-LAG is a lightweight goal-retargeting layer that updates
pre-grasp, grasp, and post-lift waypoints online under de-
layed/noisy perception while leaving the low-level controller
unchanged. We instantiate four retargeters (Nearest, ICP,
UAR, and UAR-PF) with simple reliability hooks for stable
grasp. On a ShiftxLag stress test in PyBullet/PandaGym
for pick-and-place, all retargeters substantially outperform a
no-retarget baseline; UAR-PF is most robust in the hardest
regimes, achieving higher success with comparable EE travel
and only tens of milliseconds of compute overhead. Future
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work includes hardware deployment, extensions to mobile
manipulation, and learned uncertainty models for online
retargeter selection.
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