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Abstract— Task and motion planning are long-standing chal-
lenges in robotics, especially when robots have to deal with
dynamic environments exhibiting long-term dynamics, such as
households or warehouses. In these environments, long-term
dynamics mostly stem from human activities, since previously
detected objects can be moved or removed from the scene.
This adds the necessity to find such objects again before
completing the designed task, increasing the risk of failure due
to missed relocalizations. However, in these settings, the nature
of such human-object interactions is often overlooked, despite
being governed by common habits and repetitive patterns. Our
conjecture is that these cues can be exploited to recover the
most likely objects’ positions in the scene, helping to address the
problem of unknown relocalization in changing environments.
To this end we propose FlowMaps, a model based on Flow
Matching that is able to infer multimodal object locations
over space and time. Our results present statistical evidence
to support our hypotheses, opening the way to more complex
applications of our approach. The code is publically available
at https://github.com/Fra-Tsuna/flowmaps.

I. INTRODUCTION

Executing long-horizon tasks in real-world environments
remains a major challenge for mobile robots. Even a simple
instruction like “fetch me the mug from the kitchen”
requires robust mapping, planning, and decision-making
pipelines. Examples of such tasks in robotics include object
navigation and object retrieval: object navigation involves
finding and navigating to a target object, whereas object
retrieval also requires approaching, manipulating, and lastly
delivering the object to a specified destination.

Recent advances in Large Language Models (LLMs)
and Vision-Language Models (VLMs) have improved
the performance of embodied agents in such tasks by
enabling richer semantic queries. Specifically, LLMs
support commonsense reasoning [1], while VLMs provide
compact, high-dimensional scene features (e.g., CLIP [2])
that allow agents to better perceive and reason about objects
in the environment [3].

However, many approaches assume static environments,
where objects move only if the robot acts on them. This
assumption is unrealistic: real-world scenes are dynamic,
as humans constantly move objects and reorganize rooms.
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Consequently, robots cannot rely on objects staying in their
last observed locations, which poses a major risk for both
navigation and retrieval tasks.

Humans, though, exhibit repetitive patterns [4]: for
example, a bottle taken from the kitchen table is likely
placed on a desk and later returned to the kitchen sink. These
semantically consistent patterns [5], [6] can be exploited
to recover from missed retrievals by relocating objects at
likely human-induced placements. Since these locations are
inherently multimodal, a distributional approach is required.

We therefore propose FlowMaps, a Flow Matching [7]
model that recovers multimodal object distributions over
space and time. Using a transformer-based map encoder
and observations of object placements over time, FlowMaps
infers plausible locations for query object classes, improving
retrieval success.

We summarize our contributions as follows:

o FlowMaps: a Flow Matching-based model for
multimodal object relocalization in long-term dynamic
scenes.

e FlowSim: a procedurally generated dataset
simulates multimodal object placements over time.

e A qualitative evaluation empirically demonstrating the
benefits of our approach, and a quantitative comparison
against an MLP baseline.

that

This paper is organized as follows: Section II reviews
related work, Section III details FlowMaps and FlowSim,
Section IV presents the experimental results, and Section V
concludes.

II. RELATED WORK

Object navigation and object retrieval. The goal of
object navigation is to reach a target object specified by
category or natural language, typically through semantic
mapping and goal-conditioned exploration [8], [9]. Object
retrieval extends this to finding, grasping, and delivering the
object, with recent benchmarks enabling open-vocabulary
mobile manipulation in realistic household environ-
ments [10], [11]. Despite their effectiveness, many pipelines
still assume static scenes or rely on short-horizon replanning
when target objects move, which is a recurring source of
failure in environments undergoing human activities.

Flow Matching in robotics. Generative models are in-
creasingly prominent in robotics, aided by large, cross-
embodiment datasets such as Open-X Embodiment [12].
Building on this, recent work has applied diffusion [13], [14]
and Flow Matching (FM) [15], [16] to learn action policies,



while others have developed end-to-end vision-language-
action systems [17], [18]. While these approaches have
shown impressive capabilities, they largely focus on policy
learning. In contrast, we leverage FM to recover spatio-
temporal, multimodal posterior distributions over potential
object placements rather than generate action tokens. To our
knowledge, this is the first application of FM to posterior
inference in this setting.

III. METHODOLOGY

This section is organized as follows. Section III-A pro-
vides an overview of Flow Matching, followed by Sec-
tion III-B, which outlines the problem formulation for dy-
namic objects relocalization. Section III-C details the data
collection procedure, and Section III-D gives a complete
description of our system’s architecture, with implementation
details provided in Section III-E.

