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Abstract— Frequent replanning in dynamically changing en-
vironments often pushes robot manipulators towards singular
configurations and joint limits, causing traditional inverse
kinematics (IK) solvers to fail and hindering adaptability. We
address this with an enhanced Gaussian Process IK (GP-
IK) framework that uses a Jacobian-guided acquisition strat-
egy for robust planning. This method adapts its exploration-
exploitation balance in real-time based on local sensitivity and
mechanical constraints, ensuring the planner can find reliable
solutions even near manipulator limits. By enabling robust
performance in challenging configurations, our approach allows
for a tighter integration of perception and planning, fostering
more adaptive and resilient robots, as demonstrated on a 7-DOF
Franka robot.

I. INTRODUCTION

For robots to operate effectively in dynamically changing
environments, they must frequently replan their motions,
a process that often drives manipulators towards singular
configurations and joint limits [1], [2], [3]. While data-
driven methods like Gaussian Process Inverse Kinematics
(GP-IK) are promising for such adaptive planning [4], [5],
[6], they falter precisely in these critical regions where the
robot’s Jacobian matrix becomes ill-conditioned [7], [2]. In
these states, the IK solution becomes highly sensitive and
numerically unstable, leading to unpredictable behaviour.
Compounding this issue, conventional GP-IK exploration
strategies are computationally inefficient, wasting resources
by indiscriminately amassing data from many unfruitful
attempts to find a solution. This highlights a critical need for
a more intelligent exploration mechanism that can efficiently
navigate these challenging configurations to ensure robust
and reliable robot motion in response to real-world changes.

The integration of Jacobian-based sensitivity analysis with
active learning principles presents a novel opportunity to
address these fundamental challenges. We identify three
key areas where this integration could substantially improve
system performance: 1) Lack of local mechanical constraint
awareness leads to inefficient exploration in challenging
configurations. 2) Crucial balance between exploration and
exploitation needs to account for both task-space objectives
and configuration-space limitations, particularly when oper-
ating near joint limits or singular positions. 3) Adaptation of
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Fig. 1: The Jacobian-Guided GP-IK Framework that uses GP
models to learn optimal movements, guided by an acquisition
strategy that balances exploration and exploitation.

sampling strategies must consider both probabilistic uncer-
tainty and mechanical feasibility to ensure reliable operation
across diverse conditions.

To address these challenges, we propose a novel Jacobian-
Guided GP-IK framework that fundamentally advances the
capability of active learning strategies in robotic manipu-
lation. Our approach introduces a sophisticated Jacobian-
guided acquisition mechanism that dynamically adapts the
exploration-exploitation balance based on local sensitivity
measures and mechanical constraints. This innovation is
integrated with Expected Improvement (EI) and Upper Con-
fidence Bound (UCB) acquisition functions [8], enabling the
system to intelligently navigate complex configuration spaces
while maintaining robustness near singular configurations
and joint limits. By incorporating Jacobian-based sensitiv-
ity information into the acquisition process, our method
maintains high solution quality while significantly reducing
computational overhead in challenging scenarios.

We make the following contributions:

• A novel Jacobian-Guided GP-IK framework is pro-
posed, integrating mechanical sensitivity analysis with
an active learning strategy.

• A comprehensive analysis is conducted on how the
Jacobian-guided exploration strategies affects the GP-
IK solutions, revealing distinct advantages for different
operational requirements.



• An enhanced GP update mechanism has been devel-
oped, leveraging Jacobian information to ensure robust
performance under various operational conditions.

II. METHOD

GP models have become a principled way to tackle
IK under redundancy, uncertainty, and nonlinearity: multi-
variate Gaussian IK captures distributions over feasible joint
configurations for smooth motion, and Gaussian-distributed
damping within Damped Least Squares improves singularity
robustness [4]. GP regression has also been used to learn for-
ward/inverse kinematics, particularly in soft robots showcas-
ing strong modelling of complex mappings [9]. At the same
time, Jacobian-based optimisation remains the workhorse
for IK and singularity analysis, yet effectively blending
probabilistic GP predictions with joint constraints and task
priorities is still challenging [10]. To improve data efficiency,
active-learning GP frameworks have been explored for re-
ward learning and kinematic calibration, leveraging Bayesian
uncertainty to guide informative sampling [8]. Building on
these ideas, our Jacobian-guided GP-IK incorporates GP-
driven adaptive weighting and a sensitivity metric to balance
exploration and exploitation while improving robustness and
accuracy near joint limits and singularities [11].

