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Abstract— Classical methods in robot motion planning, such
as sampling-based and optimization-based methods, often strug-
gle with scalability towards higher-dimensional state spaces
and complex environments. Diffusion models, known for their
capability to learn complex, high-dimensional and multi-modal
data distributions, provide a promising alternative when ap-
plied to motion planning problems and have already shown
interesting results. However, most of the current approaches
train their model for a single environment, limiting their
generalization to unseen environments. The techniques that
do train a model for multiple environments rely on a specific
camera to provide the model with the necessary environmental
information. To effectively adapt to diverse scenarios without
the need for retraining, this research proposes Context-Aware
Motion Planning Diffusion (CAMPD). CAMPD leverages a
classifier-free denoising probabilistic diffusion model, condi-
tioned on sensor-agnostic contextual information. An attention
mechanism, integrated in the well-known U-Net architecture,
conditions the model on an arbitrary number of contextual
parameters. CAMPD is evaluated on a 7-DoF robot manipula-
tor and benchmarked against state-of-the-art approaches on
real-world tasks, demonstrating its adaptability to changing
and unseen environments while generating high-quality, multi-
modal trajectories at a fraction of the time required by existing
methods.

I. INTRODUCTION

Robot motion planning is a fundamental problem in
robotics, involving the task of finding a collision-free tra-
jectory for a robot between a start and goal configuration.
Solving this problem can be challenging, particularly in high-
dimensional and complex environments. Moreover, motion
planners are frequently required to consider constraints be-
yond avoiding collisions, such as dynamic constraints to
ensure the feasibility of the motion on the robot. Addi-
tionally, the motion planner should be highly efficient to
respond effectively to disturbances in the environment within
a limited time frame during online deployment. Classical
approaches fall into sampling-based and optimization-based
methods. Sampling-based methods [1], [2] are asymptotically
complete but often yield non-smooth trajectories and scale
poorly with problem size. Optimization-based methods [3],
[4] can handle constraints and objectives but are sensitive to
initialization and prone to local minima. Recent learning-
based techniques offer an alternative to classical motion
planning, broadly divided into learning from demonstration
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and reinforcement learning (RL) [5]. Learning from demon-
stration trains networks on expert trajectories, either gen-
erating collision-free paths directly [6] or guiding classical
planners [7]. RL, by contrast, optimizes a reward through
trial-and-error, requiring no expert data. These methods show
promise for high-dimensional problems but face challenges
in generalization, data efficiency, and reward design. Dif-
fusion models [8] have achieved success in image, video,
and speech generation [9] and are increasingly applied in
robotics for both imitation [7] and policy learning [10].
However, important research challenges remain [11], par-
ticularly in enhancing the generalization and robustness
of these deep learning-based methods. Existing research
typically proposes methods to train a diffusion model for
a single environment, limiting the model’s adaptability to
different environments [6], [10], [12]. The techniques that
do train a model for multiple environments [7] rely on a
camera to provide the necessary environmental information,
requiring an additional processing step and increasing the al-
gorithm’s complexity. This work addresses the generalization
challenge by introducing Context-Aware Motion Planning
Diffusion (CAMPD), a classifier-free diffusion probabilistic
model (DPM) for robot motion planning, capable of rapidly
generating multi-modal solutions and adapting to unseen
environments and tasks. CAMPD is a planning-as-inference
approach [13] that generates collision-free, near-optimal tra-
jectories by sampling from a learned conditional distribution.
A U-Net [14] incorporating attention mechanisms [15] con-
ditions the model on environmental context, and classifier-
free guidance steers trajectories toward safe regions. The key
contributions of this work are: (1) a context-aware diffusion-
based motion planner that integrates sensor-agnostic contex-
tual information directly into the model; (2) significantly
improved generalization to novel environments compared
to state-of-the-art planners; and (3) real-time generation of
high-quality, dynamically feasible trajectories, enabling rapid
planning and replanning in dynamic settings. Evaluated on
diverse problems, the approach demonstrates strong general-
ization, captures multi-modal solutions, and delivers efficient
performance at a fraction of existing methods.