A. Preliminaries

An Ordinary Differential Equation (ODE) is defined by
a time-dependent vector field u : R x [0,1] — R? that
specifies a velocity u;(z) € R? for each position x € R? and
time ¢. A solution to an ODE for a given initial condition z(
is called a trajectory X : [0,1] — R%, describing the path
of that single point over time with X; = z;. More generally,
a flow ¢ : R? x [0,1] — R? is the solution function of the
ODE for all initial points xg, satisfying

%%(3«”) = us (Y (), Yo(z0) = 0.

The goal of Flow Matching (FM) is to learn a vector field
uY, parameterized by 6, whose flow ¢! transports a simple
base distribution pg £ Dinit to a target data distribution
P1 £ Ddata- In practice, FM constructs a target velocity field
ui™®" () from sample pairs and trains u{ to match it, so
that integrating uf(Xt) moves pinit along some predefined
paths to generate samples from pgata. These probability
paths (pt)o<i<1 specify a gradual interpolation between
noise pinit and data pgata. A standard probability path for
example is the linear path: given Xg ~ pg, X1 ~ p; and
t ~ Unif]0, 1], we can sample X; = tX; + (1 — t)Xo ~ ps.
The FM objective is

Lenm(0) = Eeovnitonp, [|[uf (z) — us 7 (2)| ],

but since the marginal vector field u;*"** () is not tractable
in practice, one minimizes the Conditional Flow Matching
(CFM) loss

Lorm(0) = Evvtnit,enpauasomp (1) [1uf ()= (2]2)[],

because it holds that VLry = VLorm, Where now z is
sampled from pgata, = is sampled from the conditional prob-
ability path p;(-|2), and u/*"9°* (2|2) is the conditional vector
field. For a more complete explanation and formalization we

remind [19].
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Fig. 1: A FlowSim environment across two consecutive timestamps.

A Ty

c
9}
l

B. Problem formulation

At time 7 >0 we represent the map as M, = (O,, Opg),
where O, = {OL} | is the set of objects, and Opg denotes
the static background that is assumed to remain unchanged
over time. Each object is represented as

0 = (xt, 71,17,

T

where X! € R? denotes its 2D position in space, fi repre-
sents object features (e.g., appearance or shape descriptors),
and [’ is a text descriptor (e.g., red coffee mug).

Given a prediction horizon A7 > 0 and a text-object
query O1, our goal is to infer the likely (multimodal) future
locations at time 7, = 7+ A7. Formally, we aim to compute
the posterior

r(xz, M

As the posterior in (1) can be highly multimodal and
intractable, we employ FM to approximate it and generate
samples from it [7]. In particular, given a random sample
Xinit ~ po obtained from a simple distribution pg
N(0,I), our goal is to make Xgn,q ~ p; with pg
p(Xﬁq ’MT,O‘],AT).

M., 01, Ar) .

C. FlowSim

FM (and generative models in general) are data-hungry:
they require a significant amount of data to be able to
approximate well a target distribution. Despite recent com-
munity efforts toward large-scale dynamic datasets [20], to
the best of our knowledge there is no resource that fully
matches our needs: indoor scenes with objects that move
along semantically consistent patterns over space and time.

To bridge this gap, we procedurally generate data
with our proposed simulator, FlowSim. In FlowSim,
objects move across static pieces of furniture following
predefined, category-specific patterns. Figure 1 illustrates
the motion between two consecutive timestamps, mimicking
distinct human interaction patterns: a bottle moving
counterclockwise, a fork clockwise, and a remote top-to-
bottom!. Furthermore, transitions are stochastic: at each
timestamp an object advances to the next location along
its trajectory with probability 0.7, remains at where it is
with probability 0.2, and skips one step (advancing by two
locations) with probability 0.1. This controlled stochasticity
induces multimodal spatio-temporal distributions.

'We prototype the simulator with three object categories, but it is easily
extensible to many more.
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Fig. 2: FlowMaps (a) architecture and its modules, the (b) Map Encoder and the (c) CDiT Block.

FlowSim logs the bounding boxes and descriptors per
timestamp for all objects in the scene (both static and
dynamic) providing exactly the supervision required for
FlowMaps.

D. FlowMaps

In Fig. 2 the FlowMaps architecture is shown (2a),
alongside its two main modules: the Map Encoder (2b) and
the Conditional Diffusion Transformer (CDiT) block (2c).