A. Active Learning

Active learning with GPs iteratively fits a surrogate to
observed data and selects new query points via an acquisition
function that trades off exploitation (promising mean predic-
tions) and exploration (high uncertainty), reducing samples
needed to model the objective or locate optima [12]. In our
GP-IK setting, we employ two complementary choices, EI
to target configurations likely to improve accuracy and UCB
to probe uncertain regions, supporting efficient search under
redundancy and near difficult areas [13], [8]. However, these
standard acquisitions rely solely on GP means and variances
and are agnostic to kinematic structure, joint limits, and
singularities; notably, they provide no mechanism to respond
when the Jacobian becomes ill-conditioned near singular
configurations.

B. Jacobian-Guided Acquisition

Jacobian-Guided Acquisition (Algorithm 1) presents a
novel approach to IK that enhances solution quality and con-
vergence reliability by incorporating configuration sensitivity
analysis with machine learning techniques. The configuration
quality assessment employs a weighted combination of fun-
damental manipulability metrics. The primary formulation
integrates the condition number of the Jacobian matrix [14],
manipulability measure [15], and kinematic isotropy [16].
The condition number is the ratio of the largest to small-
est singular value of the Jacobian matrix which indicates
numerical stability of the IK solution. The manipulability
measure represents the volume of the manipulability ellipsoid
and is calculated as the square root of the product of
all singular values, which quantifies the robot’s ability to
generate velocities in arbitrary directions.

Algorithm 1 Jacobian-Guided Acquisition

1: Input: target pose, initial config
2: Output: final config, success
3: Initialize:
4: q ← initial config
5: GP ← InitializeGaussianProcess()
6: Main Loop:
7: while not converged do
8: // 1. Compute current state and error
9: current pose← ForwardKinematics(q)

10: error ← ComputeError(target pose, current pose)
11: if error < tolerance then
12: return (q, true)
13: end if
14: // 2. Sensitivity Analysis
15: J ← ComputeJacobian(q)
16: sensitivity ← AnalyzeJacobianSensitivity(J)
17: UpdateGPModel(q, sensitivity)
18: // 3. Compute and apply step
19: weights← GetWeights(q, sensitivity)
20: λ← sensitivity × damping factor
21: dq ← DampedLeastSquares(J, weights, λ, error)
22: // 4. Update configuration
23: q ← q + dq
24: q ← ClampToJointLimits(q)
25: end while
26: return

(
q, CheckSuccess(q, target pose)

)

We employ GPR [17] to model the mapping between
configuration space and sensitivity metrics. The covariance
function uses a Matérn kernel with ν = 2.5, chosen for
its smoothness properties. This specific level of smoothness
is particularly appropriate for modelling physical systems
like robotic manipulators. The resulting GP prior assumes
functions that are smooth enough to capture the underlying
physics while still allowing for the non-linear behaviours
approaching singularities.

The Jacobian sensitivity analysis provides crucial informa-
tion about the robot configuration, which examines singular
values and their ratios to detect potential problematic con-
figurations. The system calculates a sensitivity metric that
considers multiple factors: manipulability (how easily the
end-effector can move in any direction), isotropy (uniformity
of movement capability), and proximity to joint limits.

We employ GPR to learn from previous attempts and
predict sensitivity at new configurations. This creates a
probabilistic model of the workspace, allowing the system
to anticipate challenging regions before encountering them.
The GP model is continuously updated as new configurations
are explored, improving its predictions over time.

The acquisition function combines the learned sensitivity
model with traditional error metrics to guide the optimisation
process. This function balances exploration and exploitation,
adapting its behavior based on the current state and predicted
sensitivity. When the system encounters high-sensitivity re-



gions, it automatically adjusts its step size and damping
parameters to maintain stability.

III. EXPERIMENTAL EVALUATION
A. Performance Analysis of Active Learning in GP-IK

This study evaluates three inverse kinematics methods:
a standard Gaussian Process-based approach (GP-IK) and
two variants enhanced with active learning acquisition func-
tions—Expected Improvement (EI) and Upper Confidence
Bound (UCB). The experiments compare their performance
in terms of success rate, convergence speed, and accuracy,
first in a general case and subsequently in a more complex
application involving a 7-DOF robotic arm.

TABLE I: Comparison of GP-IK Methods.

Metrics Normal GP-IK EI UCB

Success Rate (%) 57.14 57.14 57.14
Iteration 289.29 200.00 69.29
Position Error (m) 0.1557 0.0935 0.1425
Orientation Error (rad) 0.3945 0.2769 0.3228

TABLE II: Overall Performance Metrics

Metrics Normal GP-IK EI UCB

Success Rate (%) 93.33 100.00 93.30
Iteration 39.07 200.00 19.07
Position Error (mm) 3.04e−6 2.87e−6 2.27e−5
Orientation Error (rad) 1.56e−3 6.79e−6 1.40e−3

The initial results, shown in Table I, established that while
all methods had an identical success rate (57.14%), their effi-
ciency and accuracy varied significantly. The UCB-enhanced
method converged fastest (69.29 iterations), whereas the EI-
based approach yielded the highest accuracy with the lowest
position (0.0935 m) and orientation (0.2769 rad) errors. Both
active learning strategies clearly outperformed the standard
GP-IK baseline.

