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| am thirsty!
Bring me the water bottle.

Maren Bennewitz Hermann Blum

| want to play tennis.
Where is my tennis ball?
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Overview of Stretch-Compose. The framework addresses two types of open-vocabulary queries: (a) retrieval requests, such as “Bring me the water

bottle,” where the robot searches and fetches the target, and (b) search requests, such as “Where is my tennis ball?”, where concealed-space reasoning and
dynamic 3D scene-graph updates are required. Both query types are resolved through the integration of spatial, semantic, and geometric reasoning on the

Stretch SE3 platform.

Abstract— We present an open-vocabulary framework that
combines spatial, semantic, and geometric reasoning to solve a
highly relevant, yet under-studied problem: Given an (outdated)
map of an environment, how can a robot efficiently retrieve
relocated or unmapped items? By unifying spatial cues about
proximity and topology, semantic priors on typical placements,
and geometric constraints that rule out infeasible locations,
particularly within concealed spaces, our approach finds objects
even when they are relocated or hidden in drawers or cabinets.
We further propose in-situ viewpoint planning to model new ob-
jects for manipulation, and to add the object to our dynamic 3D
scene graph. We validate our framework through extensive real-
world trials on the Stretch SE3 mobile manipulator, evaluating
search and retrieval in various conditions. Results demonstrate
robust navigation (100%) and open-space detection (100%),
with semantic-geometric reasoning reducing concealed space
search time by 68% versus semantic-only approaches. Imple-
mented on a low-cost, compact mobile manipulator, our solution
combines sophisticated cognitive capabilities with practical
deployability, representing a significant step toward accessible
service robots for everyday homes.
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I. INTRODUCTION

Object retrieval is an essential task that any general-
purpose household service robot must solve robustly and ef-
ficiently. Yet the problem is mostly studied in two simplified
variants that are unrealistic: one assumes a static environment
with detailed maps from which the previous location of a
queried item can be retrieved [1], [2], whereas the other
assumes an entirely unknown environment where items must
be found without prior information [3]. In reality, domestic
settings lie between these extremes. Humans routinely move,
conceal, and replace objects [4], while furniture typically
remains static for years. A realistic scenario is thus retrieval
from an outdated map where some items are unchanged,
others relocated, and new ones introduced.

Beyond being moved, objects in homes are often con-
cealed in furniture. This aspect has only recently gained
attention [5], typically by mapping once which items lie in
drawers or behind doors. Such maps, however, do not help
when objects are moved into concealed spaces, and exhaus-
tive search across all compartments is prohibitively time-
intensive. An effective service robot must exploit contextual
cues, semantic priors, and geometric checks to prioritize
which furniture to open and thereby find concealed objects
more efficiently.

We introduce Stretch-Compose, a modular framework that



unifies spatial, semantic, and geometric reasoning with online
viewpoint planning. A 3D semantic scene graph drives a
three-stage search: (i) spatial reasoning on the graph ranks
reachable open volumes and verifies nearby candidates; (ii)
semantic reasoning queries a language model with graph
context to propose likely open locations for unseen or
relocated objects; and (iii) semantic—geometric reasoning
targets concealed spaces by combining semantic priors with
size and kinematic feasibility. When the robot observes a
previously unseen or relocated object, it performs multi-view
open-vocabulary synthesis with onboard RGB-D sensors to
reconstruct a 3D object model, updates the scene graph, and
supports grasping or the next search step. This integration
narrows the search space, limits costly actions, and adapts
after each observation (see Fig. 1). Our contributions are:

o A unified framework for open-vocabulary object re-
trieval that can find relocated, unknown, or concealed
objects and maintains an incrementally updated 3D
semantic scene graph.

¢ Spatial, semantic, and geometric reasoning strategies
that narrow down and speed up the object search by
using contextual and geometric cues.

« An open-source implementation on the low-cost Stretch
SE3 platform with real-world experiments verifying the
effectiveness of the proposed approach.

II. RELATED WORK

Object retrieval in robotics has advanced through mod-
ular point-cloud systems assuming static scenes. Spot-
Compose [6] segments a pre-scanned 3D map to locate
and grasp objects and open drawers using YOLOv8 and
OWLv2 [7], while Spotlight [8] extends this with a scene
graph for affordance reasoning on switches and doors. Both
achieve high success in static environments but fail to address
online changes or open-vocabulary queries. In contrast, our
approach updates maps and priors on the fly to handle moved
or novel objects.

Open-vocabulary mobile manipulation has been explored
on real robots using vision—language models. HomeRobot [9]
applied DETIC [10] with DDPO policies for navigation and
placement, OK-Robot [2] combined Owl-ViT [7], SAM [11],
and AnyGrasp [12] for perception and grasp synthesis,
whereas CoMeRobot [13] leveraged GPT-4V to generate
perception and execution code at run time. These systems
validated zero-shot perception, but they typically assumed
static maps, relied on heuristic or exhaustive search, and
treated 2D detection and 3D reachability as separate stages.