II. RELATED WORK

Diffusion probabilistic models [8] have shown promise
in generating multi-modal plans for high-dimensional prob-
lems. Janner et al. [6] proposed a method where sampling
and planning coincide, but it requires retraining for each
environment, limiting adaptability. Cost-guided approaches
such as Motion Planning Diffusion (MPD) [12] generalize to
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Fig. 1: Overview of CAMPD: During training, trajectories are perturbed with Gaussian noise at a random diffusion step,
while start and goal states remain fixed for conditioning. Context is encoded and randomly dropped (Bernoulli pd) for
conditional/unconditional training. A U-Net with attention predicts the noise using MSE loss. During inference, noise is
iteratively denoised via reverse diffusion with classifier-free guidance (w), keeping start and goal fixed. Finally, a Gaussian
filter is applied to the resulting trajectory to reduce jerk.

unseen environments but rely on hand-crafted cost functions,
which demand tuning and increase computation time. Other
methods condition directly on environmental input: SceneD-
iffuser [16] uses point clouds, while DiffusionSeeder [7]
employs depth images encoded by a Vision Transformer [17]
and integrates cuRobo [3] to blend sampling with optimiza-
tion. These methods achieve strong results but depend on
complex sensory representations, even when simpler struc-
tured descriptions (e.g., object dimensions and locations)
are available. CAMPD instead leverages a classifier-free
DPM conditioned on sensor-agnostic contextual information,
enabling flexible environment descriptions. In contrast to
Decision Diffuser [18], it supports an arbitrary number of
contextual elements such as variable obstacles.

III. METHODOLOGY
This work studies the robot motion planning problem,

where the goal is to rapidly generate a fast, collision-
free trajectory to bring a robot manipulator from an initial
configuration to a goal configuration.

A. Terminology
A trajectory τ ≜ (q0, . . . ,qH−1) ∈ Rdq×H is a sequence

of robot configurations over horizon H in a dq-dimensional
space. The context C = ck,l denotes structured environmen-
tal and task parameters, organized into K types with Lk

instances per type k (e.g., spheres c1,l = [xl, yl, zl, rl]). The
start and goal configurations q0 and qH−1 are excluded from
the context.

B. Neural Network Architecture
As in MPD [12], CAMPD employs planning-as-inference

via a diffusion probabilistic model (DPM) [8], [19]. A DPM

consists of two processes: a forward and reverse diffusion
process. The noise ϵ added in the forward process is learned
using the mean squared error (MSE) loss:

L(θ) = Et,ϵ,τ0,C
[
∥ϵ− ϵθ(τ t, C, t)∥2

]
, (1)

with θ the network parameters and ϵθ the learned estimate
of ϵ. The estimated mean µθ of the reverse process is then
given by [8]

µθ(τ t, C, t) =
1

√
αt

(
τ t −

βt√
1− αt

ϵθ(τ t, C, t)
)
. (2)

In CAMPD, the diffusion model estimates the added noise
ϵ in both conditional and unconditional modes, such that
classifier-free guidance [20] can be employed:

ϵθ
′(τ t, C, t) = (1 + w)ϵθ(τ t, C, t)− wϵθ(τ t, {}, t) (3)

with w the guidance strength. The network architecture
consists of a time encoder, context encoder and a U-Net,
as illustrated in Figure 1.

a) Time Encoder: The time encoder applies sinusoidal
positional encoding [15] followed by a single-hidden-layer
multi-layer perceptron (MLP), yielding a latent representa-
tion zt = MLPt(PE(t)) ∈ Rdz .

b) Context Encoder: The context encoder maps C to
latent representations zC = zck,l

∈ Rdz , where each instance
ck,l of type k is processed by a single-hidden-layer MLPk,
i.e., zck,l

= MLPk(ck,l). The resulting representations are
used in the U-Net attention mechanism.

c) U-Net: The U-Net ϵθ,U(τ t, zC , zt) predicts the
added noise ϵ from the noisy trajectory τ t, conditioned on
latent time zt and context zck,l

. The encoder–decoder struc-
ture follows prior diffusion-based planning work [6], with an



attention module between them. This module applies self-
attention and cross-attention [15] over zt and zck,l

, allowing
conditioning on arbitrary numbers of context instances (e.g.,
varying obstacle configurations).

C. Training

Given a noisy trajectory τ t, time step t, and context C,
the model is optimized to predict the added noise ϵ using the
MSE loss (Equation (1)). Classifier-free guidance is enabled
by randomly omitting context with probability pd, while start
and goal configurations remain fixed. The training procedure
is illustrated in Figure 1.