To further assess these methods in a more constrained
and complex scenario, a second experiment was conducted
on a 7-DOF Franka Emika robot, focusing on challenges
like redundancy resolution and joint limit handling. As
detailed in Table II, EI demonstrated superior reliability
with a 100% success rate, proving robust even in difficult
configurations near joint limits where other methods faltered.
UCB was again the most computationally efficient, requiring
only 19.07 iterations on average. In contrast, EI consistently
reached its 200-iteration cap, indicating a distinct trade-off
between solution reliability and speed. All methods achieved
high positional accuracy, but EI’s exhaustive search resulted
in substantially better orientation accuracy (6.79e-6 rad).

Across both experiments, a clear performance trade-off
emerges: UCB provides the fastest convergence, making it
ideal for time-sensitive applications, while EI ensures the
highest accuracy and reliability, suiting it for high-precision
tasks like assembly. These findings suggest that a hybrid
approach—leveraging UCB’s rapid initial convergence be-
fore switching to EI for fine-grained refinement—could offer
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Fig. 2: The success rates within challenging cases.
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Fig. 3: Three computational regimes.

an optimal balance. Future work could explore adaptive
strategies, potentially guided by reinforcement learning, to
dynamically select the best acquisition function based on task
requirements and convergence behaviour.

B. Comparative Evaluation Against TRAC-IK

We evaluated our probabilistic, GP-based IK solver against
TRAC-IK [18], a state-of-the-art baseline that combines
KDL’s numerical IK with sequential quadratic program-
ming using two complementary acquisition strategies: EI to
emphasise exploitation and UCB to encourage exploration.
Experiments on a 7-DOF manipulator used two datasets: six
standard test cases (including home and ready) and a com-
prehensive set of 24 cases comprising 20 randomly generated
configurations spanning the workspace plus four deliber-
ately challenging scenarios (near-singularity, extended reach,
elbow-up, and twisted). Success was defined as achieving
a position error below 10−3 m and an orientation error
below 10−2 rad. Particularly noteworthy is our method’s
performance on pathological test cases where traditional
solvers struggle. For the near-singularity configuration at
position [0.554, 0.0, 0.521] m, both GP variants success-
fully converged while TRAC-IK failed after exhausting its
iteration budget. Similarly, for the extended reach pose
at [−0.310, 0.0, 0.589] m, approaching the manipulator’s
workspace boundary, our probabilistic weighting mechanism
adaptively adjusted the Jacobian regularisation to maintain
numerical stability.

The results demonstrate that the learned GP models effec-
tively capture the relationship between joint configurations
and task-space errors, enabling robust solving even in regions
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where traditional geometric intuition fails. The adaptive
weighting, informed by GP uncertainty estimates, provides a
principled mechanism for handling ill-conditioned Jacobians
without requiring manual tuning or special-case handling.
The two acquisition functions demonstrated distinct be-
havioural characteristics aligned with their theoretical prop-
erties. The EI strategy exhibited conservative convergence
behaviour with: Stricter convergence thresholds (0.99 for
position, 0.98 for orientation); Slower learning rate (α = 0.5)
enabling fine-grained optimization; Multiple restart policy (5
attempts) ensuring global optimum discovery.

Conversely, the UCB strategy prioritised rapid conver-
gence through: Relaxed thresholds (0.85 for position, 0.80
for orientation); Aggressive learning rate (α = 1.5) with
momentum term (β = 0.3); and Single-pass optimisation
with early termination.

IV. CONCLUSIONS

In conclusion, we introduce a novel Jacobian-Guided GP-
IK framework that provides a robust and computationally
efficient foundation for robots operating in dynamically
changing environments. By integrating mechanical sensitiv-
ity into the active learning process, our method reliably
solves for motions near singular configurations and joint lim-
its, a critical requirement for the frequent replanning needed
in adaptive robotics. By offering a foundational motion
planning layer that enables tighter integration between per-
ception and planning, our work makes a direct contribution
to creating more adaptive and responsive robots; when the

planner can be trusted in challenging configurations, higher-
level systems can more confidently react to real-time sensory
input. Looking forward, the enhanced stability provided by
our framework is essential for deploying robots in complex,
interactive scenarios, such as human-robot collaboration and
dynamic obstacle avoidance, paving the way for the next
generation of truly adaptive and resilient robotic systems.
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