The Map Encoder embeds the map at state time 7 by
encoding object and furniture descriptors (i.e., colors or
labels) and bounding boxes into tokens e € R(No+Nr)xD
where No + N is the number of tokens. Similar to [21],
we also encode an object-type flag indicating whether the
i-th token is an object or a piece of furniture (denoted as
O and B in Fig. 2b). Tokens are padded to a maximum
length S, augmented with a state time embedding of 7, and
passed through various transformer encoders [22] to yield
a scene-context map embedding. Although Fig. 1 shows a
rendered environment, FlowMaps is not a visual model: to
avoid trivializing the task, it consumes FlowSim’s structured
annotations (bounding boxes and descriptors), not images.

The Diffusion Transformer (DiT) block [23] is a scalable
backbone for training latent generative models. We use
a modified CDiT of [24] with one change: we drop its
Multi-Head Self-Attention, since we diffuse only the query
object rather than the full scene. Each CDiT block takes (i)
a , (i) a conditioning embedding that drives
AdaLN-Zero gates (a, 8,7), and (iii) a
used to cross-attend the . To form a s
we sample ¢ ~ UJ[0, 1], interpolate X; along a probability
path p; between Xy ~ AN(0,I4x4) and the ground-truth
box X; = (y,z,h,w), then add a sinusoidal positional
embedding. The conditioning embedding encodes and
sums the query time 7,, the query object descriptor, and FM
time ¢; the is the Map Encoder output.

CDiT learns the vector field u¢(X;), and given ground-
truth u;(X;), we minimize £ = |[|us(X;) — uf(Xy)||?,
backpropagating through the Map Encoder and the CDiT
blocks.

During inference, we draw Xo ~ A (0, I4x4) and numeri-
cally integrate the ODE to obtain the predicted position Xﬁq
at future time 7,, conditioned on the current map M, and
the object descriptor.

E. Implementation details

We set embedding dimension to D = 256 and N =
8 blocks in both the CDIT and the Transformer encoder,
maximum timestamp horizon 7,4, = 20, and chose color
information as descriptors. We tested training with and with-
out dropout and observed better performance with dropout
enabled at p = 0.1. For the time-sampling distribution
over t, we evaluated the standard uniform, beta [17], and
logit-normal [25] distributions; only the uniform choice
degraded performance. As the probability path, we adopt the
linear path [19]. For ODE integration we use the midpoint
method [19]. We train with an AdamW optimizer with 8, =
0.95 and B2 = 0.999, Exponential Moving Average (EMA)
smoothing for weights with rate of 0.9999, and a cosine
learning-rate schedule with starting LR 1 = le — 4 for 30k
iterations.

IV. RESULTS

We compare FlowMaps with an MLP-based baseline that
also employs the same Map Encoder and regresses over a
Gaussian distribution centered on the ground truth bound-
ing box. Figure 3 reports the KL divergence K L(q||po)
computed between the ground truth distribution ¢ and the
predicted one pg. The results show that our method has
better mode distribution coverage than the MLP baseline,
highlighting the importance of a multimodal distributional
approach for this task. Consistent with this trend, Fig. 4
shows FlowMaps inference results for multiple objects at
future timestamps. For each query, we generate 25 samples to
obtain multiple plausible bounding box positions. As shown
in the image, the model successfully distinguishes object-
specific behaviors and recovers a multimodal distribution.
Together, these qualitative and quantitative results indicate
that FlowMaps effectively captures object-conditioned dy-
namics and the multimodal nature of future object positions.

V. CONCLUSIONS

In this paper we introduced FlowMaps, a Flow Match-
ing based model that infers multimodal posterior distri-
butions over future object locations in household environ-
ments with long-term dynamics, together with FlowSim,
a procedurally generated dataset that captures semantically
consistent, human-induced object motions. Our results indi-
cate that FlowMaps learns object-conditioned routines and
provides robust priors that can help recover from missed
relocalizations during object navigation and retrieval tasks.
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Fig. 3: KL divergence comparison between FlowMaps (blue) and the MLP
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Fig. 4: Results when predicting locations for a fork (top), remote (mid) and
bottle (bottom).

Looking ahead, we will (i) scale from simulation to real
homes with longer horizons and richer object vocabularies
and full text object queries, (ii) integrate FlowMaps as an
uncertainty-aware placement prior within exploration and
planning stacks, and (iii) extend the formulation to 3D Scene
Graphs [3] and online updating so that the posterior can be
refined as new evidence arrives. We believe this is a step
toward robot behaviors that exploit human regularities to
operate reliably in changing environments.
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