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Abstract— This work addresses the challenge of grasping
a target object in cluttered environments, even when it is
partially visible or fully occluded. The proposed approach
enables the manipulator to learn a sequence of strategic non-
prehensile (pushing) actions to rearrange the scene and make
the target object graspable. Our pipeline integrates a deep
reinforcement learning (DRL) agent for pushing with the
GR-ConvNet model for grasp prediction. When the object is
considered ungraspable, a Soft Actor-Critic (SAC) model guides
optimal pushing actions. A key contribution is a novel pixel-wise
clutter map, which is integrated directly into the agent’s state
representation to provide an explicit, quantitative measure of
environmental clutter. This clutter-aware state representation
guides the decision-making process, leading to more efficient
policies. Experimental results demonstrate that incorporating
the clutter map significantly improves performance, reducing
the number of actions required to complete the task by approx-
imately 25%. The system generalizes well to diverse objects
and transfers directly from simulation to hardware without
requiring additional training for real-world deployment.

Index Terms— Robotic manipulation, Cluttered environ-
ments, Deep reinforcement learning (DRL), Soft Actor-Critic
(SAC), Strategic pushing, GR-ConvNet, Grasp planning, Con-
tinuous action space, Clutter map, Occluded object grasping.

I. INTRODUCTION

Grasping a specific target object in a cluttered scene is a
significant challenge for autonomous robots, often hindered
by occlusion and restricted access. In such cases, non-
prehensile actions like pushing are essential to rearrange the
environment and improve the target’s visibility and graspabil-
ity. This paper introduces a system that learns to strategically
declutter a scene to grasp a designated target.

Our approach separates the complex, strategic task of
clutter reduction from the well-defined sub-task of grasp de-
tection. We employ Deep Reinforcement Learning (DRL) ex-
clusively for learning a pushing policy, avoiding the sample-
inefficiency of using DRL for grasping. For grasp detection,
we use GR-ConvNet model [5] . This partitioning makes the
overall approach more practical for real-world application.

Our key contributions are: 1) A Continuous Pushing
Policy: We utilize SAC in a continuous 5D action space (push
point, angle, length, etc.), allowing finely tuned and adaptive
motions, unlike prior discrete and fixed-length approaches. 2)
Clutter-Aware State Representation: We propose a novel
pixel-wise clutter map integrated into the DRL state space,
providing a direct quantitative measure of clutter. 3) End-to-
End Sim-to-Real Transfer: Our policy, trained in simulation
with domain randomization, transfers directly to hardware

The video demonstrating the available at:

https://youtu.be/ISWNi_xMgeA
The code is available at: https://github.com/previous-team/armor

implementation is

without fine-tuning, made possible by normalized actions that
generalize across workspaces.

II. RELATED WORKS

Prior research in robotic manipulation has explored various
strategies for coordinating prehensile (grasping) and non-
prehensile (pushing) actions in cluttered environments. These
approaches can be broadly categorized by their choice of action
space and the degree to which they decouple the two sub-tasks.
The table [l summarizes key related works.

III. METHODOLOGY
A. System Overview and Problem Formulation

The task is formulated as a Markov Decision Process
(MDP). At each timestep, the agent observes the state, selects
an action, transitions to a new state and receives a reward.
The pipeline as illustrated in Figure [I] operates in a loop:
it first perceives the environment to determine the target’s
graspability using GR-ConvNet. If the target is not graspable,
the SAC-based push policy is invoked to execute a decluttering
action. This loop continues until a grasp is validated, at which
point a grasping action is executed.

B. Learning the Pushing Policy

The policy is learned using the Soft Actor-Critic (SAC)
algorithm, an off-policy actor-critic method designed for
continuous control tasks. SAC’s key feature is its entropy
regularization framework, which encourages exploration by
augmenting the standard reward objective with a policy en-
tropy term. This helps the agent avoid premature convergence
to suboptimal policies and learn more robust behaviors. The
learning process is defined by the state the agent observes, the
actions it can take, and the rewards it receives.

1) State Space (S;):

The agent’s ability to make informed decisions depends
critically on its perception of the environment. The complete
state representation at time step ¢ for our model is defined as:
S, ={G,D,N,C, p}, where:

e G, D: Normalized grayscale and depth images G,D €
R7>*W provide the agent with the primary visual and
spatial context of the workspace. Normalization to the
range ensures training stability.