Recent works address dynamic environments by maintain-
ing semantic memories or maps during task execution. Dy-
naMem [14] builds a voxel-based spatio-semantic memory
for Stretch SE3, JSR-1 [15] constructs a layered 3D map with
LLM-guided proposals, whereas MoMa-LLM [16] reasons
over dynamic scene graphs with LLM planning for drawer
interactions. These methods adapt to environmental changes,
but they do not integrate semantic cues with geometric
feasibility and viewpoint planning, which are key to reducing
concealed-space search time.

III. OUR APPROACH

Our approach consists of two components: a preprocessing
pipeline that builds a 3D environment representation, and a
search-and-retrieve strategy that integrates spatial, semantic,
and geometric reasoning with grasp planning.

A. Preprocessing Pipeline

The preprocessing pipeline involves scanning the envi-
ronment, merging and aligning point clouds, segmenting
object instances in the 3D point cloud, and organizing the
segmented objects in a 3D scene graph.

1) Data Acquisition and Alignment: In the preprocessing
stage, we scan the environment with both an iPad Pro and
with the robot’s onboard RGB-D camera through FUN-
MAP [17]. In theory only one scan would suffice, but like
other works before [2] we find that the SE3’s sensor is quite
noisy and the iPad yields a more useful initial map. The two
point clouds are then aligned with ICP, initialized from a
fiducial marker.

2) 3D Instance segmentation and Scene Graph Genera-
tion: We first apply OpenMask3D [18] on the iPad scan
data to compute CLIP [19] features and generate initial scene
masks. To identify furniture items, we also run Mask3D [20],
trained on ScanNet200 , to obtain refined instance masks
M = { M.} with semantic labels c¢j. From the 200 classes
we select those representing furniture. Since contiguous
predictions often merge furniture and drawer fronts, we
further refine them with a YOLO-Drawer detector [21] that
partitions these regions into separate instances.

From the resulting set of instances, we construct a directed
scene graph G = (V, E), where

e V = {uv} are nodes representing furniture, drawers,

and objects,

e (v; = v;) € E denotes a containment relation (e.g.,

object in drawer, drawer in furniture).
Each node v is annotated with centroid X; € R3, axis-
aligned bounding box By, and semantic class cy.

B. Search and Retrieval of Objects

We initialize our system with the scene graph created in
the preprocessing stage. Our system then updates this scene
graph online through detection and interaction to locate,
grasp, and retrieve queried object.

1) Spatial Reasoning and Initial Detection: Given a user
query for object 0*, we first run a search through the scene
graph to check if the object has already been mapped. If
successful, this search returns a last-seen node v,. If more
than one node in the scene graph match the query, the node
closest to the robot is returned. From v, we then compute a
candidate robot base pose (Ry,tp) in front of vy:

ty, = X¢+dny, Rpe, =—ny, (D

where ny is the outward normal of the furniture front face
(the furniture on or in which v, sits is simply the parent
node) and § > 0 is a collision radius plus margin. From
this pose, the head camera acquires RGB-D data of the
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Fig. 2. Semantic reasoning predicts the most plausible furniture locations
for a queried item, providing targeted hypotheses that guide subsequent
perception and grasping.

full facade and YOLO-World [22] runs on the RGB image.
Spatial reasoning assumes limited displacement relative to
the last known location and inspects the entire open volume
rather than only the stored object position. If o* is detected,
the pipeline proceeds to manipulation; otherwise, it continues
with semantic reasoning.

2) Semantic Reasoning: If the object cannot be detected at
its previous location or if the scene graph has no entry for o*,
we query DeepSeek-R1 [23] with scene context to retrieve a
set of likely search locations. We cluster furniture into room
groups using k-means on their (x,y) positions and request a
ranked list {v(1,v(2), v(3)} of plausible furniture conditioned
on room and object class. Optional user hints bias the ranking
for atypical locations. The system caches the result to avoid
repeated queries for the same object. We visit candidates in
order, applying the same base-pose computation and YOLO-
World check at each location.

3) Geometric Constraint Reasoning: If o* remains un-
detected in plain sight, we inspect the occluded spaces
in the already visited furniture. For easier readability, we
describe in the following the case for drawers, where door
compartments mostly work the same except for the motion
to open them. When size information for o* is available, we
test fitability against interior drawer dimensions:

fit(o*,vq) = I[I*<Lg, w*<Wy, h*<Hgy, 2

Note that even without drawer manipulation in the mapping
stage, we can estimate the upper bound of the drawer’s inner
dimensions from the bounding box of the front together with
the depth of the furniture in the 3D scan.