D. Inference

Trajectories are obtained by iteratively denoising Gaus-
sian noise via a reverse diffusion process, implemented
using samplers such as DDPM [8], DDIM [21], or DPM-
Solver++ [22]. Classifier-free guidance [20] is applied to
enhance contextual conditioning (Equation (3)). The first and
last states of the noisy sequence τ t are fixed to the start
and goal configurations. Finally, a Gaussian filter is applied
to the resulting trajectory to reduce jerk. The full inference
procedure is illustrated in Figure 1.

(a) (b) (c)

Fig. 2: Example of multi-modal trajectories generated by
CAMPD in an unseen environment with spherical obstacles
(blue). The white and purple arms indicate start and goal
configurations, respectively. The yellow line shows the end-
effector trajectory, with (c) highlighting the best trajectory
of a batch of 100 samples.

TABLE I: Evaluation on sphere environments. For each
unseen configuration (environment, start, goal), 100 trajec-
tories are generated. Metrics: Time (T) = batch generation
time; Success (S) = at least one feasible trajectory; Feasible
Trajectory Rate (FTR) = % collision-free; Best Smoothness
Difference (BSD) = smoothness gap to baseline; Variance
(Var) = summed joint distance variances.

Experiment Method T (s) ↓ S (%) ↑ FTR (%) ↑ BSD (%) ↓ Var ↑

Random Spheres

RRTC + Fatrop 16.49 ± 14.70* 86.6 ± 34.1 – – 0.5 ± 1.4

CAMPD

w = 1 0.066 ± 0.0 97.5 ± 15.6 79.4 ± 31.0 2.2 ± 7.0 1.7 ± 3.3
w = 1.5 0.066 ± 0.0 97.4 ± 15.9 82.3 ± 30.4 3.9 ± 10.7 1.9 ± 3.7
w = 2 0.066 ± 0.0 97.0 ± 17.1 82.8 ± 30.7 5.0 ± 12.4 2.2 ± 4.5
w = 5 0.066 ± 0.0 97.0 ± 17.1 67.9 ± 31.5 9.7 ± 45.2 3.7 ± 8.3

Partially Random Spheres MPD 3.165 ± 0.8 80.7 ± 39.5 59.6 ± 43.4 – 4.8 ± 6.8
CAMPD w = 1.5 0.066 ± 0.0 90.7 ± 29.1 73.3 ± 37.5 -36.0 ± 14.5 1.7 ± 3.1

*Under ideal parallel CPU execution.

IV. EXPERIMENTAL RESULTS

Experiments were conducted on a 7-DoF Franka Emika
Panda robot, comparing CAMPD to a classical motion
planner (RRT-Connect [1] + Fatrop [4]), MPD [12],

TABLE II: Evaluation on the MπNet test set.
Nbatch = 12 Nbatch = 64

cuRobo DiffusionSeeder IK cuRobo + CAMPD cuRobo IK cuRobo + CAMPD
DDPM DPMSolver++ DDPM DPMSolver++

Niters = 25 50 w = 1 1 2 5 w = 1 1 2 5

Plan Time (ms) 26 15 17 7+20 8+5 8+5 7+5 111 8+52 8+7 8+7 8+7

Success Rate 92.0% 85.1% 85.8% 90.7% 86.9% 87.6% 78.9% 93.8% 98.3% 96.2% 97.2% 93.3%

Jerk (rad/s3) 36.5 108.8 103.6 26.1 25.9 29.1 41.6 62.2 37.1 37.2 42.0 75.6
Motion Time (s) 1.12 1.26 1.26 1.38 1.36 1.37 1.47 1.01 1.13 1.14 1.14 1.22
Translation Err (mm) 0.60 0.98 0.95 0.004 0.003 0.003 0.003 0.87 0.003 0.003 0.003 0.003
Quaternion Err (◦) 0.13 0.93 1.44 0.005 0.004 0.004 0.004 0.16 0.004 0.004 0.004 0.004

and, on the MπNet [23] dataset of real-world tasks, to
cuRobo (v0.6.2) [3] and DiffusionSeeder [7]. All methods
use the same architecture and hyperparameters; details are
provided in Appendix V-A.