« N: Pixel count of the target object is a scalar value
representing the number of pixels corresponding to the
target object. This is obtained by applying a color mask
in the HSV space. This simple metric robustly quantifies
the target’s visibility without relying on complex segmen-
tation, which helps prevent overfitting to specific object
shapes or colors.


https://youtu.be/l8wNi_xMgeA
https://github.com/previous-team/armor

TABLE I: Comparison of Related Approaches for Robotic Manipulation in Cluttered Environments

Approach Action Space (Push/Grasp) | Key Idea Limitations

Zeng et al. Discrete / Discrete Two separate Q-networks for push- | Relies on fixed motion primitives,
ing and grasping policies. limiting precision.

Ren et al. Discrete / Discrete A Fast Learning Grasping (FLG) | Discrete actions are less effective
framework uses Q-learning. in dense clutter.

Chen et al. RL (Push) / Rule-based Decouples pushing (RL) from | Pushing policy is target-agnostic.
grasping (morphological process-
ing).

Yang et al. Discrete / Discrete Bayesian policy for target search | Constrained by predefined strate-
and a classifier for actions. gies.

Proposed work Continuous / Supervised SAC learns a 5D push action, | Relies on a separate, pre-trained
guided by a novel pixel-wise clutter | model for grasp generation.
map.
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Fig. 1: Proposed pipeline combining GR-ConvNet with a continuous action space based SAC algorithm to aid decluttering
and grasping of a designated target object in cluttered and occluded environments. The system first detects the target object
using color masking and estimates visibility. If occluded, an RL-based push policy is used to reveal the object. Once visible,
GR-ConvNet predicts potential grasp configurations, which are then verified using a graspability check before execution.

e C: Centroid C = (x.,y.) of the visible portion of the
target object provides positional information. If the object
is not visible (N=0), a default value of (-1, -1) is used.

» p: Pixel-wise clutter map is the key component of our
state representation. It encodes the spatial density of
objects in the scene. The clutter score at a given point is
influenced by all objects in the scene, based on their size
(s;) and distance (d;) from that point. The score is directly
proportional to an object’s size s;, since larger objects

contribute more to clutter and inversely proportional to
its distance d;, reflecting the greater influence of nearby
objects. The total clutter score at a pixel is given by:

N
Total Clutter Score at a pixel = Z il (D
o di
This formulation provides a information about the clutter

intensity, allowing the agent to distinguish between



densely packed and sparse regions and to reason about
where pushing actions would be most effective.

Fig. 2: RGB images (left) and respective pixel-wise clutter
heatmaps (right) for various object arrangements. The clutter
maps highlight densely packed regions, aiding the RL model
in identifying suitable push locations to declutter the scene.

2) Action Space (A;):

To enable precise and adaptive manipulation, we define
a 5-dimensional continuous action space A;=X,y,z,6,l. Each
component is normalized to facilitate stable learning and
generalization:

e (x,y,z): Normalized 3D coordinates where the end-

effector initiates its push motion.

e 0: Normalized yaw angle of the push, mapped to a
physical range of [-180°, 180°].

« 1: Normalized length of the push motion.

3) Reward:

The agent is trained using a dense reward function designed
to guide it toward the desired outcome. The reward structure
includes:

« Graspability Reward: A positive reward is given when the

target becomes graspable.

« Visibility Reward: A positive reward is given for increas-
ing the target’s pixel count (N) and a negative reward is
given for decreasing it.

o Clutter Reward: A positive reward is provided for reduc-
ing the mean clutter score (calculated from (p), either
globally (if the target is not visible) or in a local region
around the target’s centroid (if it is visible).

» Collision Reward: A negative reward penalizes any
detected collisions.

C. Grasp Generation and Validation

Once the SAC agent has rearranged the scene to a state where
the target is potentially graspable, the GR-ConvNet model is
used to generate antipodal grasp candidates from the RGB-
D input. However, a predicted grasp may be infeasible due
to surrounding objects that could cause a collision during
the gripper’s approach. To ensure physical feasibility, we
implement a rule-based grasp validation check. For a given
grasp candidate, a 3D grasp rectangle corresponding to the
real-world dimensions of the gripper is computed and oriented
according to the predicted grasp angle. Points are sampled
along the edges of this rectangle, and their depth values
are compared to the depth at the grasp center. A grasp is
considered valid only if the depth values along the approach
edges are greater than the depth at the center, ensuring a clear
path for the gripper fingers. This validation step filters out
infeasible predictions and significantly increases the reliability
of executed grasps.