To interact with a specific drawer we mostly follow
the heuristic policy of [6], [8], which we adapt for the
Stretch SE3 robot: We move the gripper to the front of the
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Fig. 3. Geometric reasoning restricts the set of candidate drawers or doors
by ruling out infeasible compartments, after which the robot detects and
opens the selected drawer and updates the scene graph.
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Fig. 4. Sankey diagram of the 44 real-world trials, showing stage-wise
outcomes of the search-and-retrieve pipeline. Reasoning and navigation
succeed almost universally, while failures occur mainly in the manipulation
stage, dominated by collisions with the environment and infeasible grasps.

drawer, such that the gripper camera can capture an image
to improve drawer-front perception. A YOLO-based drawer
detector [21] localizes handles; the handle placement indi-
cates container type (door or drawer) and opening direction.
The robot moves the end effector in front of the handle,
extends the arm until contact with the front is detected via
effort feedback, closes the gripper, and pulls to open until
effort feedback indicates the articulation limit. The gripper
then moves above the drawer to examine contents, followed
by another YOLO-World based object existence check.

4) Grasp Planning and Execution: When o* is visible in
an open space or inside a drawer, we estimate its position
from depth and re-plan a body pose at a fixed stand-off.
The gripper camera collects multi-view RGB-D observations
around the object. We segment o* in the RGB views using
SAM?2 [24] with multi-point prompts and align the depth
observations via ICP to obtain a consolidated object point
cloud. For this point cloud, GPD [25] proposes grasps with
scores and widths. We filter infeasible grasps imposed by the
gripper design, discarding approaches that deviate by more
than 12° to the right, and mirroring grasps from behind the
object. The robot executes a pre-grasp, uses ArUco tags on
the fingers to verify the pre-grasp pose, closes the gripper,
lifts the object, and transitions to a carry pose.

5) Scene Graph Update: After each detection, the system
updates the scene graph by adding o* if new or revising its
stored location if moved, maintaining consistency between
search hypotheses and subsequent actions.

IV. EXPERIMENTAL EVALUATION

We evaluate the framework in a lab environment contain-
ing a kitchen and living area with multiple pieces of furniture
and household objects placed in semantically plausible loca-
tions. We test search-and-retrieve tasks for 14 objects under
four conditions: objects absent from the scene graph, objects
relocated, objects locally displaced on the same furniture,
and objects placed inside concealed spaces. Each condition
is repeated across different objects, resulting in 44 full trials.

1) Spatial and Semantic Reasoning: The full pipeline
achieves 47.7% success across trials. Reasoning performance
is consistently strong: semantic reasoning identifies plausible
furniture in nearly all cases (97.7%), even when objects are
absent from or displaced in the scene graph. Multi-view
integration detects 80 % of objects hidden in drawers.



Model Accuracy  Number of tokens

DeepSeek R1 0.91 613

OpenAl ol 0.89 911

OpenAl 03-mini 0.74 1086
TABLE I

ABLATION OVER DIFFERENT LLMS FOR SEMANTIC REASONING.

2) Geometric Reasoning: To evaluate the effect of ge-
ometric reasoning, which just adjusts the priority order of
the different drawers and therefore has no direct effect on
the success rate, we measure task execution times with
and without geometric reasoning: Over 18 additional trials,
geometric reasoning reduces the average execution time per
task from 412s to 129s. This is a 68 % gain by pruning
infeasible drawers and doors, turning otherwise exhaustive
searches into targeted exploration.

3) LLM Ablation: We also ran a small ablation study
on the semantic reasoning module, where we consider an
answer correct if the model returns the correct furniture
item as the most likely location. Table I shows that we got
the best results with DeepSeek R1. We note that DeepSeek
also had the highest inference time in our case, but due to
different hosting services between the models, an objective
comparison of inference time was not possible.

4) Limitations: As shown in Figure 4, most errors stem
from manipulation rather than reasoning. Navigation and
open-space detection are consistently reliable, but many
GPD-proposed grasps are infeasible in clutter or collide with
furniture. The limited orientation range of the Stretch gripper,
its restricted manipulability, and the fixed pre-grasp stance
further constrain feasible grasps, making manipulation the
dominant source of failures despite near-perfect reasoning.

In summary, semantic reasoning yields plausible place-
ments and geometric reasoning reduces concealed-space
search, while grasp generation remains challenging due to
reachability and collision constraints.

V. CONCLUSION

We present Stretch-Compose, a unified framework for
open-vocabulary mobile manipulation that combines spatial,
semantic, and geometric reasoning with online viewpoint
planning. In 44 real-world trials on the Stretch SE3, the
system achieves an overall success rate of 47.7%, with
semantic reasoning reliably generating plausible placements,
geometric reasoning reducing concealed-space search time
by 68%, and multi-view integration detecting 80% of hidden
objects. These results demonstrate that lightweight reasoning
pipelines enable efficient object retrieval in dynamic environ-
ments, even on compact and low-cost platforms.
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