A. Evaluation in Sphere-Based Environments

The task requires navigating from a start to a goal configu-
ration through environments containing one to ten randomly
placed spheres, spaced to ensure feasible paths. Each sphere
is represented by cspheres,l = [xl, yl, zl, rl], encoding position
and radius. The training set, generated with a hybrid plan-
ner combining RRT-Connect [1] and Fatrop [4], comprises
113 469 smooth trajectories across 2400 environments. The
reverse sampling process was performed using DDPM [8].

Figure 2 shows an example of multi-modal solutions gen-
erated by CAMPD in an unseen environment. Table I sum-
marizes the results. On 1000 unseen environments, CAMPD
outperforms the hybrid planner in success rate and variance.
Although CAMPD’s best trajectories are slightly less smooth
on average, it can find more locally optimal solutions by
identifying modes missed by the hybrid planner, thereby
occasionally surpassing the method used to generate its
dataset. On 600 environments with partially fixed obstacles,
CAMPD also outperforms MPD in success rate, feasible
trajectory rate, and smoothness, despite not having seen
parts of these environments during training. MPD explores
more local minima due to it’s balanced optimization costs,
producing more diverse but less smooth solutions. CAMPD’s
performance is sensitive to guidance strength w, which
increases success and feasible trajectory rates but may reduce
smoothness. CAMPD is computationally efficient and deter-
ministic, taking only 0.066 s per batch of 100 trajectories,
compared to (16.49 ± 14.73) s for the hybrid planner and
(3.165±0.008) s for MPD, whose slowness stems from cost-
gradient computations or low RRT-Connect success rates.

B. Real-World Task Evaluation

To evaluate CAMPD in real-world scenarios, a model
was trained on the MπNet simulation test set [23],
where each task specifies an initial configuration and tar-
get end-effector pose. During inference, the cuRobo [3]
IK solver generates feasible joint-space goals. The task
context includes cuboids and spheres, represented by
ccuboid,l = [xl, yl, zl, wl, hl, dl, qw,l, qx,l, qy,l, qz,l] and
csphere,l = [xl, yl, zl, rl, hl, qw,l, qx,l, qy,l, qz,l], where posi-
tions, dimensions/radii, and orientations are encoded. The
training set, generated with cuRobo [3], contains 1 mil-
lion trajectories across 200 000 environments. CAMPD is



evaluated against two baselines: cuRobo [3] and Diffusion-
Seeder [7]. Table II reports results on the MπNet test set,
with baseline metrics of DiffusionSeeder taken from [7].
Note that DiffusionSeeder uses a depth camera for obstacle
detection, not exact object poses; ESDF computation time is
excluded for fair comparison. CAMPD achieves faster plan-
ning times than both cuRobo and DiffusionSeeder. Moreover,
at higher batch sizes, CAMPD surpasses cuRobo in terms
of success rate. However, cuRobo consistently produces
trajectories with the shortest motion time.

V. CONCLUSIONS
This work proposes Context-Aware Motion Planning Dif-

fusion (CAMPD), a diffusion-based motion planning method
capable of incorporating contextual information. CAMPD
utilizes a diffusion model to estimate the added noise in
trajectories, conditioned on contextual factors. Experiments
conducted in simulation demonstrate that CAMPD excels
in generalizing to unseen environments, outperforming the
existing method MPD in terms of success rate and so-
lution optimality. Additionally, CAMPD showcases excep-
tional computational efficiency, making it suitable for online
applications. Its ability to generate high-quality, executable
trajectories directly on the robot without the need for post-
processing further highlights its potential for practical de-
ployment in complex motion planning tasks. Future work
will focus on enhancing the data generation process, im-
proving the model’s generalization capabilities, reducing its
computational complexity even more, and expanding its
applicability to sensor-based environments.

APPENDIX
A. Model Parameters

Diffusion steps were Ttrain = 25 with latent dimension
dz = 64. The U-Net had depth 4, 4 attention heads, and
input dimension 64 per head. Training used batch size 128,
learning rate 1 × 10−4, and unconditional probability pd =
0.33. Models ran on an NVIDIA© GeForce RTX™ 4090
GPU. For DDPM, Tinf = Ttrain; for DPMSolver++, Tinf = 3.
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