IV. EXPERIMENTAL VALIDATION
A. Experimental Setup

The proposed pipeline was trained and validated in a
simulation environment built with Gazebo 11 and ROS Noetic,
featuring a 6-DOF Niryo Ned2 robotic arm. To promote the
learning of a generalizable policy, the training environment
utilized domain randomization. At the start of each episode,
the workspace was populated with a random number of objects
(between 10 and 50) of varying shapes, sizes, and colors,
creating diverse and challenging clutter configurations.

The hardware setup consisted of a physical Niryo NED2
manipulator and an overhead Intel RealSense D415 RGB-D
camera. The transformation between the camera and robot
coordinate frames was established using a fixed ArUco
marker, enabling accurate localization of objects in the robot’s
workspace. The simulation-trained model was deployed di-
rectly to hardware without any fine-tuning.

Comparison of Mean Episode Length Between All the Models

—— Model with pixel-wise clutter map, discount factor = 0.99

—— Model without pixel-wise clutter map, discount factor = 0.99

—— Model without pixel-wise clutter map, discount factor = 0.90
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Fig. 3: Mean Episode Length Comparison Between All the
Trained Models

B. Experimental Results

To quantify the benefit of our proposed clutter-aware
state representation, we conducted a study comparing the
performance of the SAC agent trained with the full state
space (S;=G,D,N,C,p) against a baseline agent trained without
the pixel-wise clutter map (S,=G,D,N,C). Both models were
trained for 10,000 timesteps under identical conditions, using
a discount factor of y=0.90 and y=0.99. The models were then
evaluated over 50 episodes in a consistent test environment.

The results, summarized in Table |m shows a clear and
significant performance improvement when the clutter map is
included. The clutter-aware agent trained with y=0.90 required
approximately 25% fewer actions to complete the task (average
episode length of 15.4 vs. 20.5) and achieved an average
episode reward that was nearly an order of magnitude higher
(17.2 vs. 1.7). The negative average reward for the baseline
model indicates that it frequently became stuck in states from
which it could not recover or took actions that reduced target
visibility.

The learning efficiency is further illustrated in Fig.[3] which
plots the mean episode length during training. The model with
the clutter map not only achieves a lower final episode length



Fig. 4: Grasping and picking the target object in cluttered environment

TABLE II: Evaluation Results of Different Models

State Space vy Avg. Ep. Length  Avg. Reward

Without Clutter Map  0.99 355 -1.4
0.90 20.5 1.7

With Clutter Map 0.99 28.8 15.1
0.90 154 17.2

but also converges to an effective policy much more rapidly
than the baseline model. This confirms that providing the
agent with an explicit representation of clutter significantly
accelerates the learning process.

C. Hardware Deployment

The simulation-trained policy transferred successfully to
the physical hardware. This zero-shot transfer is attributed to
the normalized action space, extensive world randomization
while training and a state representation based on fundamen-
tal physical properties (depth, visibility, clutter) consistent
between simulation and reality. On the hardware platform,
the system demonstrated robust performance, successfully
grasping various objects from cluttered arrangements, as
shown in Fig. ]

On the robot, the system grasped diverse objects (e.g.,
toothpaste tubes, pens) from cluttered scenes. Consistent
with simulation, the clutter-map model showed more focused
pushes around the target, while the baseline executed redun-
dant actions, delaying completion. Figure 3 shows the robot
successfully grasping a target object in a cluttered real-world
scene.

V. CONCLUSIONS

We introduced a pipeline for autonomous robotic grasping
in cluttered environments that leverages deep reinforcement
learning for strategic pushing and using GR-ConvNet model
for grasping. Our primary finding is that explicitly encod-
ing environmental clutter as a feature in the state space
significantly improves both the final performance and the
learning efficiency of the DRL agent. The clutter-aware model
learned to complete its task with fewer actions and achieved
substantially higher rewards compared to a baseline without
this information. The successful zero-shot sim-to-real transfer
underscores the robustness of the approach. Future work
could explore more advanced target segmentation methods
to enhance generalization further.
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